首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight adult horses were used in a study to determine ketamine's ability to reduce halothane requirement. To obtain steady-state plasma concentrations of 0.5, 1.0, 2.0, 4.0, and 8.0 micrograms/ml, loading doses and constant infusions for ketamine were calculated for each horse on the basis of data from other studies in which the pharmacokinetic properties of ketamine were investigated. Blood samples for determination of plasma ketamine concentrations were collected periodically during each experiment. Plasma ketamine concentrations were determined by capillary gas chromatography/mass spectrometry under electron-impact ionization conditions, using lidocaine as the internal standard. Halothane minimal alveolar concentration (MAC; concentration at which half the horses moved in response to an electrical stimulus) and plasma ketamine concentration were determined after steady-state concentrations of each ketamine infusion had been reached. Plasma ketamine concentrations > 1.0 microgram/ml decreased halothane MAC. The degree of MAC reduction was correlated directly with the square root of the plasma ketamine concentration, reaching a maximum of 37% reduction at a plasma ketamine concentration of 10.8 +/- 2.7 micrograms/ml. Heart rate, mean arterial blood pressure, and the rate of increase of right ventricular pressure did not change with increasing plasma ketamine concentration and halothane MAC reduction. Cardiac output increased significantly during ketamine infusions and halothane MAC reduction. Our findings suggest that plasma ketamine concentrations > 1.0 micron/ml reduce halothane MAC and produce beneficial hemodynamic effects.  相似文献   

2.
OBJECTIVES: To determine the minimum alveolar concentration (MAC) of isoflurane during the infusion of ketamine. STUDY DESIGN: Prospective, experimental trial. ANIMALS: Twelve adult spayed female cats weighing 5.1 +/- 0.9 kg. METHODS: Six cats were anesthetized with isoflurane in oxygen, intubated and attached to a circle-breathing system with mechanical ventilation. Catheters were placed in a peripheral vein for the infusion of fluids and ketamine, and the jugular vein for blood sampling for the measurement of ketamine concentrations. An arterial catheter was placed to allow blood pressure measurement and sampling for the measurement of PaCO2, PaO2 and pH. PaCO2 was maintained between 29 and 41 mmHg (3.9-5.5 kPa) and body temperature was kept between 37.8 and 39.3 degrees C. Following instrumentation, the MAC of isoflurane was determined in triplicate using a tail clamp method. A loading dose (2 mg kg(-1) over 5 minutes) and an infusion (23 microg kg(-1) minute(-1)) of ketamine was started and MAC was redetermined starting 30 minutes later. Two further loading doses and infusions were used, 2 mg kg(-1) and 6 mg kg(-1) with 46 and 115 microg kg(-1) minute(-1), respectively and MAC was redetermined. Cardiopulmonary measurements were taken before application of the noxious stimulus. The second group of six cats was used for the measurement of steady state plasma ketamine concentrations at each of the three infusion rates used in the initial study and the appropriate MAC value determined from the first study. RESULTS: The MAC decreased by 45 +/- 17%, 63 +/- 18%, and 75 +/- 17% at the infusion rates of 23, 46, and 115 microg kg(-1) minute(-1). These infusion rates corresponded to ketamine plasma concentrations of 1.75 +/- 0.21, 2.69 +/- 0.40, and 5.36 +/- 1.19 microg mL(-1). Arterial blood pressure and heart rate increased significantly with ketamine. Recovery was protracted. CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of isoflurane was significantly decreased by an infusion of ketamine and this was accompanied by an increase in heart rate and blood pressure. Because of the prolonged recovery in our cats, further work needs to be performed before using this in patients.  相似文献   

3.
This study evaluated the effects of IV lidocaine (L) and ketamine (K), alone and in combination (LK), on the isoflurane MAC (ISOMAC) in goats. It was hypothesized that L and K would reduce ISOMAC and that the effect of LK would be additive. Eight adult goats (24–51 kg) were used in the study. Each goat was studied on four occasions, at weekly intervals, using a randomized crossover design. Anesthesia was induced with isoflurane (ISO) in O2 and goats were intubated and ventilated to normocapnia. End‐tidal ISO (ETISO) and CO2 were monitored with a calibrated infrared analyzer. Body temperature was maintained in the normal range using a heating pad. Approximately 45 minutes after intubation, and with the ETISO having been held constant for at least 20 minutes, determination of the baseline MAC (MACB) was initiated. A noxious stimulus, which consisted of clamping a claw between the jaws of a 10‐inch Vulsellum forceps, was administered for 60 seconds or until purposeful movement occurred. If purposeful movement occurred, the ETISO was increased by 0.1 vols% otherwise it was decreased by 0.1 vols% and the stimulus was reapplied following a 20 minute equilibration period. Following MACB determination treatments were administered as a loading dose (Ld) in 10 mL 0.9% NaCl over 3 minutes followed by a constant rate infusion to a final volume of 60 mL hour–1 in 0.9% NaCl, as follows: L (Ld 2.5 mg kg–1 + 100 μg kg–1 minutes–1); K (Ld 1.5 mg kg–1 + 50 μg kg–1minutes); LK or 0.9% NaCl. Post‐treatment MAC (MACT) determination began 45 minutes after the start of the loading dose. MACB and MACT were determined in triplicate and the mean value was used for data analysis. Difference in percent change in MAC was tested using a mixed‐model anova . Means separation among levels of treatment was tested using the Tukey‐Kramer method. The mean MACB for all treatments was 1.13 ± 0.03 vols%. L, K and LK reduced (p < 0.05) MACB by 19%, 49% and 69%, respectively. No change (p > 0.05) occurred with saline. It was concluded that L and K caused clinically significant decreases in ISOMAC; however, the percent MAC reduction with L was less than expected given the MAC reduction reported with L for other species. The combination (LK) caused a profound decrease in ISOMAC and this effect was additive.  相似文献   

4.
OBJECTIVE: To evaluate the effects of ketamine, magnesium sulfate, and their combination on the minimum alveolar concentration (MAC) of isoflurane (ISO-MAC) in goats. ANIMALS: 8 adult goats. PROCEDURES: Anesthesia was induced with isoflurane delivered via face mask. Goats were intubated and ventilated to maintain normocapnia. After an appropriate equilibration period, baseline MAC (MAC(B)) was determined and the following 4 treatments were administered IV: saline (0.9% NaCl) solution (loading dose [LD], 30 mL/20 min; constant rate infusion [CRI], 60 mL/h), magnesium sulfate (LD, 50 mg/kg; CRI, 10 mg/kg/h), ketamine (LD, 1 mg/kg; CRI, 25 microg/kg/min), and magnesium sulfate (LD, 50 mg/kg; CRI, 10 mg/kg/h) combined with ketamine (LD, 1 mg/kg; CRI, 25 microg/kg/min); then MAC was redetermined. RESULTS: Ketamine significantly decreased ISOMAC by 28.7 +/- 3.7%, and ketamine combined with magnesium sulfate significantly decreased ISOMAC by 21.1 +/- 4.1%. Saline solution or magnesium sulfate alone did not significantly change ISOMAC. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine and ketamine combined with magnesium sulfate, at doses used in the study, decreased the end-tidal isoflurane concentration needed to maintain anesthesia, verifying the clinical impression that ketamine decreases the end-tidal isoflurane concentration needed to maintain surgical anesthesia. Magnesium, at doses used in the study, did not decrease ISOMAC or augment ketamine's effects on ISOMAC.  相似文献   

5.
6.
OBJECTIVE: To determine the effects of adenosine infusion on the minimum alveolar concentration (MAC) of isoflurane in dogs. STUDY DESIGN: Prospective, randomized crossover study. ANIMALS: Seven adult male and female Beagles weighing 10.9 (7.5, 13.6) kg [median (minimum, maximum)]. METHODS: Each dog was anesthetized with isoflurane in oxygen and randomly assigned to receive either an intravenous (IV) adenosine (0.3 mg kg(-1) minute(-1)) or saline (6 mL kg(-1) hour(-1) IV) infusion. After an interval of 7 days or more, each dog was re-anesthetized and treated with the alternative infusion. Using a tail-clamp technique, MAC was determined before (pre-infusion), during (infusion), and 2 hours after the infusions (post-infusion). RESULTS: The pre-infusion MAC of isoflurane was 1.25 (1.15, 1.35) [median (minimum, maximum)] vol.% for the saline treatment group and 1.25 (1.05, 1.45) vol.% for the adenosine treatment group, and did not differ significantly between the two treatments. The infusion MAC values were not significantly different (p = 0.16) and were 1.25 (0.95, 1.35) vol.% and 1.05 (1.00, 1.25) vol.%, respectively. The post-infusion MAC values differed significantly (p = 0.016); MAC was 1.15 (1.15, 1.35) vol.% and 1.05 (1.05, 1.25) vol.% for the saline and adenosine treatment groups, respectively. During infusion, mean arterial blood pressure decreased significantly (p = 0.008) during adenosine treatment compared with the saline 66 mmHg (52, 72) and 91 mmHg (68, 110), respectively. End-tidal CO2 (Pe'CO2), urine production, hematocrit, and plasma total solids did not differ significantly between the two treatments at any time (all p > 0.05). CONCLUSION: Although the MAC of isoflurane in dogs was not decreased significantly during infusion with adenosine (0.3 mg kg(-1) minute(-1)), it was significantly decreased post-infusion, but only by 0.1 vol.%, an amount not considered clinically important. Adenosine infusion decreased mean arterial pressure by 27% and did not adversely affect renal function.  相似文献   

7.
OBJECTIVE: To evaluate the effects of i.v. lidocaine (L) and ketamine (K), alone and in combination (LK), on the minimum alveolar concentration (MAC) of isoflurane (ISO) in goats. STUDY DESIGN: Randomized crossover design. ANIMALS: Eight, adult mixed breed castrated male goats, aged 1-2 years weighing 24-51 kg. METHODS: Anesthesia was induced with ISO that was delivered via a mask. The tracheas were intubated and the animals ventilated to maintain an end-tidal carbon dioxide partial pressure between 25 and 30 mmHg (3.3-4 kPa). Baseline MAC (MAC(B)) that prevented purposeful movement in response to clamping a claw was determined in triplicate. After MAC(B) determination, each goat received one of the following treatments, which were administered as a loading (LD) dose followed by a constant rate infusion, IV: L (2.5 mg kg(-1); 100 microg kg(-1) minute(-1)), K (1.5 mg kg(-1); 50 microg kg(-1) minute(-1)), L and K combination or saline, and the MAC (MAC(T)) was re-determined in triplicate. Plasma concentrations of L and K were measured around each MAC point and the values averaged. RESULTS: The least-squares mean MAC(B) for all treatments was 1.13 +/- 0.03%. L, K, and LK reduced (p < 0.05) MAC(B) by 18.3%, 49.6% and 69.4%, respectively. Plasma concentrations for L, K, and LK were 1617 +/- 385, 1535 +/- 251 and 1865 +/- 317/1467 +/- 185 ng mL(-1), respectively. No change (p > 0.05) occurred with saline. CONCLUSION: Lidocaine and K caused significant decreases in the MAC of ISO. The combination (LK) had an additive effect. However, the plasma L concentrations were less than predicted, as was the MAC reduction with L. CLINICAL RELEVANCE: The use of L, K and the combination, at the doses studied, will allow a clinically important reduction in the concentration of ISO required to maintain general anesthesia in goats.  相似文献   

8.
OBJECTIVE: To evaluate the effects of butorphanol and carprofen, alone and in combination, on the minimal alveolar concentration (MAC) of isoflurane in dogs. DESIGN: Randomized complete-block crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURE: Minimal alveolar concentration of isoflurane was determined following administration of carprofen alone, butorphanol alone, carprofen and butorphanol, and neither drug (control). Anesthesia was induced with isoflurane in oxygen, and MAC was determined by use of a tail clamp method. Three hours prior to induction of anesthesia, dogs were fed a small amount of canned food without any drugs (control) or with carprofen (2.2 mg/kg of body weight [1 mg/lb]). Following initial determination of MAC, butorphanol (0.4 mg/kg [0.18 mg/lb], i.v.) was administered, and MAC was determined again. Heart rate, respiratory rate, indirect arterial blood pressure, endtidal partial pressure of CO2, and saturation of hemoglobin with oxygen were recorded at the time MAC was determined. RESULTS: Mean +/- SD MAC of isoflurane following administration of butorphanol alone (1.03 +/- 0.22%) or carprofen and butorphanol (0.90 +/- 0.21%) were significantly less than the control MAC (1.28 +/- 0.14%), but MAC after administration of carprofen alone (1.20 +/- 0.13%) was not significantly different from the control value. The effects of carprofen and butorphanol on the MAC of isoflurane were additive. There were not any significant differences among treatments in regard to cardiorespiratory data. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of butorphanol alone or in combination with carprofen significantly reduces the MAC of isoflurane in dogs; however, the effects of butorphanol and carprofen are additive, not synergistic.  相似文献   

9.
OBJECTIVE: To determine the effect of 6 plasma ketamine concentrations on the minimum alveolar concentration (MAC) of isoflurane in dogs. ANIMALS: 6 dogs. PROCEDURE: In experiment 1, the MAC of isoflurane was measured in each dog and the pharmacokinetics of ketamine were determined in isoflurane-anesthetized dogs after IV administration of a bolus (3 mg/kg) of ketamine. In experiment 2, the same dogs were anesthetized with isoflurane in oxygen. A target-controlled IV infusion device was used to administer ketamine and to achieve plasma ketamine concentrations of 0.5, 1, 2, 5, 8, and 11 microg/mL by use of parameters obtained from experiment 1. The MAC of isoflurane was determined at each plasma ketamine concentration, and blood samples were collected for ketamine and norketamine concentration determination. RESULTS: Actual mean +/- SD plasma ketamine concentrations were 1.07 +/- 0.42 microg/mL, 1.62 +/- 0.98 microg/mL, 3.32 +/- 0.59 microg/mL, 4.92 +/- 2.64 microg/mL, 13.03 +/- 10.49 microg/mL, and 22.80 +/- 25.56 microg/mL for target plasma concentrations of 0.5, 1, 2, 5, 8, and 11 microg/mL, respectively. At these plasma concentrations, isoflurane MAC was reduced by 10.89% to 39.48%, 26.77% to 43.74%, 25.24% to 84.89%, 44.34% to 78.16%, 69.62% to 92.31%, and 71.97% to 95.42%, respectively. The reduction in isoflurane MAC was significant, and the response had a linear and quadratic component. Salivation, regurgitation, mydriasis, increased body temperature, and spontaneous movements were some of the adverse effects associated with the high plasma ketamine concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine appears to have a potential role for balanced anesthesia in dogs.  相似文献   

10.
ObjectiveTo determine the effect of butorphanol, administered by intravenous (IV) infusion, on the minimum alveolar concentration of isoflurane (MACISO) in cats and to examine the dosage dependence of this effect.Study designRandomized, placebo-controlled, crossover experimental study.AnimalsA group of six healthy adult male neutered cats.MethodsCats were anesthetized with isoflurane in oxygen. A venous catheter was placed for fluid and drug administration, and an arterial catheter was placed for measurement of arterial pressure and blood sampling. Four treatments were administered at random with at least 2 week interval between treatments: saline (control), butorphanol low dosage (treatment LD; 0.25 mg kg–1 IV bolus followed by 85 μg kg–1 minute–1 for 20 minutes, then 43 μg kg–1 minute–1 for 40 minutes, then 19 μg kg–1 minute–1), medium dosage (treatment MD, double the dosages in LD) and high dosage (treatment HD, quadruple the dosages in LD). MACISO was determined in duplicate using the bracketing technique and tail clamping. Pulse rate, arterial pressure, hemoglobin oxygen saturation, end-tidal partial pressure of carbon dioxide and arterial blood gas and pH were measured.ResultsButorphanol reduced MACISO in a dosage-dependent manner, by 23 ± 8%, 37 ± 12% and 68 ± 10% (mean ± standard deviation) in treatments LD, MD and HD, respectively. The main cardiopulmonary effect observed was a decrease in pulse rate, significant in treatment HD compared with control.Conclusions and clinical relevanceButorphanol caused a dosage-dependent MACISO reduction in cats. IV infusion of butorphanol may be of interest for partial IV anesthesia in cats.  相似文献   

11.
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of desflurane in llamas and alpacas. DESIGN: Prospective study. Animals Six healthy adult llamas and six healthy adult alpacas. PROCEDURE: Anesthesia was induced with desflurane delivered with oxygen through a mask. An endotracheal tube was inserted, and a port for continuous measurement of end-tidal and inspired desflurane concentrations was placed between the endotracheal tube and the breathing circuit. After equilibration at an end-tidal-to-inspired desflurane concentration ratio >0.90 for 15 minutes, a 50-Hz, 80-mA electrical stimulus was applied to the antebrachium until a response was obtained (i.e. gross purposeful movement) or for up to 1 minute. The vaporizer setting was increased or decreased to effect a 10-20% change in end-tidal desflurane concentration, and equilibration and stimulus were repeated. The MAC was defined as the average of the lowest end-tidal desflurane concentration that prevented a positive response and the highest concentration that allowed a positive response. RESULTS: Mean +/- SD MAC of desflurane was 7.99 +/- 0.58% in llamas and 7.83 +/- 0.51% in alpacas. CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of desflurane in llamas and alpacas was in the range of that reported for other species.  相似文献   

12.
Reasons for performing study: Dexmedetomidine has been administered in the equine as a constant‐rate infusion (CRI) during inhalation anaesthesia, preserving optimal cardiopulmonary function with calm and coordinated recoveries. Inhalant anaesthetic sparing effects have been demonstrated in other species, but not in horses. Objectives: To determine the effects of a CRI of dexmedetomidine on the minimal alveolar concentration (MAC) of sevoflurane in ponies. Methods: Six healthy adult ponies were involved in this prospective, randomised, crossover, blinded, experimental study. Each pony was anaesthetised twice (3 weeks washout period). After induction with sevoflurane in oxygen (via nasotracheal tube), the ponies were positioned on a surgical table (T0), and anaesthesia was maintained with sevoflurane (expired sevoflurane fraction 2.5%) in 55% oxygen. The ponies were randomly allocated to treatment D (dexmedetomidine 3.5 µg/kg bwt i.v. [T10–T15] followed by a CRI of dexmedetomidine at 1.75 µg/kg bwt/h) or treatment S (bolus and CRI of saline at the same volume and rate as treatment D). After T60, MAC determination, using a classic bracketing technique, was initiated. Stimuli consisted of constant‐current electrical stimuli at the skin of the lateral pastern region. Triplicate MAC estimations were obtained and averaged in each pony. Monitoring included pulse oximetry, electrocardiography, anaesthetic gas monitoring, arterial blood pressure measurement and arterial blood gases. Normocapnia was maintained by mechanical ventilation. Analysis of variance (treatment and period as fixed factors) was used to detect differences between treatments (α= 0.05). Results: An intravenous (i.v.) dexmedetomidine CRI decreased mean ± s.d. sevoflurane MAC from 2.42 ± 0.55 to 1.07 ± 0.21% (mean MAC reduction 53 ± 15%). Conclusions and potential relevance: A dexmedetomidine CRI at the reported dose significantly reduces the MAC of sevoflurane.  相似文献   

13.
OBJECTIVE: To characterize the shape of the relationship between plasma ketamine concentration and minimum alveolar concentration (MAC) of isoflurane in dogs. STUDY DESIGN: Retrospective analysis of previous data. ANIMALS: Four healthy adult dogs. METHODS: The MAC of isoflurane was determined at five to six different plasma ketamine concentrations. Arterial blood samples were collected at the time of MAC determination for measurement of plasma ketamine concentration. Plasma concentration/effect data from each dog were fitted to a sigmoid inhibitory maximum effect model in which MAC(c)= MAC(0) - (MAC(0)-MAC(min)) x C(gamma)/EC(50)(gamma)+C(gamma), where C is the plasma ketamine concentration, MAC(c) is the MAC of isoflurane at plasma ketamine concentration C, MAC(0) is the MAC of isoflurane without ketamine, MAC(min) is the lowest MAC predicted during ketamine administration, EC(50) is the plasma ketamine concentration producing 50% of the maximal MAC reduction, and gamma is a sigmoidicity factor. Nonlinear regression was used to estimate MAC(min), EC(50), and gamma. RESULTS: Mean +/- SEM MAC(min), EC(50) and gamma were estimated to be 0.11 +/- 0.01%, 2945 +/- 710 ng mL(-1) and 3.01 +/- 0.84, respectively. Mean +/- SEM maximal MAC reduction predicted by the model was 92.20 +/- 1.05%. CONCLUSIONS: The relationship between plasma ketamine concentration and its effect on isoflurane MAC has a classical sigmoid shape. Maximal MAC reduction predicted by the model is less than 100%, implying that high plasma ketamine concentrations may not totally abolish gross purposeful movement in response to noxious stimulation in the absence of inhalant anesthetics. CLINICAL RELEVANCE: The parameter estimates reported in this study will allow clinicians to predict the expected isoflurane MAC reduction from various plasma ketamine concentrations in an average dog.  相似文献   

14.
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of sevoflurane in spontaneously breathing llamas and alpacas. DESIGN: Prospective study. ANIMALS: 6 healthy adult llamas and 6 healthy adult alpacas. PROCEDURE: Anesthesia was induced with sevoflurane delivered with oxygen through a mask. An endotracheal tube was inserted, and a port for continuous measurement of end-tidal and inspired sevoflurane concentrations was placed between the endotracheal tube and the breathing circuit. After equilibration at an end-tidal-to-inspired sevoflurane concentration ratio > 0.90 for 15 minutes, a 50-Hz, 80-mA electrical stimulus was applied to the antebrachium until a response was obtained (ie, gross purposeful movement) or for up to 1 minute. The vaporizer setting was increased or decreased to effect a 10 to 20% change in end-tidal sevoflurane concentration, and equilibration and stimulus were repeated. The MAC was defined as the mean of the lowest end-tidal sevoflurane concentration that prevented a positive response and the highest concentration that allowed a positive response. RESULTS: Mean +/- SD MAC of sevoflurane was 2.29 +/- 0.14% in llamas and 2.33 +/- 0.09% in alpacas. CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of sevoflurane in llamas and alpacas was similar to that reported for other species.  相似文献   

15.
Non‐steroidal anti‐inflammatory drugs may potentiate the opioid induced reduction in volatile anaesthetic requirements ( Gomez de Segura et al. 1998 ). This study determined the reduction in the MAC of isoflurane (ISO) produced by ketoprofen (KETO) in dogs anaesthetized with fentanyl (FENT) and ISO. Six healthy female crossbred dogs, weighing 13.5 ± 1.3 (mean ± SD) kg and aged 3.0 ± 0.9 years were studied. Approval of the study was obtained from the institutional ethics committee. Anaesthesia was induced in all dogs via a facemask with 5% ISO in 5 L minute?1 oxygen. The dogs' trachea were intubated and lungs were ventilated to maintain normocapnia (Pe ′CO2 4.7–6 kPa, 35–45 mm Hg). A heating pad was used to maintain body temperature. The animals were anaesthetized four times at one week intervals with the following anaesthetic and analgesic protocols randomly administered. Study 1, MAC (ISO); Isoflurane MAC. Study 2, MAC (ISO + FENT); dogs anaesthetized with ISO received a loading dose of 30 µg kg?1 FENT IV over 20 minutes followed by a maintenance infusion of 0.2 µg kg?1 minute?1 FENT. Study 3, MAC (ISO + FENT + KETO1); as study 2 plus 1 mg kg?1 KETO. Study 4, MAC (ISO + FENT + KETO2); as study 2 plus 2 mg kg?1 KETO. The MAC was determined in duplicate by applying a standard electrical stimulus (50 V, 50 H2 over 60 seconds via two needles placed SC over the tarsus). The stimulus was applied 15 minutes after every step change in anesthetic concentration. The Wilcoxon test was applied to data to determine significant differences among MAC measurements. Fentanyl significantly decreased MAC (ISO) from 1.27% ± 0.02% to 0.73% ± 0.08%, a reduction of 42% (p < 0.05). Ketoprofen 1 mg kg?1 further decreased the MAC value (although not statistically significantly) with a reduction of 47% from MAC (ISO) (0.67% ± 0.13%) and 8% from MAC (ISO + FENT). When KETO 2 mg kg?1 was given, the reduction in MAC was 50% compared to MAC (ISO) (0.63% ± 0.08%; p < 0.05) and 14% compared to MAC (ISO + FENT) p < 0.05. Administration of KETO further reduces MAC (ISO) compared to levels observed with FENT alone. The observed reduction may have clinical advantages.  相似文献   

16.
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of isoflurane (ISO) in llamas. STUDY DESIGN: Prospective study. ANIMALS: Eight adult neutered male llamas (9 +/- 1 years [x +/- SD], 177 +/- 29 kg). METHODS: Anesthesia was induced and maintained in otherwise unmedicated llamas with a mixture of ISO in oxygen administered through a standard small-animal, semi-closed circle system using an out-of-circle, agent-specific vaporizer. The time from mask placement to intubation was recorded. Inspired and end-tidal (ET) ISO was sampled continuously. At each anesthetic concentration, a constant ET ISO was maintained for at least 20 minutes before application of a noxious electrical stimulus (50 volts, 5 Hz, 10 ms for up to 1 minute). A positive or negative response to the stimulus was recorded, and ET ISO then increased (if positive response) or decreased (if negative response) by 10% to 20%. Individual MAC was the average of multiple determinations. Body temperature was maintained at 37 +/- 1 degrees C. Selected cardiopulmonary variables (heart rate [HR], respiratory rate [RR], arterial blood pressure [ABP]) and ET ISO were recorded at hourly intervals from first ISO. Arterial blood was collected for pH, PCO2, PO2 analysis and measurement of packed cell volume (PCV) and total protein (TP) at 2 hour intervals. Following MAC determination, the anesthetic was discontinued and llamas were allowed to recover. Duration and quality of recovery were noted. RESULTS: The time from start of induction by mask to completion of intubation took 19.1 +/- 4.8 minutes. The MAC of ISO corrected to one atmosphere at sea level (barometric pressure 760 mm Hg) in these llamas was 1.05 +/- 0.17%. Mean ABP increased from 70 +/- 26 mm Hg at the end of the first hour of anesthesia to 102 +/- 7 mm Hg measured at the end of the sixth hour of anesthesia. ET ISO decreased from 2.06 +/- 0.10% to 1.27 +/- 0.07% over the same time period, but MAC did not change with time. The duration from first ISO to discontinuation of ISO averaged 6.19 +/- 0.9 hours. Animals were able to support their heads in a sternal posture at 23 +/- 10 minutes, and stood 62 +/- 26 minutes following discontinuation of the anesthetic. CONCLUSION: The MAC for ISO is similar to, but slightly lower than, values reported for other species. CLINICAL RELEVANCE: Knowledge of MAC may facilitate appropriate clinical use and provide the basis for future investigation of ISO in llamas.  相似文献   

17.
18.
OBJECTIVE: To determine minimum alveolar concentration (MAC) of isoflurane in green iguanas and effects of butorphanol on MAC. DESIGN: Prospective randomized trial. ANIMALS: 10 healthy mature iguanas. PROCEDURE: in each iguana, MAC was measured 3 times: twice after induction of anesthesia with isoflurane and once after induction of anesthesia with isoflurane and IM administration of butorphanol (1 mg/kg [0.45 mg/lb]). A blood sample was collected from the tail vein for blood-gas analysis at the beginning and end of the anesthetic period. The MAC was determined with a standard bracketing technique; an electrical current was used as the supramaximal stimulus. Animals were artificially ventilated with a ventilator set to deliver a tidal volume of 30 mL/kg (14 mL/lb) at a rate of 4 breaths/min. RESULTS: Mean +/- SD MAC values during the 3 trials (2 without and 1 with butorphanol) were 2.0 +/- 0.6, 2.1 +/- 0.6, and 1.7 +/- 0.7%, respectively, which were not significantly different from each other. Heart rate and end-tidal partial pressure of CO2 were also not significantly different among the 3 trials. Mean +/- SD heart rate was 48 +/- 10 beats/min; mean end-tidal partial pressure of CO2 was 22 +/- 10 mm Hg.There were no significant differences in blood-gas values for samples obtained at the beginning versus the end of the anesthetic period. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the MAC of isoflurane in green iguanas is 2.1% and that butorphanol does not have any significant isoflurane-sparing effects.  相似文献   

19.
OBJECTIVE: To determine minimum alveolar concentration (MAC) of isoflurane in mechanically ventilated Dumeril monitors (Varanus dumerili). DESIGN: Prospective study. ANIMALS: 10 healthy adult Dumeril monitors. PROCEDURE: Anesthesia was induced with isoflurane in oxygen delivered through a face mask. Monitors were endotracheally intubated, and end-tidal and inspired isoflurane concentrations were continuously measured. After equilibration at an end-tidal-to-inspired isoflurane concentration ratio of >0.9 for 20 minutes, an electrical stimulus (50 Hz, 50 V) was delivered to the ventral aspect of the tail for up to 1 minute and the monitor was observed for purposeful movement. End-tidal isoflurane concentration was then decreased by 10%, and equilibration and stimulation were repeated. The MAC was calculated as the mean of the lowest end-tidal isoflurane concentration that prevented positive response and the highest concentration that allowed response. A blood sample for blood gas analysis was collected from the tail vein at the beginning and end of the anesthetic period. RESULTS: Mean +/- SD MAC of isoflurane was 1.54 +/- 0.17%. Mean heart rates at the upper and lower MAC values were 32.4 +/- 3 beats/min and 34 +/- 4.5 beats/min, respectively. During the experiment, PaCo2 decreased significantly from 43.1 mm Hg to 279 mm Hg and blood pH and HCO3 concentration increased significantly from 7.33 to 7.64 and from 25.3 to 32.9 mmol/L, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of isoflurane in Dumeril monitors was similar to that reported in mammals but lower than values reported in other reptiles. This difference may be reflective of the more advanced cardiovascular physiologic features of monitor lizards.  相似文献   

20.
ObjectiveTo test whether naltrexone, an opioid receptor antagonist, affects the minimum alveolar concentration (MAC) of isoflurane in cats, a species that is relatively resistant to the general anesthetic sparing effects of most opioids.Study designRandomized, crossover, placebo-controlled, blinded experimental design.AnimalsSix healthy adult cats weighing 4.9 ± 0.7 kg.MethodsThe cats were studied twice. In the first study, baseline isoflurane MAC was measured in duplicate. The drug (saline control or 0.6 mg kg?1 naltrexone) was administered IV every 40–60 minutes, and isoflurane MAC was re-measured. In the second study, cats received the second drug treatment using identical methods 2 weeks later.ResultsIsoflurane MAC was 2.03 ± 0.12% and was unchanged from baseline following saline or naltrexone administration.Conclusion and clinical relevanceMinimum alveolar concentration was unaffected by naltrexone. Because MAC in cats is unaffected by at least some mu-opioid agonists and antagonists, spinal neurons that are directly modulated by mu-opioid receptors in this species cannot be the neuroanatomic sites responsible for immobility from inhaled anesthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号