首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Reasons for performing study: Insulin resistance (IR) is a risk factor for pasture‐associated laminitis in equids and alimentary carbohydrate overload may trigger laminitis. Whether glucose metabolism responses to carbohydrate overload are more pronounced in insulin‐resistant horses requires further study. Hypothesis: Horses pretreated with endotoxin to alter insulin sensitivity differ significantly in their glucose and insulin responses to carbohydrate overload. Methods: Horses (n = 24) were divided into 3 groups. A lipopolysaccharide (LPS; n = 8) group that received endotoxin as an 8 h 7.5 ng/kg bwt/h i.v. continuous rate infusion, an oligofructose (OF; n = 8) group that received an infusion of saline followed by 5 g/kg bwt OF via nasogastric intubation, and a LPS/OF (n = 8) group that received LPS followed 16 h later by OF. Glucose and insulin dynamics were evaluated at ‐24 h and 48 h using the frequently sampled i.v. glucose tolerance test and minimal model analysis. Physical examinations and haematology were performed and the severity of laminitis assessed. Results: Horses receiving LPS developed leucopenia and both LPS and OF induced clinical signs consistent with systemic inflammation. Insulin sensitivity significantly decreased (P<0.001) over time, but responses did not differ significantly among groups. Time (P<0.001) and treatment × time (P = 0.038) effects were detected for the acute insulin response to glucose, with mean values significantly increasing in LPS and LPS/OF groups, but not the OF group. Five horses in the LPS/OF group developed clinical laminitis compared with 0 and 2 horses in the LPS and OF groups, respectively. Conclusions: Endotoxaemia and carbohydrate overload reduce insulin sensitivity in horses. Endotoxin pretreatment does not affect the alterations in glucose metabolism induced by carbohydrate overload. Potential relevance: Insulin sensitivity decreases after carbohydrate overload in horses, which may be relevant to the development of pasture‐associated laminitis.  相似文献   

5.
6.
7.
Reasons for performing study: Hyperinsulinaemia has been implicated in the pathogenesis of laminitis; however, laminar cell types responding to insulin remain poorly characterised. Objectives: To identify laminar cell types expressing insulin receptor (IRc) and/or insulin‐like growth factor‐1 receptor (IGF‐1R); and to evaluate the effect of dietary nonstructural carbohydrate (NSC) on their expression. Methods: Mixed‐breed ponies (n = 22) received a conditioning hay chop diet (NSC ~6%); following acclimation, ponies were stratified into lean (n = 11, body condition score [BCS]≤4) or obese (n = 11, BCS ≥7) groups and each group further stratified to remain on the low NSC diet (n = 5 each for obese and lean) or receive a high NSC diet (total diet ~42% NSC; n = 6 each for obese and lean) for 7 days. Laminar samples were collected at the end of the feeding protocol and stained immunohistochemically for IRc and IGF‐1R. The number of IRc(+) cells was quantified; distribution of IGF‐1R was qualitatively described. Laminar IRc content was assessed via immunoblotting. Results: The number of IRc(+) cells was greater in the laminae of high NSC ponies than low NSC ponies (P = 0.001); there was a positive correlation between the change in serum insulin concentration and number of IRc(+) cells (r2= 0.74; P<0.0001). No epithelial IRc(+) cells were observed; IRc(+) cells were absent from the deep dermis. Analysis of serial sections identified IRc(+) cells as endothelial cells. The distribution of IGF‐1R was more extensive than that of IRc, with signal in vascular elements, epithelial cells and fibroblasts. Conclusions: Increased dietary NSC results in increased laminar endothelial IRc expression. Laminar keratinocytes do not express IRc, suggesting that insulin signalling in laminar epithelial cells must be mediated through other receptors (such as IGF‐1R). Potential relevance: Manipulation of signalling downstream of IRc and IGF‐1R may aid in treatment and prevention of laminitis associated with hyperinsulinaemia.  相似文献   

8.
9.
10.
Reasons for performing study: Several conditions associated with laminitis in horses are also associated with insulin resistance, which represents the failure of glucose uptake via the insulin‐responsive glucose transport proteins in certain tissues. Glucose starvation is a possible mechanism of laminitis, but glucose uptake mechanisms in the hoof are not well understood. Objectives: To determine whether glucose uptake in equine lamellae is dependent on insulin, to characterise the glucose transport mechanism in lamellae from healthy horses and ponies, and to compare this with ponies with laminitis. Methods: Study 1 investigated the effects of insulin (300 µU/ml; acute and 24 h) and various concentrations of glucose up to 24 mmol/l, on 2‐deoxy‐D‐[2,6‐3H]glucose uptake in hoof lamellar explants in vitro. Study 2 measured the mRNA expression of GLUT1 and GLUT4 transport proteins by PCR analysis in coronary band and lamellar tissue from healthy horses and ponies, ponies with insulin‐induced laminitis, and ponies suffering from chronic laminitis as a result of equine Cushing's syndrome. Results: Glucose uptake was not affected by insulin. Furthermore, the relationship between glucose concentration and glucose uptake was consistent with an insulin‐independent glucose transport system. GLUT1 mRNA expression was strong in brain, coronary band and lamellar tissue, but was weak in skeletal muscle. Expression of GLUT4 mRNA was strong in skeletal muscle, but was either absent or barely detectable in coronary band and lamellar tissue. Conclusions: The results do not support a glucose deprivation model for laminitis, in which glucose uptake in the hoof is impaired by reduced insulin sensitivity. Hoof lamellae rely on a GLUT1‐mediated glucose transport system, and it is unlikely that GLUT4 proteins play a substantial role in this tissue. Potential relevance: Laminitis associated with insulin resistance is unlikely to be due to impaired glucose uptake and subsequent glucose deprivation in lamellae.  相似文献   

11.
Reasons for performing study: Hyperinsulinaemia is known to induce laminitis experimentally in healthy ponies with no history of the condition. Horses are more insulin sensitive than ponies and whether prolonged hyperinsulinaemia and euglycaemia would have a similar laminitogenic effect requires study. Objectives: To determine if laminitis results when the prolonged euglycaemic hyperinsulinaemic clamp technique (p‐EHC) is applied to clinically normal Standardbred horses, and to monitor hoof wall temperature seeking an association between vascular activity and laminitis development. Methods: Eight young, clinically normal Standardbred horses were assigned into 4 pairs and within each pair, one was assigned randomly to either treatment (n = 4) or control (n = 4) groups. Treated horses received continuous infusions of insulin and glucose until clinical signs of laminitis developed, at which point the horses were subjected to euthanasia. Control horses received an equivalent volume of a balanced electrolyte infusion for the same period. Hoof wall surface temperature (HWST) was monitored continuously throughout the experimental period. Results: All horses in the treatment group were calculated to have normal insulin sensitivity. All treated horses, and none in the control group, developed laminitis (P = 0.01). Pronounced digital pulses were a feature of the treatment group, while insignificant digital pulses occurred in control horses. HWST was higher and less variable in treated horses once hyperinsulinaemia was established. Conclusions: Healthy Standardbred horses subjected to prolonged hyperinsulinaemia develop laminitis within 48 h, demonstrating that laminitis in horses can be triggered by insulin. Potential relevance: Insulin resistance and the associated hyperinsulinaemia place horses and ponies at risk of developing laminitis. This study demonstrates a need for prompt management of the persistent hyperinsulinaemia seen in some endocrinopathies.  相似文献   

12.
13.
Reasons for performing study: The frequently sampled i.v. glucose tolerance test (FSIGTT) is used to evaluate glucose and insulin dynamics in horses, but it has not been determined whether urinary glucose spilling (UGS) affects results. Hypothesis: UGS occurs in horses during the FSIGTT and this problem can be minimised by adjusting the dextrose and insulin dosages used. Methods: Six mature mares were included in this study. In the first phase, 6 FSIGTT procedures were performed in each horse to evaluate 6 different dextrose dosages. Six different insulin dosages were evaluated during the second phase of the study after administration of 300 mg/kg bwt dextrose. Area under the glucose (AUCg) and insulin (AUCi) curves were calculated and minimal model analyses performed. UGS was measured in the third and fourth phases of the study during the combined glucose insulin test and established FSIGTT. A new FSIGTT was developed and evaluated. Results: Positive linear effects of dextrose dosage on AUCg, AUCi and acute insulin response to glucose were detected, with AUCg reaching a plateau at doses 200 mg/kg bwt. Insulin dosage had an inverse linear effect on AUCg, but other values remained unaffected. UGS occurred during all 3 tests and was the highest for the established FSIGTT and the lowest for the new FSIGTT. The type of FSIGTT performed did not affect minimal model results. Conclusions: Results indicate that the dextrose dosage of 300 mg/kg bwt used in the established FSIGTT is too high. UGS can be reduced by lowering the dextrose dosage to 100 mg/kg bwt. Potential relevance: A new FSIGTT involving the administration of 100 mg/kg bwt dextrose followed by 20 mu/kg bwt insulin 20 min later is recommended for use in horses because this test provides adequate data for minimal model analysis while minimising UGS.  相似文献   

14.
Reasons for performing study: Obesity and insulin resistance are risk factors for laminitis in equids and supplements containing chromium and magnesium might improve insulin sensitivity. Hypothesis: A supplement containing chromium, magnesium and other nutraceuticals would alter morphometric measurements, blood variables, and insulin sensitivity in laminitic obese horses. Methods: Twelve previously laminitic obese (body condition score ≥ 7/9) horses were randomly allocated to treatment (n = 6) and control (n = 6) groups and 2 obese horses with clinical laminitis were included in the treatment group. Treated animals received 56 g supplement with 0.25 kg oats once daily for 16 weeks. The supplement contained chromium (5 mg/day as yeast), magnesium (8.8 g/day as oxide/proteinate), and other nutraceuticals. Insulin‐modified frequently sampled i.v. glucose tolerance tests were performed with hay provided at 0, 8 and 16 weeks, and insulin sensitivity was estimated by minimal model analysis. Physical measurements were collected at the same points. Horses were not exercised. Results: Hyperinsulinaemia (>30 µu/ml) was detected in 12 of 14 horses prior to treatment. Glucose and insulin data from one mare with clinical laminitis were excluded because of persistent pain. Mean ± s.d. insulin sensitivity was 0.64 ± 0.62 × 10?4 l/min/mu prior to treatment for the remaining 13 horses. Time and treatment × time effects were not significant for any of the variables examined, with the exception of resting insulin concentrations, which significantly increased over time (P = 0.018). Health status remained the same. Conclusions: The supplement containing chromium and magnesium evaluated in this study did not alter morphometric measurements, blood variables, resting insulin concentrations or insulin sensitivity in laminitic obese horses. Potential relevance: Additional research is required to determine the appropriate use of chromium and magnesium supplements in horses.  相似文献   

15.
16.
17.
Abnormalities of insulin metabolism include hyperinsulinaemia and insulin resistance, and these problems are collectively referred to as insulin dysregulation in this review. Insulin dysregulation is a key component of equine metabolic syndrome: a collection of endocrine and metabolic abnormalities associated with the development of laminitis in horses, ponies and donkeys. Insulin dysregulation can also accompany prematurity and systemic illness in foals. Causes of insulin resistance are discussed, including pathological conditions of obesity, systemic inflammation and pituitary pars intermedia dysfunction, as well as the physiological responses to stress and pregnancy. Most of the discussion of insulin dysregulation to date has focused on insulin resistance, but there is increasing interest in hyperinsulinaemia itself and insulin responses to feeding. An oral sugar test or in‐feed oral glucose tolerance test can be performed to assess insulin responses to dietary carbohydrates, and these tests are now recommended for use in clinical practice. Incretin hormones are likely to play an important role in postprandial hyperinsulinaemia and are the subject of current research. Insulin resistance exacerbates hyperinsulinaemia, and insulin sensitivity can be measured by performing a combined glucose‐insulin test or i.v. insulin tolerance test. In both of these tests, exogenous insulin is administered and the rate of glucose uptake into tissues measured. Diagnosis and management of hyperinsulinaemia is recommended to reduce the risk of laminitis. The term insulin dysregulation is introduced here to refer collectively to excessive insulin responses to sugars, fasting hyperinsulinaemia and insulin resistance, which are all components of equine metabolic syndrome.  相似文献   

18.
19.
Reasons for performing study: The ability to predict ponies at increased risk of laminitic episodes, when exposed to nutrient dense pasture, would facilitate management to avoid disease. Objectives: To identify variables and clinically useful cut‐off values with reproducible diagnostic accuracy for the prediction of ponies that subsequently developed laminitis when exposed to nutrient dense pasture. Methods: A cohort of predominantly Welsh and Dartmoor ponies from a closed herd was evaluated in March 2006 (n = 74) and March 2007 (n = 57). Ponies were categorised as never laminitic or previously laminitic according to reported laminitic history and as clinically laminitic (CL) if laminitis was observed within 3 months following evaluation. Body condition score (BCS), cresty neck score (CNS), girth and neck circumferences (NC), withers height, blood pressure and hoof surface temperature, and plasma insulin, glucose, triglyceride, leptin, cortisol, ACTH, uric acid and TNF‐α concentrations were measured. Analysis of sensitivity, specificity and receiver operating characteristic curves was used to evaluate the diagnostic accuracy for a variable to predict CL ponies. Results: Variables with diagnostic accuracy for the prediction of CL ponies included insulin, leptin, BCS, CNS, and NC:height ratio. Specific cut‐off values of insulin (>32 mu/l), leptin (>7.3 ng/ml), BCS (≥7), CNS (≥4) and NC:height ratio (>0.71) had reproducible diagnostic accuracy for the prediction of laminitis. Combining tests did not result in higher diagnostic accuracy than individual tests of insulin or leptin during either evaluation. Conclusions: Tests of insulin and leptin concentrations and measures of generalised (BCS) and localised (CNS or NC:height ratio) obesity were beneficial in the prediction of laminitic episodes. Potential relevance: These results highlight the importance of monitoring and reducing insulin concentration, and generalised and regional obesity in ponies to reduce risk of laminitis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号