首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The goal of integrated on-farm drainage management (IFDM) is to eliminate the discharge of subsurface drainage water from farms into waterways or evaporation ponds. Components of a typical IFDM system include improved irrigation practices, irrigation of salt-tolerant plants with drainage water, and on-farm disposal of drainage water using a solar evaporator. Costs of an IFDM system include initial investments, operation and maintenance, and the opportunity costs of land used for the solar evaporator and for irrigation of nonmarketable, salt-tolerant plants. The farm-level cost of an IFDM system increases with the proportion of farmland used to irrigate salt-tolerant plants. A conceptual framework for evaluating the farm-level costs of IFDM is presented, along with empirical analysis from California’s San Joaquin Valley.  相似文献   

2.
Pollutant trading schemes are market-based strategies that can provide cost-effective and flexible environmental compliance in large river basins. The aim of this paper is to contrast two innovative adaptive strategies for salinity management have been developed in the Hunter River Basin, New South Wales, Australia and in the San Joaquin River Basin, California, USA, respectively. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support tools for salinity management. A common element to implementation of salinity management strategies in both the Hunter River and San Joaquin River basins has been the concept of river assimilative capacity as a guide for controlling export salt loading and the establishment of a framework for trading of the right to discharge salt load to the Hunter River and San Joaquin River respectively. Both rivers provide basin drainage and the means of exporting salt load to the ocean. The paper compares the opportunities and constraints governing salinity management in the two basins as well as the use of monitoring, modeling and information technology to achieve environmental compliance and sustain irrigated agriculture in an equitable, socially and politically acceptable manner. The paper concludes by placing into broader context some of the issues raised by the comparison of the two approaches to basin salinity management.  相似文献   

3.
The Government of Egypt is currently implementing projects that expand irrigated area on the Sinai Peninsula and in the southern desert. Those projects will reduce the supply of Nile River water available to farmers in the Nile Delta, which is a heavily populated and highly productive agricultural region. The southern desert project will obtain water directly from Lake Nasser, while a mixture of Nile River water and drainage water will be delivered to the Sinai. The true costs of the projects include the opportunity costs of water and capital that could be used alternatively in the Nile Valley and Delta, or in other productive endeavors. Economic analysis generates optimizing criteria that describe the role of scarcity values (opportunity costs) in determining the allocation of Nile River water that will maximize net social benefits. Policy implications are derived by comparing those criteria with the criterion that farmers implement when maximizing profits from crop production. A small-scale simulation model demonstrates the potential impact of water allocation policies on regional net revenues. Results are discussed within the context of a broader view of national goals that include promoting economic growth, achieving food security, and enhancing the quality of life for Egyptians.  相似文献   

4.
Seasonally managed wetlands in the Grasslands Basin on the west-side of California’s San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River (SJR) during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the SJR and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the SJR. Past attempts to build environmental monitoring and decision support systems (EDSS’s) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the SJR Basin.  相似文献   

5.
The poor water quality of sub-surface drainage, hereafter drainage, water generated in the western San Joaquin Valley in California creates management challenges for farmers and water managers. Elevated concentrations of salt and trace elements in agricultural drainage limit the disposal options. In this constrained environment, determining the original source of drainage water is a crucial step in developing appropriate drainage management policies. Numerical modeling results of near-surface water-table fluctuations indicate that the substantial groundwater rise observed in the vicinity of the region's major water supply canal could not be attributed solely to seepage from overlying irrigated fields. An inverse solution approach is used herein to test the theory that seepage from the canal itself and/or that from surface water retention ponds (designed to protect the structure from flash floods) is responsible for an accentuated groundwater mound. The results suggest that canal seepage is the more likely source of non-agricultural aquifer recharge.  相似文献   

6.
Two field studies were conducted on the west side of the San Joaquin Valley of California to demonstrate the potential for integrated management of irrigation and drainage systems. The first study used a modified cotton crop coefficient to calculate the irrigation schedule controlling the operation of a subsurface drip system irrigating cotton in an area with saline groundwater at a depth of 1.5 m. Use of the coefficient resulted in 40% of the crop water requirement coming from the groundwater without a loss in lint yield. The second study evaluated the impact of the installation of controls on a subsurface drainage system installed on a 65 hectare field. As a result of the drainage controls, 140 mm less water was applied to the tomato crop without a yield loss. A smaller relative weight of tomatoes classified as limited use, was found in the areas with the water table closest to the soil surface.  相似文献   

7.
Drip irrigation of processing tomato is increasing in the San Joaquin Valley of California (USA), a major tomato production area. Efficient management of these irrigation systems requires reasonable estimates of crop evapotranspiration (ETc) between irrigations. A common approach for estimating ETc is to multiply a reference crop evapotranspiration (ETo) by a crop coefficient. However, a review of literature revealed mid-season crop coefficients for processing tomato to range from 1.05 to 1.25. Because of this variability, uncertainty exists in the crop coefficients appropriate for drip irrigation in the San Joaquin Valley. Thus, a study was initiated to determine the ETc of processing tomato for drip irrigation in commercial fields and then calculate crop coefficients from the ETc and ETo data for the west side of the San Joaquin Valley. Crop ETc was determined at five locations using the Bowen Ratio Energy Balance Method (BREB). Canopy coverage was also measured using a digital infrared camera. Average crop coefficients ranged from about 0.19 at 10% canopy coverage to 1.08 for canopy coverage exceeding about 90%. A second order regression equation reasonably described a relationship between crop coefficient and canopy coverage. Generic curves describing crop coefficient versus time of year were developed for various planting times.  相似文献   

8.
Artificial subsurface drainage is not an option for addressing the saline, shallow ground water conditions along the west side of the San Joaquin Valley because of the lack of drainage water disposal facilities. Thus, the salinity/drainage problem of the valley must be addressed through improved irrigation practices. One option is to use drip irrigation in the salt affected soil.A study evaluated the response of processing tomato and cotton to drip irrigation under shallow, saline ground water at depths less than 1 m. A randomized block experiment with four irrigation treatments of different water applications was used for both crops. Measurements included crop yield and quality, soil salinity, soil water content, soil water potential, and canopy coverage. Results showed drip irrigation of processing tomato to be highly profitable under these conditions due to the yield obtained for the highest water application. Water applications for drip-irrigated tomato should be about equal to seasonal crop evapotranspiration because yield decreased as applied water decreased. No yield response of cotton to applied water occurred indicating that as applied water decreased, cotton uptake of the shallow ground water increased. While a water balance showed no field-wide leaching, salinity data clearly showed salt leaching around the drip lines.  相似文献   

9.
The increasing scarcity of water in California and the rising cost of compliance with environmental regulations are motivating some farmers in the San Joaquin Valley to sell their land and water, and discontinue production of irrigated crops. In the summer of 2004, all landowners in the 3,700-ha Broadview Water District decided to sell their land to Westlands Water District. The land sales have been completed and Westlands has acquired Broadview's water supply contract. Farmland in Broadview will no longer be irrigated. We describe what motivated the purchase and sale of land and water in Broadview and discuss the potential gains to participants. We describe also the potential public benefits that include an increase in economic activity and environmental enhancement in the San Joaquin Valley. Farm workers displaced by land retirement in Broadview will find employment in the Westlands Water District. Tenant farmers in Broadview will need to find other land on which to continue farming after the land sales are completed. The challenge they face is caused partly by a regional trend toward greater production of perennial crops that is leaving less land available for annual leases.Formerly Manager of Broadview Water District, Firebaugh, California  相似文献   

10.
For many years, the San Joaquin River (SJR) has had low dissolved oxygen conditions intermittently during the late summer and early fall. The low dissolved oxygen conditions are impacting critical fish habitat and the SJR is being regulated under a state of California remediation plan that includes the development of a total maximum daily load (TMDL) allocation for oxygen demanding substances. In support of the development of a scientific TMDL allocation, studies are being conducted to characterize water quality in the many tributaries of the SJR. This study identified the sources of biochemical oxygen demand (BOD) in two western tributaries of the SJR, Mud Slough and Salt Slough, and measured the loads of BOD, algae, and ammonia entering the SJR from wetland and agricultural sources.

Mud and Salt Sloughs drain the Grassland Watershed. The watershed contains seasonal wetlands, irrigated farmland, and other agricultural lands. This drainage is under close regulatory scrutiny, because it produces a majority of the selenium and boron entering the SJR. In this study, wetland and irrigated agricultural drainage were sampled separately and a comparison was made to determine differences in water quality. In addition, water entering the study area was compared to water exiting the study area to determine the effect of water use in the region on water quality.

This study demonstrated that BOD loads from the Grassland Watershed to the SJR were proportional to flow during June–October, the most critical time for dissolved oxygen deficits in the lower SJR. This indicates that Mud and Salt Sloughs are not producing more BOD than other tributaries in the region that are not under close regulatory scrutiny. The BOD concentration of wetland drainage is higher than that of agricultural drainage, but the higher agricultural drainage flows result in a higher mass loading of BOD. Wetland flooding and irrigation of crops both had a negative impact on water quality. Algal growth was identified as the major source of BOD in agricultural drainage and locations where BOD control could potentially be implemented were identified.  相似文献   


11.
Decades of irrigation on the west side of the San Joaquin Valley without sufficient drainage have created large areas where shallow ground water (<1.5 m) has become a problem for agriculture. Because drainage outflow is restricted as a result of environmental concerns, reducing the amount of irrigation applied is a farm management solution for this situation. One option to reduce the amount of irrigation water is to include shallow ground water use as a source of water for crop production when scheduling irrigation. The objective for this study is to describe soil water fluxes in the presence of saline, shallow ground water under a safflower crop. Two weighing lysimeters, one with and one without shallow saline ground water were used to measure crop evapotranspiration of surface drip irrigated safflower. A saline water table (14 dS/m) was maintained in one of the lysimeters. Ground water use as part of crop evapotranspiration was characterized using hourly measurements of the water level in a ground water supply tank (Mariotte bottle). Ground water contribution of up to 40% of daily crop water use was measured. On a seasonal basis, 25% of the total crop water use originated from the ground water. The largest ground water contribution was shown to occur at the end of the growing season, when roots are fully developed and stored soil water in the root zone was depleted. The applied irrigation on the crop grown in the presence of a water table was 46% less than irrigation applied to the crop without a water table. The reduction of irrigation was obtained by using the same irrigation schedule as on the lysimeter without ground water, but through smaller applied depths per irrigation event.  相似文献   

12.
In the irrigated western U.S. disposal of drainage water has become a significant economic and environmental liability. Development of irrigation water management practices that reduce drainage water volumes is essential. One strategy combines restricted drainage outflow (by plugging the drains) with deficit irrigation to maximize shallow groundwater consumption by crops, thus reducing drainage that needs disposal. This approach is not without potential pitfalls; upward movement of groundwater in response to crop water uptake may increase salt and sodium concentrations in the root zone. The purposes for this study were: to observe changes in the spatial and temporal distributions of SAR (sodium adsorption ratio) and salt in a field managed to minimize drainage discharge; to determine if in situ drainage reduction strategy affects SAR distribution in the soil profile; and to identify soil or management factors that can help explain field wide variability. We measured SAR, soil salinity (EC1:1) and soil texture over 3 years in a 60-ha irrigated field on the west side of the San Joaquin Valley, California. At the time we started our measurements, the field was beginning to be managed according to a shallow groundwater/drainage reduction strategy. Soil salinity and SAR were found to be highly correlated in the field. The observed spatial and temporal variability in SAR was largely a product of soil textural variations within the field and their associated variations in apparent leaching fraction. During the 3-year study period, the percentage of the field in which the lower profile (90-180 cm) depth averaged SAR was above 10, increased from 20 to 40%. Since salinity was increasing concomitantly with SAR, and because the soil contained gypsum, sodium hazard was not expected to become a limiting factor for long term shallow groundwater management by drain control. It is anticipated that the technology will be viable for future seasons.  相似文献   

13.
The need for a better understanding of the interaction between irrigation practices and the elevation and quality of the water table is of paramount importance for developing irrigation management strategies to ameliorate the regional problems of elevated saline water tables in the San Joaquin Valley, California. An area of approximately 3000 ha which includes portions of the Diener Ranch and the adjacent University of California, Westside Research and Extension Center, located south of Five Points in the Westlands Water District on the west side of the San Joaquin Valley was chosen for extensive field measurements. Field work consisted of four main activities namely, field instrumentation, collection of records of field activities, periodic data collection, and analyses of field data. Field measurements of water table carried out during 1994 indicated that the water table elevation was sensitive to the irrigation practices. There was a general increase in the area with a water table close to the surface during the irrigation season, and a return to water table elevations similar to the starting conditions at the end of the season. During the study period, the surface water quality deteriorated more in areas irrigated with reuse water and persisted through the end of the season. Depth averaged electrical conductivity for the study area over 6.5 m decreased between December 1993 and December 1994. Vertical hydraulic gradients in the saturated zone, were found to be an order of magnitude larger than horizontal gradients. The direction of vertical gradients changed, with downward gradients following pre-irrigations and upward gradients later in the season, when crop water requirements increased. Based on the results of the field study, it can be concluded that the irrigation management practices have a direct effect on local water table response as well as on water quality. Therefore, irrigation practices that promote less deep percolation losses may be helpful in controlling the water table rise.  相似文献   

14.
A detailed field experiment was carried out in the Jordan Valley, south of Lake Kinneret, Israel for evaluation of the water management model DRAINMOD. This field was chosen to represent the local agro-climate conditions of that zone. Banana crop was grown and was irrigated daily with about 3200 mm/year and 0.5 leaching fraction. Subsurface drainage system with 2.5 m drain depth and 160 m drain spacing existed in the field. The water table depth was measured with about 100 piezometers, in which most of them were observed weekly, and four were continuosly recording piezometers. Five identical drainage plots were selected, out of 10 existing, as replicates for the evaluation of DRAINMOD. Deviations in a range of 0.3–1.7 m between observed water table depth and that simulated by DRAINMOD were found in four out of the five replicates. A reasonable agreement was found only in one drainage plot out of the five tested. These findings contradict the world wide convention that DRAINMOD simulation is in a good agreement with observed field data. An additional study was therefore conducted to explore the reasons for these large deviations. Three reasons were suggested: (i) a strong side effect by the Jordan River, which flows some 350 m west to the test field; a very steep 4.6% gradient was found toward the Jordan River; (ii) presence of sandy permeable layers below the depth of the drains which magnifies the boundary condition effect of the Jordan River; (iii) a very significant component of deep and lateral seepage (more than 50% of the yearly irrigation plus rainfall). A combination of these three reasons was suggested as an explanation to the apparent large disagreement. It was therefore recommended not to use DRAINMOD or similar vertical flow models for simulation of water table depths in irrigated fields with subsurface drain pipe systems in the Jordan Valley.  相似文献   

15.
Constructed evaporation ponds are being utilized for disposalof saline subsurface drainage waters in San Joaquin Valley,California. These terminal evaporation ponds are located inhydrologically closed basins and/or regions with no surfacedrainage out of the valley. The saline drainwaters disposedinto the ponds are sodium-sulfate or sodium-sulfate-chloridetype waters and upon desiccation produces mirabilite andhalite. The drainwaters contain excessive levels of traceelements from geochemical origins. The trace element of mostconcern, is selenium because it bioaccumulates in the aquaticfood chain and causes death and deformity of waterbirdsattracted to the pond environment. At the present, the onlyeconomic drainwater disposal option in the southern. portionof the valley is evaporation ponds. The operation of theseponds is heavily regulated by waste discharge requirements toreduce and mitigate wildlife impacts. A case study onevaporation ponds and bird usage from a drainage districtillustrates the extensive monitoring and mitigation required.The prognosis is evaporation basins will be needed for theforeseeable future unless breakthroughs occur in economic andeffective drainwater treatment and drainwater reuseoptions.  相似文献   

16.
Long term use of saline water for irrigation   总被引:1,自引:0,他引:1  
Use of saline drainage water in irrigated agriculture, as a means of its disposal, was evaluated on a 60 ha site on the west side of the San Joaquin Valley. In the drip irrigation treatments, 50 to 59% of the irrigation water applied during the six-year rotation was saline with an ECw ranging from 7 to 8 dS/m, and containing 5 to 7 mg/L boron and 220 to 310 g/L total selenium. Low salinity water with an ECw of 0.4 to 0.5 dS/m and B 0.4 mg/1 was used to irrigate the furrow plots from 1982 to 1985 after which a blend of good quality water and saline drainage water was used. A six-year rotation of cotton, cotton, cotton, wheat, sugar beet and cotton was used. While the cotton and sugar beet yields were not affected during the initial six years, the levels of boron (B) in the soil became quite high and were accumulated in plant tissue to near toxic levels. During the six year period, for treatments surface irrigated with saline drainage water or a blend of saline and low salinity water, the B concentration in the soil increased throughout the 1.5 m soil profile while the electrical conductivity (ECe) increased primarily in the upper l m of the profile. Increaszs in soil ECe during the entire rotation occurred on plots where minimal leaching was practiced. Potential problems with germination and seedling establishment associated with increased surface soil salinity were avoided by leaching with rainfall and low-salinity pre-plant irrigations of 150 mm or more. Accumulation of boron and selenium poses a major threat to the sustainability of agriculture if drainage volumes are to be reduced by using drainage water for irrigation. This is particularly true in areas where toxic materials (salt, boron, other toxic minor elements) cannot be removed from the irrigated area. Continual storage within the root zone of the cropped soil is not sustainable.  相似文献   

17.
Salt-tolerant crops can be grown with saline water from tile drains and shallow wells as a practical strategy to manage salts and sustain agricultural production in the San Joaquin Valley (SJV) of California. Safflower (Carthamus tinctorius L.) was grown in previously salinized plots that varied in average electrical conductivity (ECe) from 1.8 to 7.2 dS m−1 (0–2.7 m depth) and irrigated with either high quality (ECi<1 dS m−1) or saline (ECi=6.7 dS m−1) water. One response of safflower to increasing root zone salinity was decreased water use and root growth. Plants in less saline plots recovered more water on average (515 mm) and at a greater depth than in more salinized plots (435 mm). With greater effective salinity, drainage increased with equivalent water application rates. Seed yield was not correlated with consumptive water use over the range of 400–580 mm. Total biomass and plant height at harvest were proportional to water use over the same range. Safflower tolerated greater levels of salinity than previously reported. Low temperatures and higher than average relative humidity in spring likely moderated the water use of safflower grown under saline conditions.  相似文献   

18.
Reuse of drainage waters is an attractive management option that has been proposed for many irrigated agricultural areas. In California's San Joaquin Valley (SJV), however, drainage effluents are not only saline, but may also contain potentially toxic trace elements such as selenium and molybdenum. Crop suitability for reuse systems depends on the influence the sodium sulfate-dominated waters have on biomass production, plant sustainability, and mineral elements that are critically important for forage quality.Ten promising forage crops were grown in greenhouse sand cultures irrigated with synthetic drainage waters dominated by Na2SO4 with an EC of either 15 or 25 dS/m each containing 500 μg/L Se and Mo as SeO42− and MoO42−. Plant material was analyzed three times for mineral content and selected trace elements that may have a profound influence on ruminant health.Trace element concentrations indicate Se toxicity is of little concern, but that high concentrations of both Mo and S in the herbage may lead to Cu deficiency in ruminants. Similarly, high K/Mg and K/(Ca + Mg) ratios in many of the legume and grass forages, respectively, indicate that there may be potential for development of sub-normal Mg levels (hypomagnesaemia) in ruminants. However, each of these disorders can be avoided or corrected with dietary supplements. The most concern regarding ruminant nutrition based on these data is sulfur toxicity. Sodium-sulfate dominated drainage waters will likely elevate forage S concentrations to levels that might cause excessive sulfide concentrations in the rumen and potentially lead to serious neurological disorders affecting animal health.  相似文献   

19.
The fifth year of drought in California brought reductions in surface water deliveries to many water districts. In the central San Joaquin Valley, water deliveries to Broadview Water District were reduced by 50% in 1990 and by 75% in 1991. The district increased the level of service provided to farmers during these years by providing accurate water use data, increasing the flexibility allowed in scheduling water deliveries, and managing water transfers and purchases when water was available. Farmers in the district implemented new irrigation practices and increased the efficiency of water applications. Several crops were irrigated more frequently than usual, but the amount of water applied during each irrigation event was reduced. The total amount applied during pre-irrigations and seasonal irrigations was also reduced. More than 38% of district land was idled in 1991, with the largest proportional reductions in melon, sugarbeet, and grain plantings. Field application efficiencies increased for all crops in 1990 and 1991 and the district-wide field application efficiency increased from 0.73 in 1989, to 0.77 in 1990, and 0.81 in 1991.  相似文献   

20.
Accurate assessments of non-point source pollution and the associated evaluation of mitigation strategies depend on effective water quality monitoring programs. Intensive irrigation season water quality monitoring was conducted on three agricultural drains (6 h to daily sampling) along with analysis of decade long records from two larger agricultural drains (biweekly to monthly sampling) in the San Joaquin Valley, California. Analyses revealed significant temporal variability in concentrations of nutrients, salts, and turbidity over short time-scales (<1 day), as well as significant differences in monthly and annual mean concentrations. Statistical techniques were used to evaluate the sampling intensity required to meet rigorous confidence and accuracy criteria, as well as to evaluate the efficacy of different sampling strategies (e.g. grab samples versus composite samples). The number of samples required to determine mean constituent concentrations within 20% of the mean at a 95% confidence level ranged from 2 to 39 samples per month (SPM) for total phosphorus, 1-16 SPM for total nitrogen, 5-25 SPM for turbidity, and 1-3 SPM for electrical conductivity. Using a daily composite sample (4 subsamples per composite) instead of discrete samples was shown to maintain the same accuracy and confidence standards, while reducing the required sample number by up to 50%. This study emphasizes the value of a statistical approach for evaluating water quality monitoring strategies, and provides a framework through which cost-benefit analysis can be implemented in the development of monitoring plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号