共查询到20条相似文献,搜索用时 0 毫秒
1.
Brooks BA Foster J Sandwell D Wolfe CJ Okubo P Poland M Myer D 《Science (New York, N.Y.)》2008,321(5893):1177
We demonstrate that a recent dike intrusion probably triggered a slow fault-slip event (SSE) on Kilauea volcano's mobile south flank. Our analysis combined models of Advanced Land Observing Satellite interferometric dike-intrusion displacement maps with continuous Global Positioning System (GPS) displacement vectors to show that deformation nearly identical to four previous SSEs at Kilauea occurred at far-field sites shortly after the intrusion. We model stress changes because of both secular deformation and the intrusion and find that both would increase the Coulomb failure stress on possible SSE slip surfaces by roughly the same amount. These results, in concert with the observation that none of the previous SSEs at Kilauea was directly preceded by intrusions but rather occurred during times of normal background deformation, suggest that both extrinsic (intrusion-triggering) and intrinsic (secular fault creep) fault processes can lead to SSEs. 相似文献
2.
Two recent large earthquakes in the Mojave Desert, California-the magnitude 7.3 1992 Landers and magnitude 7.1 1999 Hector Mine earthquakes-have each been followed by elevated crustal strain rates over periods of months and years. Geodetic data collected after the Hector Mine earthquake exhibit a temporally decaying horizontal velocity field and a quadrant uplift pattern opposite to that expected for localized shear beneath the earthquake rupture. We interpret the origin of this accelerated crustal deformation to be vigorous flow in the upper mantle in response to the stress changes generated by the earthquake. Our results suggest that transient flow in the upper mantle is a fundamental component of the earthquake cycle and that the lower crust is a coherent stress guide coupling the upper crust with the upper mantle. 相似文献
3.
Sato H Hirata N Koketsu K Okaya D Abe S Kobayashi R Matsubara M Iwasaki T Ito T Ikawa T Kawanaka T Kasahara K Harder S 《Science (New York, N.Y.)》2005,309(5733):462-464
Devastating earthquakes occur on a megathrust fault that underlies the Tokyo metropolitan region. We identify this fault with use of deep seismic reflection profiling to be the upper surface of the Philippine Sea plate. The depth to the top of this plate, 4 to 26 kilometers, is much shallower than previous estimates based on the distribution of seismicity. This shallower plate geometry changes the location of maximum finite slip of the 1923 Kanto earthquake and will affect estimations of strong ground motion for seismic hazards analysis within the Tokyo region. 相似文献
4.
Chemical interaction of Earth's mantle with the liquid outer core should influence the mantle's iron content. Osmium isotope ratios in Hawaiian lavas indicate a mass flux of =1% core to the mantle, which is the immediate source of these lavas. We present precise measurements of the Fe/Mn ratio for Hawaiian lavas, revealing an increase of 1 to 2% in the mole fraction of iron in the mantle beneath Hawaii. This corresponds to a density anomaly of about 0.5%, about the same magnitude observed in seismic tomography models of the Pacific superswell region. These data also rule out a role for Mn-rich sediments as the source of the Hawaiian Os isotope signal. 相似文献
5.
Mantle discontinuity structure beneath the southern east pacific rise from P-to-S converted phases 总被引:4,自引:0,他引:4
Y Shen AF Sheehan KG Dueker de Groot-Hedlin C H Gilbert 《Science (New York, N.Y.)》1998,280(5367):1232-1235
Receiver functions derived from teleseismic body waves recorded by ocean-bottom seismometers on the southern East Pacific Rise reveal shear waves converted from compressional waves at the mantle discontinuities near 410- and 660-kilometer depth. The thickness of the mantle transition zone between the two discontinuities is normal relative to the global average and indicates that upwelling beneath the southern East Pacific Rise is not associated with an excess temperature in the mantle transition zone. 相似文献
6.
San andreas fault zone head waves near parkfield, california 总被引:1,自引:0,他引:1
Microearthquake seismograms from the borehole seismic network on the San Andreas fault near Parkfield, California, provide three lines of evidence that first P arrivals are "head" waves refracted along the cross-fault material contrast. First, the travel time difference between these arrivals and secondary phases identified as direct P waves scales linearly with the source-receiver distance. Second, these arrivals have the emergent wave character associated in theory and practice with refracted head waves instead of the sharp first breaks associated with direct P arrivals. Third, the first motion polarities of the emergent arrivals are reversed from those of the direct P waves as predicted by the theory of fault zone head waves for slip on the San Andreas fault. The presence of fault zone head waves in local seismic network data may help account for scatter in earthquake locations and source mechanisms. The fault zone head waves indicate that the velocity contrast across the San Andreas fault near Parkfield is approximately 4 percent. Further studies of these waves may provide a way of assessing changes in the physical state of the fault system. 相似文献
7.
The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. To investigate pertinent thermal anomalies, we imaged with inverse scattering of SS waves the depths to seismic discontinuities below the Central Pacific, which we explain with olivine and garnet transitions in a pyrolitic mantle. The presence of an 800- to 2000-kilometer-wide thermal anomaly (ΔT(max) ~300 to 400 kelvin) deep in the transition zone west of Hawaii suggests that hot material does not rise from the lower mantle through a narrow vertical plume but accumulates near the base of the transition zone before being entrained in flow toward Hawaii and, perhaps, other islands. This implies that geochemical trends in Hawaiian lavas cannot constrain lower mantle domains directly. 相似文献
8.
Variation of interplate fault zone properties with depth in the japan subduction zone 总被引:2,自引:0,他引:2
The depth dependence of physical properties along the Japan subduction zone interface was explored using teleseismic recordings of earthquake signals. Broadband body waves were inverted to determine the duration of rupture and source depth for 40 interplate thrust earthquakes located offshore of Honshu between 1989 and 1995. After scaling for differences in seismic moment, there is a systematic decrease in rupture duration with increasing depth along the subducting plate interface. This indicates increases in rupture velocity or stress drop with depth, likely related to variation in rigidity of sediments on the megathrust. 相似文献
9.
Splay fault branching along the Nankai subduction zone 总被引:3,自引:0,他引:3
Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion. 相似文献
10.
DR Toomey WSD Wilcock SC Solomon WC Hammond JA Orcutt 《Science (New York, N.Y.)》1998,280(5367):1224-1227
Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%. Seismic anisotropy, induced by mantle flow, is evident in the P wave delays at near-vertical incidence and is consistent with a half-width of mantle upwelling of about 100 km. 相似文献
11.
Evidence of shallow fault zone strengthening after the 1992 M7.5 landers, california, earthquake 总被引:1,自引:0,他引:1
Repeated seismic surveys of the Landers, California, fault zone that ruptured in the magnitude (M) 7.5 earthquake of 1992 reveal an increase in seismic velocity with time. P, S, and fault zone trapped waves were excited by near-surface explosions in two locations in 1994 and 1996, and were recorded on two linear, three-component seismic arrays deployed across the Johnson Valley fault trace. The travel times of P and S waves for identical shot-receiver pairs decreased by 0.5 to 1.5 percent from 1994 to 1996, with the larger changes at stations located within the fault zone. These observations indicate that the shallow Johnson Valley fault is strengthening after the main shock, most likely because of closure of cracks that were opened by the 1992 earthquake. The increase in velocity is consistent with the prevalence of dry over wet cracks and with a reduction in the apparent crack density near the fault zone by approximately 1.0 percent from 1994 to 1996. 相似文献
12.
Shear failure is the dominant mode of earthquake-causing rock failure along faults. High fluid pressure can also potentially induce rock failure by opening cavities and cracks, but an active example of this process has not been directly observed in a fault zone. Using borehole array data collected along the low-stress Chelungpu fault zone, Taiwan, we observed several small seismic events (I-type events) in a fluid-rich permeable zone directly below the impermeable slip zone of the 1999 moment magnitude 7.6 Chi-Chi earthquake. Modeling of the events suggests an isotropic, nonshear source mechanism likely associated with natural hydraulic fractures. These seismic events may be associated with the formation of veins and other fluid features often observed in rocks surrounding fault zones and may be similar to artificially induced hydraulic fracturing. 相似文献
13.
Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history. 相似文献
14.
Brief excursions of magnetic field differences between a base station and two satellite station magnetometers show only slight correlation with ground tilt at Kilauea Volcano. This result suggests that only transient, localized stresses occur during prolonged periods of deformation and that the volcano can support no large-scale pattern of shear stresses. 相似文献
15.
Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy. 相似文献
16.
A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates. 相似文献
17.
Luth RW 《Science (New York, N.Y.)》1993,261(5117):66-68
The reaction dolomite + 2 coesite --><-- diopside + 2 diamond + 2O(2) defines the coexistence of diamond and carbonate in mantle eclogites. The oxygen fugacity of this reaction is approximately 1 log unit higher at a given temperature and pressure than the oxygen fugacities of the analogous reactions that govern the stability of diamond in peridotite. This difference allows diamond-bearing eclogite to coexist with peridotite containing carbonate or carbonate + diamond. This potential coexistence of diamond-bearing eclogite and carbonate-bearing peridotite can explain the presence of carbon-free peridotite interlayered with garnet pyroxenites that contain graphitized diamond in the Moroccan Beni Bousera massif at the Earth's surface and the preferential preservation of diamond-bearing eclogitic relative to peridotitic xenoliths in the Roberts Victor kimberlite. 相似文献
18.
Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process. 相似文献
19.
20.
Smith KD von Seggern D Blewitt G Preston L Anderson JG Wernicke BP Davis JL 《Science (New York, N.Y.)》2004,305(5688):1277-1280
A deep earthquake swarm in late 2003 at Lake Tahoe, California (Richter magnitude < 2.2; depth of 29 to 33 kilometers), was coeval with a transient displacement of 6 millimeters horizontally outward from the swarm and 8 millimeters upward measured at global positioning system station Slide Mountain (SLID) 18 kilometers to the northeast. During the first 23 days of the swarm, hypocentral depths migrated at a rate of 2.4 millimeters per second up-dip along a 40-square-kilometer structure striking north 30 degrees west and dipping 50 degrees to the northeast. SLID's transient velocity of 20 millimeters per year implies a lower bound of 200 nanostrains per year (parts per billion per year) on local strain rates, an order of magnitude greater than the 1996 to 2003 regional rate. The geodetic displacement is too large to be explained by the elastic strain from the cumulative seismic moment of the sequence, suggesting an aseismic forcing mechanism. Aspects of the swarm and SLID displacements are consistent with lower-crustal magma injection under Lake Tahoe. 相似文献