首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Riparian ecosystems are interfaces between aquatic and terrestrial environments recognized for their nutrient interception potential in agricultural landscapes. Stream network maps from a broad range of map resolutions have been employed in watershed studies of riparian areas. However, map resolution may affect important attributes of riparian buffers, such as the connectivity between source lands and small stream channels missing in coarse resolution maps. We sought to understand the influence of changing stream map resolution on measures of the river network, near-stream land cover, and riparian metrics. Our objectives were: (1) to evaluate the influence of stream map resolution on measures of the stream network, the character and extent of near-stream zones, and riparian metrics; (2) to compare patterns of variation among different physiographic provinces; and (3) to explore how predictions of nutrient retention potential might be affected by the resolution of a stream map. We found that using fine resolution stream maps significantly increased our estimates of stream order, drainage density, and the proportion of watershed area occurring near a stream. Increasing stream map resolution reduced the mean distance to source areas as well as mean buffer width and increased the frequency of buffer gaps. Measures of percent land cover within 100 m of streams were less sensitive to stream map resolution. Overall, increasing stream map resolution led to reduced estimates of nutrient retention potential in riparian buffers. In some watersheds, switching from a coarse resolution to a fine resolution stream map completely changed our perception of a stream network from well buffered to largely unbuffered. Because previous, broad-scale analyses of riparian buffers used coarse-resolution stream maps, those studies may have overestimated landscape-level buffer prevalence and effectiveness. We present a case study of three watersheds to demonstrate that interactions among stream map resolution and land cover patterns make a dramatic difference in the perceived ability of riparian buffers to ameliorate effects of agricultural activities across whole watersheds. Moreover, stream map resolution affects inferences about whether retention occurs in streams or riparian zones.  相似文献   

2.
Riparian ecosystems are important elements in landscapes that often provide a disproportionately wide range of ecosystem services and conservation benefits. Their protection and restoration have been one of the top environmental management priorities across the US over the last several years. Despite the level of concern, visibility and management effort, little is known about trends in riparian habitats. Moreover, little is known about whether or not cumulative efforts to restore and protect riparian zones and floodplains are affecting the rates of riparian habitat change nationwide. To address these issues, we analyzed riparian land cover change between the early 1970s and the late 1990s/early 2000s using existing spatial data on hydrography and land cover. This included an analysis of land cover changes within 180 m riparian buffer zones, and at catchment scales, for 42,363 catchments across 63 ecoregions of the continental US. The total amount of forest and natural land cover (forests, shrublands, wetlands) in riparian buffers declined by 0.7 and 0.9%, respectively across the entire study period. Gains in grassland/shrubland accounted for the 0.2% lower percentage of total natural land cover loss relative to forests. Conversely, urban and developed land cover (urban, agriculture, and mechanically disturbed lands) increased by more than 1.3% within riparian buffers across the entire study period. Despite these changes, we documented an opposite trend of increasing proportions of natural and forest land cover in riparian buffers versus the catchment scale. We surmise that this trend might reflect a combination of natural recovery and cumulative efforts to protect riparian ecosystems across the US. However, existing models limit our ability to assess the impacts of these changes on specific ecosystem services. We discuss the implications of changes observed in this study on the sustainability of ecosystem services. We also recommend opportunties for future riparian change assessments.  相似文献   

3.
We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.  相似文献   

4.
There is a pressing need to understand the consequences of human activities, such as land transformations, on watershed ecosystem services. This is a challenging task because different indicators of water quality and yield are expected to vary in their responsiveness to large versus local-scale heterogeneity in land use and land cover (LUC). Here we rely on water quality data collected between 1977 and 2000 from dozens of gauge stations in Puerto Rico together with precipitation data and land cover maps to (1) quantify impacts of spatial heterogeneity in LUC on several water quality indicators; (2) determine the spatial scale at which this heterogeneity influences water quality; and (3) examine how antecedent precipitation modulates these impacts. Our models explained 30–58% of observed variance in water quality metrics. Temporal variation in antecedent precipitation and changes in LUC between measurements periods rather than spatial variation in LUC accounted for the majority of variation in water quality. Urbanization and pasture development generally degraded water quality while agriculture and secondary forest re-growth had mixed impacts. The spatial scale over which LUC influenced water quality differed across indicators. Turbidity and dissolved oxygen (DO) responded to LUC in large-scale watersheds, in-stream nitrogen concentrations to LUC in riparian buffers of large watersheds, and fecal matter content and in-stream phosphorus concentration to LUC at the sub-watershed scale. Stream discharge modulated impacts of LUC on water quality for most of the metrics. Our findings highlight the importance of considering multiple spatial scales for understanding the impacts of human activities on watershed ecosystem services.  相似文献   

5.
The biological integrity of stream ecosystems depends critically on human activities that affect land use/cover along stream margins and possibly throughout the catchment. We evaluated stream condition using an Index of Biotic Integrity (IBI) and a habitat index (HI), and compared these measures to landscape and riparian conditions assessed at different spatial scales in a largely agricultural Midwestern watershed. Our goal was to determine whether land use/cover was an effective predictor of stream integrity, and if so, at what spatial scale. Twenty-three sites in first-through third-order headwater streams were surveyed by electrofishing and site IBIs were calculated based on ten metrics of the fish collection. Habitat features were characterized through field observation, and site HIs calculated from nine instream and bank metrics. Field surveys, aerial photograph interpretation, and geographic information system (GIS) analyses provided assessments of forested land and other vegetation covers at the local, reach, and regional (catchment) scales. The range of conditions among the 23 sites varied from poor to very good based on IBI and HI scores, and habitat and fish assemblage measures were highly correlated. Stream biotic integrity and habitat quality were negatively correlated with the extent of agriculture and positively correlated with extent of wetlands and forest. Correlations were strongest at the catchment scale (IBI with % area as agriculture, r2=0.50, HI with agriculture, r2=0.76), and tended to become weak and non-significant at local scales. Local riparian vegetation was a weak secondary predictor of stream integrity. In this watershed, regional land use is the primary determinant of stream conditions, able to overwhelm the ability of local site vegetation to support high-quality habitat and biotic communities.  相似文献   

6.
Influences of upland and riparian land use patterns on stream biotic integrity   总被引:11,自引:2,他引:11  
Snyder  C.D.  Young  J.A.  Villella  R.  Lemarié  D.P. 《Landscape Ecology》2003,18(7):647-664
We explored land use, fish assemblage structure, and stream habitat associations in 20 catchments in Opequon Creek watershed, West Virginia. The purpose was to determine the relative importance of urban and agriculture land use on stream biotic integrity, and to evaluate the spatial scale (i.e., whole-catchment vs riparian buffer) at which land use effects were most pronounced. We found that index of biological integrity (IBI) scores were strongly associated with extent of urban land use in individual catchments. Sites that received ratings of poor or very poor based on IBI scores had > 7% of urban land use in their respective catchments. Habitat correlations suggested that urban land use disrupted flow regime, reduced water quality, and altered stream channels. In contrast, we found no meaningful relationship between agricultural land use and IBI at either whole-catchment or riparian scales despite strong correlations between percent agriculture and several important stream habitat measures, including nitrate concentrations, proportion of fine sediments in riffles, and the abundance of fish cover. We also found that variation in gradient (channel slope) influenced responses of fish assemblages to land use. Urban land use was more disruptive to biological integrity in catchments with steeper channel slopes. Based on comparisons of our results in the topographically diverse Opequon Creek watershed with results from watersheds in flatter terrains, we hypothesize that the potential for riparian forests to mitigate effects of deleterious land uses in upland portions of the watershed is inversely related to gradient.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

7.
8.

Context

Riparian buffers reduce subsurface nutrient losses to streams but there is a clear need to identify and prioritize locations for riparian buffer placement to optimize buffer performance. Scaling relations can be used to extrapolate hydrologic behavior within river networks and across catchments.

Objectives

We combined field and laboratory measurements of soils and groundwater quality collected at five riparian monitoring sites of different stream-order scales with landscape analysis to accomplish the following objectives: (1) evaluate the degree to which riparian zone patterns and processes are scaled in a pre-Wisconsin glacial landscape; and (2) use the scaling information to identify optimal placement of riparian buffers in the landform region for nutrient reduction benefits.

Results

Results indicated that there is proportional scaling of riparian zones within the region in terms of sediment texture, groundwater geochemistry and, to a lesser extent, in groundwater nutrient concentrations.

Conclusions

Placement of riparian buffers should be a priority along low order streams (< 3rd order) to best utilize the scaling characteristics of regional riparian zones, although buffering 2nd and 3rd streams may be the most cost effective locations.
  相似文献   

9.
Historical records provide information to land managers and landscape ecologists attempting to understand current trajectories in altered landscapes. In this study, we synthesized a heterogeneous array of historical sources to reconstruct historical land cover in California’s Santa Clara Valley (a.k.a. “Silicon Valley”). To increase and assess accuracy, we used the triangulation of overlapping, independent data sources and the application of certainty level standards. The region has been subject to extensive urbanization, so we also evaluated the applicability of historical landscape reconstructions to the altered landscape. We found evidence for five major land cover types prior to significant Euro–American modification. Valley freshwater marsh, wet meadow, alkali meadow, willow grove, and valley oak savanna have all experienced extreme decline (85–100%) since Euro–American settlement. However, comparison of historical land cover patterns to contemporary land use suggested several new strategies for environmental recovery, despite the limitations of surrounding urbanization. We also observed a temporal shift in riparian habitat along the mainstem of Coyote Creek, from a relatively open mixture of riparian scrub, sycamore woodland, and unvegetated gravel bars to dense riparian forest, likely resulting from stream flow regulation. By identifying former land cover patterns we provide a basis for evaluating local landscape change and setting restoration targets, including the identification of residual features and under-recognized land cover types. These findings suggest that reliable historical landscape reconstructions can be developed in the absence of standardized historical data sources and can be of value even in highly modified regions.  相似文献   

10.
Widespread degradation of wetlands has motivated the development of tools to evaluate wetland condition. The application of field-based tools over large regions can be prohibitively expensive; however, land cover data may provide a surrogate for intensive assessments, enabling rapid and cost-effective evaluation of wetlands throughout whole regions. Our goal was to determine if land cover data could be used to estimate the biotic integrity of wetlands in Alberta??s Beaverhills watershed. Biotic integrity was measured using both plant- and bird-based indices of biotic integrity (IBIs) in 45 wetlands. Land cover data were extracted from seven nested landscape extents (100?C3,000?m radii) and used to model IBI scores. Strong, significant predictions of IBI scores were achieved using land cover data from every spatial extent, even after factoring out the influence of location to address the spatial autocorrelation of land cover classes. Plant-based IBI scores were best predicted using data from 100?m buffers and bird-based IBI scores were best predicted using data extracted from 500?m buffers. Road cover or density and measures of the proportion of disturbed land were consistent predictors of IBI score, suggesting their universal importance to plant and bird communities. Simplified models using the proportion of undisturbed land were less accurate than more detailed models (reductions in r 2 of 0.31?C0.32). Regardless of the level of detail in land cover classification, our results emphasize the need to optimize landscape extent for the taxonomic group of interest: an issue that is typically poorly articulated in studies reporting on the development of GIS-based assessment methods. Our results also highlight the need to calibrate models in test areas before scaling up, to ensure predictive accuracy.  相似文献   

11.
The distributions of freshwater mussels are controlled by landscape factors operating at multiple spatial scales. Changes in land use/land cover (LULC) have been implicated in severe population declines and range contractions of freshwater mussels across North America. Despite widespread recognition of multiscale influences few studies have addressed these issues when developing distribution models. Furthermore, most studies have disregarded the role of landscape pattern in regulating aquatic species distributions, focusing only on landscape composition. In this study, the distribution of Rabbitsfoot (Quadrula cylindrica) in the upper Green River system (Ohio River drainage) is modeled with environmental variables from multiple scales: subcatchment, riparian buffer, and reach buffer. Four types of landscape environment metrics are used, including: LULC pattern, LULC composition, soil composition, and geology composition. The study shows that LULC pattern metrics are very useful in modeling the distribution of Rabbitsfoot. Together with LULC compositional metrics, pattern metrics permit a more detailed analysis of functional linkages between aquatic species distributions and landscape structure. Moreover, the inclusion of multiple spatial scales is necessary to accurately model the hierarchical processes in stream systems. Geomorphic features play important roles in regulating species distributions at intermediate and large scales while LULC variables appear more influential at proximal scales.  相似文献   

12.
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In this study we investigate those specific landscape metrics which are functionally linked to indicators of stream ecological condition, and in particular, identify those characteristics that exacerbate or mitigate changes in ecological condition over and above impervious surface. The approach used addresses challenges associated with redundancy of landscape metrics, and links landscape pattern and composition to an indicator of stream ecological condition across a broad area of the eastern United States. Macroinvertebrate samples were collected during 2000–2001 from forty-two sites in the Delaware River Basin, and landscape data of high spatial and thematic resolution were obtained from photointerpretation of 1999 imagery. An ordination-derived ‘biotic score’ was positively correlated with assemblage tolerance, and with urban-related chemical characteristics such as chloride concentration and an index of potential pesticide toxicity. Impervious surface explained 56% of the variation in biotic score, but the variation explained increased to as high as 83% with the incorporation of a second land use, cover, or configuration metric at catchment or riparian scales. These include land use class-specific cover metrics such as percent of urban land with tree cover, forest fragmentation metrics such as aggregation index, riparian metrics such as percent tree cover, and metrics related to urban aggregation. Study results indicate that these metrics will be important to monitor in urbanizing areas in addition to impervious surface.  相似文献   

13.
Regional land-cover change affects biodiversity, hydrology, and biogeochemical cycles at local, watershed, and landscape scales. Developing countries are experiencing rapid land cover change, but assessment is often restricted by limited financial resources, accessibility, and historical data. The assessment of regional land cover patterns is often the first step in developing conservation and management plans. This study used remotely sensed land cover and topographic data (Landsat and Shuttle Radar Topography Mission), supervised classification techniques, and spectral mixture analysis to characterize current landscape patterns and quantify land cover change from 1985 to 2003 in the Altiplano (2535–4671 m) and Intermediate Valley (Mountain) (1491–4623 m) physiographic zones in the Southeastern Bolivian Andes. Current land cover was mapped into six classes with an overall accuracy of 88% using traditional classification techniques and limited field data. The land cover change analysis showed that extensive deforestation, desertification, and agricultural expansion at a regional scale occurred in the last 20 years (17.3% of the Mountain Zone and 7.2% of the Altiplano). Spectral mixture analysis (SMA) indicated that communal rangeland degradation has also occurred, with increases in soil and non-photosynthetic vegetation fractions in most cover classes. SMA also identified local areas with intensive management activities that are changing differently from the overall region (e.g., localized areas of increased green vegetation). This indicates that actions of local communities, governments, and environmental managers can moderate the potentially severe future changes implied by the results of this study.  相似文献   

14.
Riparian buffers, a best management practice (BMP), lessen environmental impacts caused by pasture-based agriculture by excluding livestock from streams and removing sediment and nutrients from overland flow before they enter the watercourse. Geospatial data analysis of digital elevation models (DEMs) can improve BMP placement by ensuring that BMPs intercept flow paths. Livestock heavy use areas and riparian buffers within 100?m of the stream were digitized using aerial photography of Spring Creek watershed (Pennsylvania, USA). Flow path lengths and stream entry points from heavy use areas, from all agricultural land uses, and from a random sample of points were calculated using 1, 10, and 30?m DEM resolutions. Euclidean distances identified the nearest stream entry point regardless of topography. Drainage areas for each streambank cell were evaluated using each DEM resolution. Topographic calculations differed significantly from Euclidean, with median differences of 14.3?m for flow path length and 24.1?m between stream entry points for the 10?m DEM. Existing buffers intercepted runoff from only 23?% of heavy use areas. Drainage areas ranged from one to hundreds of DEM cells. Any DEM is an arbitrary representation of a continuous surface; both resolution and processing method affect the suitability of such a representation for any given purpose. We found that 30?m DEMs did not provide reasonable flow path estimates at the scale of grazing agriculture in this region, while Pennsylvania 1?m DEMs were minimally smoothed during DEM preparation, resulting in erratic flow paths. The 10?m DEMs were the most suitable available DEM product, and should be used in conjunction with site visits for planning pasture BMP placement.  相似文献   

15.
Recent declines in anadromous Pacific salmonids (Oncorhynchus spp.) have been attributed, in part, to degradation of freshwater habitat. Because riparian areas directly affect instream habitat, assessing riparian characteristics is essential for predicting salmon habitat quality and for prioritizing restoration projects. We quantified land use modification of anadromous fish-bearing streams in the interior Columbia River basin at multiple resolutions. We identified riparian areas in several land use and land cover classes using remotely sensed data. We then interpreted aerial photographs at random locations within each class to quantify riparian modifications at a local (stream reach) scale. Riparian areas in agricultural and urban areas were significantly narrower (~30 m, median) than those in forested or shrub/grass areas (~70 m). The largest proportion of modified riparian areas occurred in low-gradient streams with floodplains in semi-arid ecoregions. Riparian vegetation in these areas is unlikely to provide adequate in-stream functions, making these areas a natural starting point for restoration prioritization. We investigated how existing riparian restoration projects were spatially related to riparian land use and found that restoration effort varied among subwatersheds. Effective strategies for restoring high quality salmon habitat will be watershed-specific and must restore natural watershed processes. By using a hierarchical analysis to identify regional strategies, restoration or conservation activity can be focused in specific basins and thereby increase the likelihood that efforts will significantly improve habitat conditions for listed salmonids.  相似文献   

16.
Wickham  J.  Riitters  K. H. 《Landscape Ecology》2019,34(9):2169-2182
Context

Remote sensing has been a foundation of landscape ecology. The spatial resolution (pixel size) of remotely sensed land cover products has improved since the introduction of landscape ecology in the United States. Because patterns depend on spatial resolution, emerging improvements in the spatial resolution of land cover may lead to new insights about the scaling of landscape patterns.

Objective

We compared forest fragmentation measures derived from very high resolution (1 m2) data with the same measures derived from the commonly used (30 m?×??30 m; 900 m2) Landsat-based data.

Methods

We applied area-density scaling to binary (forest; non-forest) maps for both sources to derive source-specific estimates of dominant (density ≥?60%), interior (≥?90%), and intact (100%) forest.

Results

Switching from low- to high-resolution data produced statistical and geographic shifts in forest spatial patterns. Forest and non-forest features that were “invisible” at low resolution but identifiable at high resolution resulted in higher estimates of dominant and interior forest but lower estimates of intact forest from the high-resolution source. Overall, the high-resolution data detected more forest that was more contagiously distributed even at larger spatial scales.

Conclusion

We anticipate that improvements in the spatial resolution of remotely sensed land cover products will advance landscape ecology through re-interpretations of patterns and scaling, by fostering new landscape pattern measurements, and by testing new spatial pattern-ecological process hypotheses.

  相似文献   

17.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

18.

Context

The analysis of individual movement choices can be used to better understand population-level resource selection and inform management.

Objectives

We investigated movements and habitat selection of 13 bobcats in Vermont, USA, under the assumption individuals makes choices based upon their current location. Results were used to identify “movement-defined” corridors.

Methods

We used GPS-collars and GIS to estimate bobcat movement paths, and extracted statistics on land cover proportions, topography, fine-scale vegetation, roads, and streams within “used” and “available” space surrounding each movement path. Compositional analyses were used to determine habitat preferences with respect to landcover and topography; ratio tests were used to determine if used versus available ratios for vegetation, roads, and streams differed from 1. Results were used to create travel cost maps, a primary input for corridor analysis.

Results

Forested and scrub-rock land cover were most preferred for movement, while developed land cover was least preferred. Preference depended on the composition of the “available” landscape: Bobcats moved?>?3 times more quickly through forest and scrub-rock habitat when these habitats were surrounded by agriculture or development than when the available buffer was similarly composed. Overall, forest edge, wetland edge and higher stream densities were selected, while deep forest core and high road densities were not selected. Landscape-scale connectivity maps differed depending on whether habitat suitability, preference, or selection informed the travel cost map.

Conclusions

Both local and landscape scale land cover characteristics affect habitat preferences and travel speed of bobcats, which in turn can inform management and conservation activities.
  相似文献   

19.
The “land sharing versus land sparing” concept provides a framework for comparing potential land use patterns in terms of trade-offs between biodiversity conservation and agricultural yields at a landscape scale. Here, we raise two additional aspects to be considered in the sparing/sharing debate, supported by a review of available literature. First, beta and gamma (instead of alpha) diversity measures capture landscape scale variance in biodiversity in response to land use changes and should be considered for the long-term management of agricultural landscapes. Moreover, beta and gamma diversity may better account for comparisons of biodiversity between spared and shared land use options. Second, land use history has a pronounced influence on the complexity and variance in agricultural habitat niches at a landscape scale, which in turn may determine the relevance of sparing or sharing land use options. Appropriate and comparable biodiversity metrics and the recognition of landscape history are two vital preconditions in aligning biological conservation goals with maximized yields within the sparing/sharing framework.  相似文献   

20.
Increasingly, natural resources agencies and organizations are using measures of ecological integrity to monitor and evaluate the status and condition of their landscapes, and numerous methods have been developed to map the pattern of human activities. In this paper I apply formal methods from decision theory to develop a transparent ecological indicator of landscape integrity. I developed a parsimonious set of stressors using an existing framework to minimize redundancy and overlap, mapping each variable as an individual data layer with values from 0 to 1.0, and then combined them using an “increasive” function called fuzzy sum. A novel detailed land use dataset is used to generate empirical measures of the degree of human modification to map important stressors such as land use, land cover, and presence, use, and distance from roads. I applied this general framework to the US and found that the overall average degree of human modification was 0.375. Regional variation was fairly predictable, but aggregation of these raw values into terrestrial or watershed units resulted in large differences at local to regional scales. I discuss three uses of these data by land managers to manage protected areas within a dynamic landscape context. This approach generates an internally-valid model that has a direct, empirical, and physical basis to estimate the degree of human modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号