首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Egg plant is one of the most common vegetable crop grown in India and other parts of the world. The cultivated egg plant Solanum melongena is found to be susceptible to the shoot and fruit borer (Leucinodes orbonalis). Whereas the species Solanum macrocarpon is resistant. In order to incorporate the resistance of shoot and fruit borer to the cultivated egg plant, an interspecific hybridization between Solanum melongena and Solanum macrocarpon and reciprocals were carried out. The hybrids were found to be sterile, the investigations revealed that the failure of seed set in hybrids is due to the ovule abortion. In order to overcome the sterility, the colchicine has been applied to the interspecific hybrids.  相似文献   

2.
Summary The origin and nature of the diploid cultivated potato species S. ajanhuiri Juz. et Buk. was studied. Several lines of evidence indicate that S. ajanhuiri might be derived from natural crosses between primitive cultivars of the diploid species S. stenotomum and the wild species S. megistacrolobum. Morphological comparisons were made between S. stenotomum x S. megistacrolobum F1 hybrids and naturally occurring S. ajanhuiri to investigate this hypothesis. Comparisons were also made between S. ajanhuiri x S. stenotomum crosses and the F2 generation of the first-mentioned cross.Crosses between the two major groups of S. ajanhuiri cultivars, Ajawiri and Yari, showed not only genetic breakdown but also a wide range of phenotypic variation similar to those of artificial F2 families of S. stenotomum x S. megistacrolobum. Furthermore, there was strong evidence showing that the Yari group of S. ajanhuiri could almost certainly be an F1 S. stenotomum x S. megistacrolobum hybrid, whereas the Ajawiri group could be a backcross of an F1 hybrid to S. stenotomum. These results added further support to the hypothesis of a hybrid origin of S. ajanhuiri, as well as indicating its putative parents. It is suggested that this hybridogenic taxon be retained at the species level under the name Solanum x ajanhuiri.  相似文献   

3.
Three Greek eggplant cultivars, ‘Langada’, ‘Tsakoniki’ and ‘Emi’ (2n= 24), were crossed with two wild species (Solanum torvum Sw., 2n= 24 and Solanum sisymbriifolium Lam., 2n= 24). Ovules isolated 15-27 days after pollination were cultured in a modified MS medium at 24°C and a 16h photoperiod. Fifty days later, the ovules were dissected and the interspecific embryos were cultured in the same medium. Interspecific hybrids were achieved only from crosses between the eggplant cultivars and S. torvum. The hybridity of the putative interspecific F1 hybrid (Solanum melongena×S. torvum) was confirmed by using morphological and biochemical (isozyme isocitrate dehydrogenase A, phosphoglucomutase A, phosphoglucose isomerase B, 6-phosphogluconate dehydrogenase A, 6-phosphogluconate dehydrogenase B) markers. The F1 plants (‘Langada’×S. torvum) were selfpollinated and backcrossed to both parents. Fruits, however, were produced only when the F1 hybrid was backcrossed as female with the eggplant cultivar ‘Langada’.  相似文献   

4.
The wild non-tuberous species Solanumetuberosum is resistant to biotic andabiotic stresses, but is very difficult tocross with cultivated potato. Therefore,interspecific somatic hybrids between adihaploid clone of potato S.tuberosum (2n=2x=24, AA genome) and thediploid species S. etuberosum(2n=2x=24, EE genome) were produced byprotoplast fusion. Among the 7 fertilefusion hybrids analysed by genomic insitu hybridisation (GISH), three groups ofplants were found with the genomicconstitution of AAEE, AAEEEE and AAAAEE.Four fusion hybrids had exactly theexpected chromosome composition, while eachof the three aneuploid hybrids had lost twochromosomes of S. etuberosum. Twobackcross progenies were developed, andGISH analysis was applied to analysetransmission of the parental chromosomesinto the sexual generations. BC1hybrids derived from the crosses of thehexaploid somatic hybrids with tetraploidpotato were pentaploid with thetheoretically expected genomic compositionor with slight deviation from thisexpectation. In the three BC2 hybridsanalysed by GISH seven to 12 chromosomes ofS. etuberosum were detected in thepredominant S. tuberosum background.No recombinant chromosomes in the hybridswere detected. Genome dosage affects tuberformation in hybrids and their progenies,but has less effect on resistance to potatovirus Y (PVY) in fusion hybrids. Severalgenotypes of the fusion hybrids andBC1 progeny did not show viralinfection even in the graftingexperiments.  相似文献   

5.
Summary Analyses of F1 and F2 hybrid progenies from crosses between the ancestral species Solanum anguivi and cultivars of its domesticated derivative S. aethiopicum, have proved the mode of inheritance of prickles, stellate hairs and some other morphological characters and suggested the mode for several more. Most wild-type traits were dominant: many recessive domesticated traits involved imperfect morphogenesis suggesting loss of genetic control. F1 hybrids between cultivars show marked heterosis and are recommended for crop production.  相似文献   

6.
Summary Symmetric somatic hybrids were produced by electrofusion of protoplasts of two dihaploid tuber-bearing potato (Solanum tuberosum L.) lines and Solanum brevidens Phil., a diploid non-tuber-bearing wild potato species. A total of 985 plants was obtained. Verification of nuclear hybridity of putative hybrids was based on additive RAPD patterns, general morphological characteristics and chromosome counts. 53 (90%) calli regenerated into plants which were identified as somatic hybrids. Most of the hybrids were aneuploids at the tetraploid (4×) or hexaploid (6×) level. The 20 hybrids tested expressed a high level of resistance to potato virus Y (PVY N ) characteristic of the S. brevidens parent. Resistance to late blight (Phytophthora infestans (Mont.) de Bary) varied between hybrids, but was on average better than that of the fusion parents. Resistance of hybrids to bacterial stem rot (Erwinia carotovora subsp. atroseptica (van Hall) Dye) was not superior to that of commercial potato cultivars.  相似文献   

7.
Somatic hybridization can be used to induce genetic variability in plastidial and mitochondrial genomes, and transfer multiple uncloned genes across sexual barriers. Somatic hybrids were produced between a dihaploid clone of the common potato, S. tuberosum subsp. tuberosum, and the wild sexually incongruent diploid species S. commersonii. Fusion products were selected on the basis of callus growth and regeneration in vitro. Genome composition of putative somatic hybrids was determined by flow cytometric analysis of nuclear DNA content, RAPD analysis, and Southern analysis with probes specific to organellar DNA. All regenerated fusion products proved to be hybrids based on RAPD analysis. Seventy per cent of somatic hybrids were (near) tetraploids, 22% (near) hexaploids and 8%(near) octoploids. A high correlation was found between the nuclear DNA content determined by flow cytometry and the number of chloroplasts in stomata guard cell pairs. Somatic hybrids inherited the parental plastids in a random manner. On the contrary, they preferentially inherited the mitochondrial DNA fragments of S. tuberosum. The majority of them had a rearranged mitochondrial genome with fragments from both parents. Hybrids were highly vigorous and morphologically more similar to the cultivated than to the wild parent, produced tubers on long stolons under long photoperiod conditions, showed a high degree of flowering, but did not produce pollen. In addition, somatic hybrids were generally more resistant to frost and Verticillium wilt than the cultivated parent, indicating the introgression of relevant resistance genes from the wild species into the genetic background of S. tuberosum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Total chloroplast DNA (cpDNA) from Solanum incanum, a wild relative of eggplant, was used to probe total DNA of Solanum melongena (eggplant). The DNA fragments detected were the same as observed using purified chloroplast DNA. Chloroplast DNAs were also analysed for nine species of Solanum that are cross-compatible with eggplant: S. aethiopicum, S. anguivi, S. gilo, S. incanum, S. indicum, S. integrifolium, S. macrocarpon, S. olivare and S. panduriforme.Restriction fragments generated by eight enzymes were recorded as present or absent, and a matrix for all fragment positions, species and enzymes was used for cluster analysis. In the resulting dendrogram, the species tested formed three distinct groups: (1) S. aethiopicum, S. anguivi, S. gilo, S. indicum, S. integrifolium and S. olivare, (2) S. incanum, S. melongena and S. panduriforme, (3) S. macrocarpon. Six species of the first group belonging to section Oliganthes appears more closely related to the second group members belonging to section Melongena than does S. macrocarpon, which also belongs to section Melongena. Within the second group, S. panduriforme is slightly more like eggplant than is S. incanum.  相似文献   

9.
Summary F1 hybrids between Solanum phureja and S. chacoense were studied in a new approach to enhance wild diploid potato species using adapted S. phureja clones as the female parent. S. chacoense parents had few tubers, whereas S. phureja parents had been previously selected for tuberization under long days. Twenty hybrid families were evaluated for haulm vigor, vine maturity, stolon development, frequency of tuberization, tuber set, tuber yield and average tuber weight under naturally occurring increasing or decreasing photoperiods in spring and fall growing seasons in Morocco. The hybrid plants were more vigorous, later maturing with thicker stolons in the spring season. Frequency of tuberization and tuber set did not vary with season. Tuber yield and average tuber weight were higher in fall; the maximum yield was 2.4 and 4.6 kg per hill under spring and fall conditions, respectively. Remarkable variation was found both between and within hybrid families for all traits in this first cycle of enhancement. The selection of vigorous, fertile clones incorporating the S. chacoense genome is possible by using S. phureja as an adapted germplasm source.  相似文献   

10.
Summary True protein content among tubers within a plant of Solanum tuberosum cv. Oneida was found to be negatively correlated with tuber size. A similar study of S. phureja genotype 148-17 revealed no correlation. Tuber protein was determined for 250 genotypes in each of four hybrid potato populations in a factorial mating design with four potato cultivars as stylar parents mated to four groups of pollen parents (4x cultivars, 4x high protein selections, 2x S. phureja, 2x high protein S. phureja). The hybrid population derived from the 4x high protein selections was significantly higher in protein content than the other populations. High estimates of general combining ability for tuber protein content were found for both stylar and pollen parents. Poor photoperiodic adaptation to growing conditions in northern latitudes was a possible explanation for the variable protein phenotypes typical of S. phureja and the lack of transmission of the high protein character in phureja to 4x-2x hybrids. Although protein content was negatively correlated with total yield, high protein segregates with good yield potential were identified in all four populations.Scientific Journal Series Article 11, 616 of the Minnesota Agricultural Experiment Station.  相似文献   

11.
Potato leafroll virus (PLRV; Genus Polerovirus; Family Luteoviridae) is one of the most important virus pathogens of potato worldwide and breeders are looking for new sources of resistance. Solanum etuberosum Lindl., a wild potato species native to Chile, was identified as having resistances to PLRV, potato virus Y, potato virus X, and green peach aphid. Barriers to sexual hybridization between S. etuberosum and cultivated potato were overcome through somatic hybridization. Resistance to PLRV has been identified in the BC1, BC2 and BC3 progeny of the somatic hybrids of S. etuberosum (+) S. tuberosum haploid × S. berthaultii Hawkes. In this study, RFLP markers previously mapped in potato, tomato or populations derived from S. palustre (syn S. brevidens) × S. etuberosum and simple sequence repeat (SSR) markers developed from tomato and potato EST sequences were used to characterize S. etuberosum genomic regions associated with resistance to PLRV. The RFLP marker TG443 from tomato linkage group 4 was found to segregate with PLRV resistance. This chromosome region has not previously been associated with PLRV resistance and therefore suggests a unique source of resistance. Synteny groups of molecular markers were constructed using information from published genetic linkage maps of potato, tomato and S. palustre (syn. S. brevidens) × S. etuberosum. Analysis of synteny group transmission over generations confirmed the sequential loss of S. etuberosum chromosomes with each backcross to potato. Marker analyses provided evidence of recombination between the potato and S. etuberosum genomes and/or fragmentation of the S. etuberosum chromosomes.  相似文献   

12.
Reproductive fertility traits were studied in the reciprocal hybrids of the eggplant(Solanum melongena L.) and S. aethiopicum L. Gilo Group, and in synthetic amphidiploids to discover whether fertility in these reciprocal hybrids was restored by chromosome doubling. Isozyme and RAPD analyses confirmed hybridity of the hybrids and amphidiploids. Analyses of chloroplast and mitochondrial DNAs confirmed that the cytoplasm of each of the hybrids and amphidiploids was from the maternal parent. Pollen sterility of S. melongena × S. aethiopicum Gilo Group [F1 (Mel × Aet)] was restored by chromosome doubling, while the reciprocal hybrid S. aethiopicum Gilo Group ×S. melongena [F1 (Aet × Mel)]and its amphidiploid did not produce any pollen grains; their microspores degenerated without being released from tetrads. Hence the cytoplasm of S. aethiopicum Gilo Group seems to beresponsible for their pollen-non-formation type sterility of the hybrid. Both the F1 hybrids did not set any fruits by either selfing or backcrossing, while their amphidiploids set fruits after pollinating with pollen from the amphidiploid of F1 (Mel × Aet). Seeds obtained from both the amphidiploids germinated normally. Chromosome doubling has been effective in restoring fertility of the hybrids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Summary Evidence is provided that hybridization of the tetraploid (2n=4x=48), self-fertile tuber-bearing species Solanum acaule Bitt. with the diploid (2n=2x=24), self-incompatible, tuber-bearing S. megistacrolobum Bitt. takes place in several localities of the province of Jujuy in the high, cold plateaux of the Argentine Puna. The triploid hybrids (2n=3x=36) closely resemble S. acaule in growth habit, leaf morphology and floral structures and for this reason they can be easily overlooked for that species in the field. Experimental data show that S. acaule can be crossed with S. megistacrolobum though the crossability is rather low and variable according to the particular cross considered. The artificial hybrid obtained compares well with the natural hybrid in morphology and chromosome number. The hybrids, though almost completely male sterile, are successful colonizers of disturbed areas around farmers' dwellings, cattle enclosures and other areas where the soil is rich in organic matter.There is some evidence that the Tilcara material of S. acaule subsp. aemulans and the hybrids of S. acaule x S. megistacrolobum have some characters in common, which can be interpreted as having a similar origin.It is postulated that S. acaule subsp. aemulans, in Jujuy at any rate, is not a primitive form of S. acaule as thought by Hawkes and Hjerting, but rather a fertile hybrid derivative of S. acaule x S. megistacrolobum through the functioning of 2n gametes.We also provide evidence that S. bruecheri Correll should not be considered a hybrid of S. acaulle x S. megistacrolobum but a synonym for S. gourlayi Hawkes. The new name, S. x indunii Okada et Clausen, is proposed to designate this hybrid.  相似文献   

14.
Summary Somatic hybrids of diploid amylose-free (amf) Solanum tuberosum and diploid S. brevidens were made by Poly-Ethylene-Glycol (PEG) or electrofusion methods. For the isolation of interspecific hybrids the use of selection markers (kanamycin and hygromycin resistance) was useful but not essential. In this 2x+2x interspecific combination 4x and 6x somatic hybrids were obtained. Seed set was the best in 4x×4x (S. tuberosum) backcrosses, but seed germination was the best in 6x×4x combinations, using in vitro germination of unripe seeds harvested 25 days after pollination. A high degree of pollen stainability (30–40%) was observed in 7 tetraploid hybrids and very low in all hexaploids. After iodine staining, the recessive amf marker was expressed by a red colour instead of blue, visible in starch-containing cells like columella cells of root tips, (micro)tubers or microspores. As expected, complementation was observed in starch-containing cells of the fusion hybrids. Segregation of the amf marker was clearly observed in microspores of 4x and 6x hybrids. Segregation ratios in the 4x hybrids showed variable recombination frequencies. In the backcross progeny of hexaploid F12-5 with a tetraploid amf mutant one amylose-free recombinant among 67 plants was found, indicating the occurrence of meiotic recombination in the megaspore mother cells.  相似文献   

15.
Summary The occurrence of natural triploid hybrids between tetraploid Solanum acauleBitter subsp. acaule and diploid S. infundibuliformePhilippi both tuber-bearing Solanums, in the Puna region of Jujuy, is reported. The natural hybrids, which are morphologically intermediate between their putative parents and completely male sterile, have a somatic chromosome number of 36. The artificial hybrids, obtained by crossing both parental species, closely resemble the natural ones thereby confirming their parentage. It is proposed to designate the natural hybrids Solanum x viirsooi hybr. nov.  相似文献   

16.
Field experiments were carried out in order to evaluate 4x‐2x families derived from crosses between elite 4x potato cultivars and 2x Tuberosum‐Solanum tarijense and 2x Tuberosum‐Solanum berthaultii clones. Three traits were assessed: total tuber yield (TTY), haulm maturity (HM) and general tuber appearance (GTA). The degree of heterosis of these hybrid families was evaluated by comparison with the respective 2x and 4x parents as well as with seven 4x cultivars. The parental haploid species hybrids derived from S. berthaultii and S. tarijense combined two or more positive horticultural characteristics. Expressed as yield percentage of the 4x parents, the TTY of the families ranged from 53% to 246%. For TTY, the best 4x‐2x hybrid family ranked better than seven out of nine elite 4x cultivars. Some families had GTA scores in the range of the highly selected 4x cultivars. The families, however, were generally later maturing than the 4x parent group. Specific combining ability for TTY and GTA were the only two significant sources of variation observed in this genetic material. Parent‐offspring correlation coefficients were low for all traits, and indicated that parental performance would not be informative at either ploidy level. These results parallel previous investigations with distinct haploid species hybrids where a 4x‐2x breeding scheme was found to be an effective strategy for increasing progeny TTY over the 4x parents. However, the high degree of heterosis for TTY along with good GTA scores observed in certain cross combinations derived from these unadapted 2x species was a somewhat surprising result. Thus far, the importance of these two South American wild potato species, from the potato‐breeding standpoint, has been limited to the fact that they are natural reservoirs of major genes controlling resistance against important diseases and insects. However, the level of performance of some 4x‐2x families in comparative assays with elite cultivars suggests the unanticipated possibility of introgressing genetic factors from S. berthaultii and S. tarijense with positive effects on quantitative traits of horticultural importance along with these major resistance genes.  相似文献   

17.
Tomato mosaic virus (ToMV) is a limiting factor for the success of pepino (Solarium muricatum) as a new crop. The effects of ToMV infection on total and marketable yield, fruit weight, length/width ratio and soluble solids content (SSC) have been studied in two commercial clones (`Sweet Long' and `Sweet Round'). ToMV infection depressed total yield in infected plants of `Sweet Long' (43.1%), while it had no effect on this trait in `Sweet Round' . Marketable yield was dramatically reduced by ToMV infection in both clones, 94% in `Sweet Long' and 100% in `Sweet Round'. Infected plants of clone `Sweet Long' had a lower weight than healthy plants. Although no differences in fruit weight were detected in `Sweet Round' between ToMV infected and healthy plants, many fruits from infected plants showed deformities. Changes in fruit length/width ratio and SSC as a result of ToMV infection were not relevant, but fruit quality was lower in infected fruits, most of which had corky-like flesh. Forty-two clones from cultivated (S. muricatum), wild (S. caripense and S. tabanoense) and interspecific hybrids were tested for ToMV resistance. All but seven clones (four from S. muricatum and three from interspecific hybrids S. muricatum × S. caripense) were susceptible. Non-susceptible clones showed variable degrees of resistance and developed hypersensitive local lesions. Among these clones the most promising as sources of variation for resistance to ToMV are those belonging to the cultivated species. Although no immunity was found, plants from these clones remained asymptomatic and absorbance values resulting from the DAS-ELISA tests in these plants were always lower than those of the susceptible control (cv. `Sweet Round'). These sources of resistance may be of great utility in developing commercial clones resistant to this severe disease affecting pepino. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Summary The distant hybrids between non-tuberous Solanum species and tuberous S. pinnatisectum display little or no pairing in F1 and predominantly bivalent formation (preferential pairing) after chromosome doubling. In such a situation the question about the potential and extent of gene transfer from the non-tuberous parent to the tuberous one is relevant to potato breeding. This question was investigated by studying meiosis in triploid and hexaploid hybrids from crosses between diploid TV5 x tetraploid (S. etuberosum x S. pinnatisectum). TV5 is similar to S. verrucosum with cytoplasm of S. tuberosum. The following evidence was found for the desirable transfer of S. etuberosum genes to the tuberous species.The triploid F1 hybrids did not display the configurations 12 II+12 I expected if no gene exchange would take place between S. etuberosum and the tuberous species; however, a considerable number of multivalents per cell was observed in all plants studied.In the hexaploid F1 hybrids, obtained from the triploids through somatic doubling in vitro, 36 bivalents could reasonably be expected. Although bivalents were predominant (an overall average of 24.2 per cell) quite a few chromosomes were associated as multivalents in all plants investigated.It is concluded that in the hybrids studied a considerable amount of pairing and chiasma formation occurs between chromosomes of non-tuberous and those of tuberous Solanum species. This pairing affinity is larger than that found in 2x and 4x hybrids from S. etuberosum x S. pinnatisectum. Some hypotheses are put forward to explain this increased pairing affinity.  相似文献   

19.
Summary Solanum nigrum and S. villosum, and their sexual hybrids with S. tuberosum and S. demissum respectively, were inoculated with a complex race of Phytophthora infestans. No visible reaction was seen on S. villosum and one genotype of S. nigrum. Another genotype of S. nigrum and the hybrids showed a hypersensitive response on most inoculated leaves. In one experiment, some sporulation was observed on detached leaves of a hybrid derived from S. nigrum. Microscopical examination of infections in S. nigrum and in a hybrid from S. nigrum, showed that penetration of epidermal cells and subsequent intercellular growth of the pathogen into the spongy mesophyll occurred, but without the formation of haustoria, and that invaded and neighbouring cells became necrotic. Callose appositions were found in epidermis and mesophyll cells of all inoculated genotypes, and also in epidermal cells of the unrelated nonhost species Brassica campestris.  相似文献   

20.
Summary Doubling the chromosome number of sterile F1 hybrids of S. etuberosum × S. pinnatisectum resulted in fertile allotetraploid hybrids (code 4x-EP) with nearly normal chromosome pairing at meiosis. Many seeds were obtained from selfing and sibbing, but seed set varied considerably. The 4x-EP hybrids were successfully crosses as females with S. stoloniferum and S. polytrichon and as males with S. verrucosum. The crosses with S. stoloniferum and S. polytrichon were carried out reciprocally and unilateral incompatibility was detected. Crosses of 4x-EP hybrids as males onto S. phureja and S. tuberosum cv. Gineke produced parthenocarpic berries only. Nearly 1700 flowers of colchicine-doubled S. pinnatisectum × S. bulbocastanum and the trispecific hybrid (S. acaule × S. bulbocastanum) × S. phureja did not yield a single berry after pollination with a pollen mixture from 20 4x-EP plants.It is concluded that the use of the bridging species S. pinnatisectum and either S. stoloniferum, S. polytrichon or S. verrucosum may enable gene transfer from the non-tuberous Etuberosa species to potato cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号