共查询到20条相似文献,搜索用时 15 毫秒
1.
N. D. Ananyeva T. S. Demkina W. J. Jones M. L. Cabrera W. C. Steen 《Biology and Fertility of Soils》1999,29(3):291-299
Non-tilled and tilled plots on a spodosol (Corg 0.65–1.70%; pH 4.1–4.5) and a mollisol (Corg 3.02–3.13%, pH 4.9–5.3), located in the European region of Russia, were investigated to determine variances in soil microbial
biomass and microbial community composition. Continuous, long-term management practices, including tillage and treatment with
inorganic fertilizers or manure, were used on the spodosol (39 years) and mollisol (22 years). Total microbial biomass (Cmic), estimated by the substrate-induced respiration (SIR) method, and total fungal hyphae length (membrane filter technique)
were determined seasonally over a 3-year period. Long-term soil management practices (primarily tillage and fertilizer application)
led to decreases in total microbial biomass (80–85% lower in spodosol and 20–55% lower in mollisol), decreases in the contribution
of Cmic to Corg (2.3- to 3.5-fold lower in spodosol and 1.2- to 2.3-fold lower in mollisol), and 50–87% decreases in total fungal hyphae
length compared to non-tilled control plots. The contribution of fungi to total SIR in virgin mollisol and fallow spodosol
plots was approximately 30%. However, the contribution of fungi to SIR was approximately two times greater in tilled spodosol
plots compared to a fallow plot. In contrast, the contribution of fungi to SIR in tilled plots of mollisol was less (1.4–4.7
times) than for a virgin plot. In summary, long-term soil management practices such as tillage and treatment with organic
or inorganic fertilizers are important determinants of soil microbial biomass and the contribution of fungi to total SIR.
Received: 28 April 1998 相似文献
2.
A. L. Cogle K. P. C. Rao D. F. Yule P. J. George S. T. Srinivasan G. D. Smith L. Jangawad 《Soil & Tillage Research》1997,44(3-4):235-253
A field experiment was conducted in the semi arid tropics to study the effects of soil structural modification on cropping systems. The aim was to improve crop production and land resource protection using innovative soil management practices. Tillage, mulch and perennial/annual rotational based systems were compared for 5 years in an Alfisol at ICRISAT in India. Crop yield parameters, including grain and biomass yield, leaf area index, crop cover, and plant height were measured. Results indicate significant benefits to annual crop yield (maize, sorghum) from improved water supply due to mulching with farmyard manure or and rice straw, and due to rotation with prior-perennial crops. Grain yields were 16 to 59% higher in mulched treatments compared to unmulched treatments, with similar increases for fodder yields. Annual crop yields after 4 years of perennials were 14 to 81% higher than unmulched treatments, except for low fertility maize grown after buffel grass. The interaction with chemical fertility was less clear than for water supply. The results have implications for soil management throughout the semi-arid tropics. 相似文献
3.
Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications 总被引:17,自引:0,他引:17
M. Šimek D. W. Hopkins J. Kalčík T. Picek H. Šantrůčková J. Staňa K. Trávník 《Biology and Fertility of Soils》1999,29(3):300-308
Using soils from field plots in four different arable crop experiments that have received combinations of manure, lime and
inorganic N, P and K for up to 20 years, the effects of these fertilizers on soil chemical properties and estimates of soil
microbial community size and activity were studied. The soil pH was increased or unaffected by the addition of organic manure
plus inorganic fertilizers applied in conjunction with lime, but decreased in the absence of liming. The soil C and N contents
were greater for all fertilized treatments compared to the control, yet in all cases the soil samples from fertilized plots
had smaller C:N ratios than soil from the unfertilized plots. The soil concentrations of all the other inorganic nutrients
measured were greater following fertilizer applications compared with the unfertilized plots, and this effect was most marked
for P and K in soils from plots that had received the largest amounts of these nutrients as fertilizers. Both biomass C determined
by chloroform fumigation and glucose-induced respiration tended to increase as a result of manure and inorganic fertilizer
applications, although soils which received the largest additions of inorganic fertilizers in the absence of lime contained
less biomass C than those to which lime had been added. Dehydrogenase activity was lower in soils that had received the largest
amounts of fertilizers, and was further decreased in the absence of lime. This suggests that dehydrogenase activity was highly
sensitive to the inhibitory effects associated with large fertilizer additions. Potential denitrification and anaerobic respiration
determined in one soil were increased by fertilizer application but, as with both the microbial biomass and dehydrogenase
activity, there were significant reductions in both N2O and CO2 production in soils which received the largest additions of inorganic fertilizers in the absence of lime. In contrast, the
size of the denitrifying component of the soil microbial community, as indicated by denitrifying enzyme activity, was unaffected
by the absence of lime at the largest rate of inorganic fertilizer applications. The results indicated differences in the
composition or function of microbial communities in the soils in response to long-term organic and inorganic fertilization,
especially when the soils were not limited.
Received: 10 March 1998 相似文献
4.
The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in
1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots
of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively.
The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values
were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation
significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping
systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively).
Received: 9 February 1999 相似文献
5.
This study examines the effects of atrazine on both microbial biomass C and C mineralization dynamics in two contrasting agricultural
soils (organic C, texture, and atrazine application history) located at Galicia (NW Spain). Atrazine was added to soils, a
Humic Cambisol (H) and a Gleyic Cambisol (G), at a recommended agronomic dose and C mineralization (CO2 evolved), and microbial biomass measurements were made in non-treated and atrazine-treated samples at different time intervals
during a 12-week aerobic incubation. The cumulative curves of CO2–C evolved over time fit the simple first-order kinetic model [Ct = Co (1 − e
−kt
)], whose kinetic parameters were quantified. Differences in these parameters were observed between the two soils studied;
the G soil, with a higher content in organic matter and microbial biomass C and lower atrazine application history, exhibited
higher values of the total C mineralization and the potentially mineralizable labile C pool than those for the H soil. The
addition of atrazine modified the kinetic parameters and increased notably the C mineralized; by the end of the incubation
the cumulative CO2–C values were 33–41% higher than those in the corresponding non-added soils. In contrast, a variable effect or even no effect
was observed on the soil microbial biomass following atrazine addition. The data clearly showed that atrazine application
at normal agricultural rates may have important implications in the C cycling of these two contrasting acid soils. 相似文献
6.
Field experiments were conducted on cotton to evaluate the different cotton-based intercropping system along with balanced nutrient management practices on enhancing cotton productivity. Cropping systems have been considered as main plots and nutrient management practices have been considered as subplots. The results showed that cotton + onion system recorded the highest cotton equivalent yield (CEY) of 2052 and 1895 kg ha?1 which was on par with cotton intercropped with dhaincha, which recorded 2010 and 1894 kg of CEY ha?1 in both the seasons. Combined application of 100% recommended NPK with bioinoculants (S5) registered highest CEY in both the seasons. Cotton intercropped with dhaincha (M2) recorded highest uptake of N, P, and K. Among the nutrient management practices, application of 100% recommended NPK with bioinoculants (S5) showed highest uptake of N, P, and K. A similar trend was noticed in the post-harvest soil fertility too and it is significantly higher under cotton + dhaincha and application of 100% recommended NPK with bioinoculants treatment compared to 100% recommend NPK alone. It could be concluded from these results that crop productivity can be improved and soil fertility status can be sustained with integrated plant nutrient management practices. 相似文献
7.
Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India 总被引:2,自引:0,他引:2
L. Rudrappa T.J. Purakayastha Dhyan Singh S. Bhadraray 《Soil & Tillage Research》2006,88(1-2):180-192
Soil is a potential C sink and could offset rising atmospheric CO2. The capacity of soils to store and sequester C will depend on the rate of C inputs from plant productivity relative to C exports controlled by microbial decomposition. Management practices, such as no-tillage and high intensity cropping sequences, have the potential to enhance C and N sequestration in agricultural soils. An investigation was carried out to study the influence of long-term applications of fertilizers and manures on different organic C fractions in a Typic Haplustept under intensive sequence of cropping with maize–wheat–cowpea in a semi-arid sub-tropic of India. In 0–15 cm, the bulk density was lowest (1.52 Mg m−3) in plots treated with 100% NPK + FYM, while the control treatment showed the highest value (1.67 Mg m−3). Balanced application of NPK (100% NPK) showed significantly lower bulk density (1.56 Mg m−3) over either 100% N (1.67 Mg m−3) or 100% NP (1.61 Mg m−3) in surface soils. The application of super-optimal dose of NPK (150% NPK) showed higher total organic C (TOC) (12.9 g C kg−1) over either 50% NPK (9.3 g C kg−1) or 100% NPK (10.0 g C kg−1) in 0–15 cm soil layer. There was an improvement in TOC in 100% NPK or 100% NP (9.3 g C kg−1) over 100% N (8.7 g C kg−1) in the same depth. The application of FYM with 100% NPK showed 15.2, 9.9 and 5.2 g C kg−1 in 0–15, 15–30 and 30–45 cm, respectively. Application of graded doses of NPK from 50 to 150% of recommendation NPK significantly enhanced other organic C fractions like, microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidizable C (KMnO4–C) in all the three soil depths. The TOC in 0–45 cm soil depth in 150% NPK (63.5 Mg C ha−1) was increased by 39% over that in 50% NPK treatment (51.5 Mg C ha−1) and 29% over that in 100% NPK treatment (54.1 Mg C ha−1). Integrated use of farmyard manure with 100% NPK (100% NPK + FYM) emerged as the most efficient management system in accumulating largest amount of organic C (72.1 Mg C ha−1) in soil. Nevertheless, this treatment also sequestered highest amount of organic C (731 kg C ha−1 year−1). Particulate organic carbon, a physically protected carbon pool in soil, could well be protected in sub-surface soil layers than in surface soil layer as a means of carbon aggradations. Microbial metabolic quotient (qCO2) was significantly lower in 100% NPK + FYM over other treatments to indicate this to be the most efficient manuring practice to preserve organic carbon in soil where it facilitates aggradations of more recalcitrant organic C in soil. As compared to POC, total TOC proved to be a better predictor of MBC as it strongly correlated with total carbon mineralized from soil. 相似文献
8.
The application of mineral N fertilizers may influence biologically mediated processes that are important in nutrient transformations and availability. This study was conducted to assess the effect of N application on microbial activities in irrigated and non-irrigated winter wheat systems. Carbon decomposition and microbial biomass C in soils with three N application rates (0, 150, and 300 kg N ha–1 as urea) were measured over 40 days in a laboratory incubation experiment. Carbon, N, and P contents in the soil under the irrigated wheat were higher than those in the soil under the non-irrigated wheat. The reverse trend was observed for soil pH and Ca and Mg contents. However, soils from the two systems had similar C/N ratios. Carbon decomposition and microbial biomass C in the soil under the irrigated wheat increased significantly (p
<0.05). Increasing rates of N fertilizer resulted in higher C decomposition and microbial biomass C levels in both soil systems. Results indicate that different wheat cropping systems affect soil properties that will then have an impact on C turnover in the soil. Moreover, the irrigated wheat system favors soil conditions required for a faster C turnover. In conclusion, it is likely that due to positive effects on microbial activity, N fertilization will increase nutrient cycling and, subsequently, crop productivity will improve in N-poor soils. 相似文献
9.
Yong Peng Wang Long Hai Kadambot H. M. Siddique Yantai Gan Feng Min Li 《Soil Science and Plant Nutrition》2013,59(4):486-498
AbstractThis study evaluated the effects of plastic mulched ridge-furrow cropping on soil biochemical properties and maize (Zea mays L.) nutrient uptake in a semi-arid environment. Three treatments were evaluated from 2008 to 2010: no mulch (narrow ridges with crop seeded next to ridges), half mulch (as per no mulch, except narrow ridges were mulched), and full mulch (alternate narrow and wide ridges, all mulched with maize seeded in furrows). Compared to the no mulch treatment, full mulch increased maize grain yield by 50% in 2008 and 25% in 2010, but reduced yield by 21% in 2009 after low precipitation in early growth. Half mulch had a similar grain yield to no mulch in the three cropping years, suggesting half mulch is not an effective pattern for maize cropping in the area. Mulch treatments increased aboveground nitrogen (N) uptake by 21?34% and phosphorus (P) uptake by 21?42% in 2008, and by 16?32% and 14?29%, respectively, in 2010; but in 2009 mulching did not affect N uptake and decreased P uptake. Soil microbial biomass and activities of urease, β-glucosidase and phosphatase at the 0?15 cm depth were generally higher during vegetative growth but lower during reproductive growth under mulch treatments than no mulch. Mulching treatments increased carbon (C) loss of buried maize residues (marginally by 5?9%), and decreased light soil organic C (15?27%) and carbohydrate C (12?23%) concentrations and mineralizable C and N (8?36%) at harvest in the 0?20 cm depth compared with no mulch, indicating that mulching promotes mineralization and nutrient release in soil during cropping seasons. As a result of these biological changes, mineral N concentration under mulch was markedly increased after sowing in upper soil layers compared with no mulch. Therefore, our results suggest that mulched cropping stimulated soil microbial activity and N availability, and thus contributed to increasing maize grain yield and nutrient uptake compared with no mulch. 相似文献
10.
热带地区不同香蕉长期轮作体系对土壤微生物和生物化学性质的影响 总被引:2,自引:0,他引:2
Soil microbiological and biochemical properties under various field crop rotations such as grains, pastures and vegetables have been studied intensively under short-term period. However, there is limited information about the influence of banana-based rotations on soil organic C, total N(TN), microbial biomasses and enzyme activities under long-term crop rotations. A field experiment arranged in a randomized complete block design with three replicates was carried out at the Wanzhong Farm in Ledong(18?37′–18?38′N, 108?46′–108?48′E), Hainan Province, China, to compare the responses of these soil parameters to long-term(10-year) banana(Musa paradisiaca)-pineapple(Ananas) rotation(AB), banana-papaya(Carica) rotation(BB) and banana monoculture(CK) in a conventional tillage system in the Hainan Island. Soil p H, total organic C(TOC), dissolved organic C(DOC), TN, total P(TP) and available P(AP) were found to be significantly higher(P 0.01) in AB and BB than CK at 0–30 cm soil depth. Microbial biomass C(MBC) and N(MBN) were observed 18.0%–35.2% higher in AB and 8.6%–40.5% higher in BB than CK at 0–30 cm. The activities of urease(UA), invertase(IA), dehydrogenase(DA) and acid phosphatase(APA) showed a mean of 21.5%–59.6% increase in AB and 26.7%–66.1% increase in BB compared with CK at 0–30 cm. Higher p H, TOC and DOC at 0–10 and 10–20 cm than at 20–30 cm were obtained despite of the rotations. Soil MBC and MBN and activities of UA, IA and DA decreased markedly(P 0.01) with increasing soil depth in the different rotation soils as well as the monoculture soil. In general, soil microbial biomass and enzymatic activities were more sensitive to changes in banana-based rotations than soil chemical properties, and consequently they were well-established as early indicators of changes due to crop rotations in the tropics. 相似文献
11.
不同橡胶生长期土壤中的微生物生物量碳和有机碳 总被引:16,自引:6,他引:16
Soil samples were collected from different rubber fields in twenty-five plots selected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Sciences located in Hainan, China, to analyse the ecological effect of rubber cultivation. The results showed that in the tropical rubber farm, soil microbial biomass C (MBC) and total organic C (TOC) were relatively low in the content but highly correlated with each other. After rubber tapping, soil MBC of mature rubber fields decreased significantly, by 55.5%, compared with immature rubber fields. Soil TOC also decreased but the difference was not significant. Ratios of MBC to TOC decreased significantly. The decreasing trend of MBC stopped at about ten years of rubber cultivation. After this period, soil MBC increased relatively while soil TOC still kept in decreasing. Soil MBC changes could be measured to predict the tendency of soil organic matter changes due to management practices in a tropical rubber farm several years before the changes in soil TOC become detectable. 相似文献
12.
Soil carbon and nitrogen dynamics as affected by long-term tillage and nitrogen fertilization 总被引:9,自引:0,他引:9
J. R. Salinas-Garcia F. M. Hons J. E. Matocha D. A. Zuberer 《Biology and Fertility of Soils》1997,25(2):182-188
Quantifying seasonal dynamics of active soil C and N pools is important for understanding how production systems can be better
managed to sustain long-term soil productivity especially in warm subhumid climates. Our objectives were to determine seasonal
dynamics of inorganic soil N, potential C and N mineralization, soil microbial biomass C (SMBC), and the metabolic quotient
of microbial biomass in continuous corn (Zea mays L.) under conventional (CT), moldboard (MB), chisel (CH), minimum tillage (MT), and no-tillage (NT) with low (45kgNha–1) and high (90kgNha–1) N fertilization. An Orelia sandy clay loam (fine-loamy, mixed, hyperthermic Typic Ochraqualf) in south Texas, United States,
was sampled before corn planting in February, during pollination in May, and following harvest in July. Soil inorganic N,
SMBC, and potential C and N mineralization were usually highest in soils under NT, whereas these characteristics were consistently
lower throughout the growing season in soils receiving MB tillage. Nitrogen fertilization had little effect on soil inorganic
N, SMBC, and potential C and N mineralization. The metabolic quotient of microbial biomass exhibited seasonal patterns inverse
to that of SMBC. Seasonal changes in SMBC, inorganic N, and mineralizable C and N indicated the dependence of seasonal C and
N dynamics on long-term substrate availability from crop residues. Long-term reduced tillage increased soil organic matter
(SOM), SMBC, inorganic N, and labile C and N pools as compared with plowed systems and may be more sustainable over the long
term. Seasonal changes in active soil C and N pools were affected more by tillage than by N fertilization in this subhumid
climate.
Received: 20 September 1996 相似文献
13.
Copper-based fungicides have been applied in apple orchards for a long time, which has resulted in increasing soil Cu concentration. However, the microbial and enzyme properties of the orchard soils remain poorly understood. This study aimed to evaluate the effect of long-term application of Cu-based fungicides on soil microbial (microbial biomass carbon (Cmic), C mineralization, and specific respiration rate) and enzyme (urease, acid phosphatase, and invertase activities) properties in apple orchards. Soil samples studied were collected from apple orchards 5, 15, 20, 30, and 45 years old, and one adjacent forest soil as for reference. The mean Cu concentrations of orchard soils significantly increased with increasing orchard ages ranging from 21.8 to 141 mg kg−1, and the CaCl2-extractable soil Cu concentrations varied from 0.00 to 4.26 mg kg−1. The soil mean Cmic values varied from 43.6 to 116 mg kg−1 in the orchard soils, and were lower than the value of the reference soil (144 mg kg−1). The ratio of soil Cmic to total organic C (Corg) increased from 8.10 to 18.3 mg Cmic g−1 Corg with decreasing orchard ages, and was 26.1 mg Cmic g−1 Corg for the reference soil. A significant correlation was observed between total- or CaCl2-extractable soil Cu and soil Cmic or Cmic/Corg, suggesting that the soil Cu was responsible for the significant reductions in Cmic and Cmic/Corg. The three enzyme activity assays also showed the similar phenomena, and declined with the increasing orchard ages. The mean soil C mineralization rates were elevated from 110 to 150 mg CO2-C kg−1 soil d−1 compared with the reference soil (80 mg CO2-C kg−1 soil d−1), and the mean specific respiration rate of the reference soil (0.63 mg CO2-C mg−1 biomass C d−1) was significantly smaller than the orchard soils from 1.19 to 3.55 mg CO2-C mg−1 biomass C d−1. The soil C mineralization rate and the specific respiration rate can be well explained by the CaCl2-extractable soil Cu. Thus, the long-term application of copper-based fungicides has shown adverse effects on soil microbial and enzyme properties. 相似文献
14.
15.
This study investigated the long-term effect of lime application and tillage systems (no-till, ridge-till and chisel plow) on the activities of arylamidase and amidohydrolases involved in N cycling in soils at four long-term research sites in Iowa, USA. The activities of the following enzymes were assayed: arylamidase,
-asparaginase,
-glutaminase, amidase, urease, and
-aspartase at their optimal pH values. The activities of the enzymes were significantly (P<0.001) and positively correlated with soil pH, with r values ranging from 0.42* to 0.99*** for arylamidase, 0.81*** to 0.97*** for
-asparaginase, 0.62*** to 0.97*** for
-glutaminase, 0.61*** to 0.98*** for amidase, 0.66** to 0.96*** for urease, and 0.80*** to 0.99*** for
-aspartase. The Δactivity/ΔpH values were calculated to assess the sensitivity of the enzymes to changes in soil pH. The order of the sensitivity of enzymes was as follows:
-
-aspartase. The enzyme activities were greater in the samples of the 0–5 cm depth than those of the 0–15 cm samples under no-till treatment. Most of the enzyme activities were significantly (P<0.001) and positively correlated with microbial biomass C (Cmic) and N (Nmic). Lime application significantly affected the specific activities of the six enzymes studied. Results showed that soil management practices, including liming and type of tillage significantly affect soil biological and biochemical properties, which may lead to changes in nitrogen cycling, including N mineralization in soils. 相似文献
Full-size image
16.
《Communications in Soil Science and Plant Analysis》2012,43(14):1938-1948
The aim of the study was to determine microbial populations and microbial biomass carbon in the rhizosphere soil of soybean cultivated under different organic treatments: plant compost (PC), vermicompost (VER), farmyard manure (FYM), and integrated plant compost (IPC). The serial dilution plate method was employed to enumerate the rhizosphere soil fungi and bacteria. Results showed that microbial populations and biomass carbon were affected by the application of organic amendments. Fungal population was the greatest in the VER plot for two crop cycles, whereas bacterial population was the greatest in the VER in the first crop cycle and FYM for the second crop cycle. Tukey's test at P ≤ 0.05 showed that change in microbial biomass carbon in the sites studied over time was significant, with the greatest in FYM. In our study, addition of organic amendments affected the soil physicochemical properties, which in return affected the rhizosphere microbial characteristics. 相似文献
17.
长期定位施肥对红壤不同形态有效碳的影响试验研究结果表明,与对照相比,长期施肥后红壤不同形态有效碳均有不同程度提高,且全C、矿化碳的变化为厩肥>绿肥>稻草秸秆肥>本田还田>对照,易氧化碳、C库管理指数(CPMI)、C素有效率的变化为绿肥>稻草秸秆肥>厩肥>本田还田>对照,微生物生物量C变化为绿肥>厩肥>稻草秸秆肥>本田还田>对照,绿肥和稻草秸秆肥可有效改善土壤肥力及理化性状。C库管理指数与土壤养分因子量相关或极相关关系,反映了农业生产措施对土壤C库的影响,可运用其评估土壤C库的变化。 相似文献
18.
The Dehérain long-term field experiment was initiated in 1875 to study the impact of fertilization on a wheat-sugarbeet rotation. In 1987, the rotation was stopped to be replaced by continuous maize. Crop residues were soil-incorporated and the mineral fertilization was doubled in some plots. The impact of those changes on the microbial biomass and activity are presented. In spring 1987, the soil was still in a steady-state condition corresponding to the rotation. The microbial biomass was correlated with total organic C and decreased in the order farmyard manure>mineral NPK>unfertilized control. Microbial specific respiratory activity was higher in the unfertilized treatments. The soil biomass was closely related to soil N plant uptake. In 1989, after 2 years of maize and crop residue incorporation, the steady-state condition corresponding to the previous agricultural practices disappeared. So did the relationship between the biomass and total organic C, and the soil N plant uptake. Biomass specific respiratory activity increased because of low efficiency in the use of maize residues by microbes under N stress. 相似文献
19.
Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover 总被引:1,自引:0,他引:1
The Mediterranean area of Southern Italy is characterized by different natural plant covers that mainly reflect different successional stages (i.e. low maquis, high maquis, Quercus ilex wood) and managed areas with introduced plant species (such as Pinus species). Soil properties could be affected by plant cover types as well as by plant species. Our objective was to determine the relationships of plant cover types and plant species with the chemical and biological characteristics of the soil. In four neighbouring areas with different plant cover types (low maquis, pure high maquis, high maquis with pines and pinewood, with pines planted by foresters in both cases), soil samples were collected under different plant species in order to evaluate the effect of plant cover types and plant species on soil properties. Soil samples were analyzed for nutrient content, microbial biomass, soil potential respiration and enzymatic activity (phosphatase, arylsulphatase, β-glucosidase and hydrolase activities) as well as for pH, water holding capacity (WHC) and cation exchange capacity (CEC). Application of cluster analysis and principal component analysis to the data revealed that the plant cover type was the key factor influencing soil properties more than plant species. In fact, the largest differences were observed between pure high maquis soils and all other soils, with pure high maquis soils generally showing the highest values of WHC, CEC, nutrient content, organic and microbial C, soil respiration, phosphatase, arylsulphatase and β-glucosidase activities. The significantly lower values of these variables in the low maquis relative to the pure high maquis probably reflect the effect of ecological succession on soil. The high maquis with pine, differing from the pure high maquis only for the presence or absence of pine, showed values of soil physical, chemical and biological characteristics similar to those found in the low maquis, thus suggesting that the presence of pine retards soil development. 相似文献
20.
Continuous cultivation has been known to decrease soil organic matter content. Application of organic matter to cultivated soil is an important practice from the point of view of maintaining an adequate amount of soil organic matter. Soil organic matter content significantly affects soil microbial activity, which is an important index of soil quality. In this study, a field experiment was conducted to examine the long-term effects of different kinds of organic matter in combination with inorganic nitrogen (N) fertilizer on chemical and biological properties of soils. There were seven treatments, namely (1) CK (without fertilization), (2) Chem-N (applying chemical N fertilizer only), (3) Comp (applying compost with the same rate of N as the Chem-N treatment), (4) Comp + l/3 N (applying compost complemented with 33% of the chemical N fertilizer of the Chem-N treatment), (5) Comp + 2/3 N (applying compost complemented with 66% of the chemical N fertilizer of the Chem-N treatment), (6) GM + 1/3 N (applying green manure complemented with 33% of the chemical N fertilizer of the Chem-N treatment) and (7) Peat + 1/3 N (applying peat complemented with 33% of the chemical N fertilizer of the Chem-N treatment). After continuous treatment for 12 years and with cultivation of 24 crops on the same area, soils were sampled for analyses of chemical and biological properties, enzymatic activities and phospholipid fatty acid (PLFA) profiles. The results showed that compared with CK and Chem-N treatments, applications of compost and peat increased soil organic carbon (SOC) content and altered microbial activities and microbial community structure. However, application of green manure for 12 years had no effect on SOC content. Both microbial activities and PLFA profiles were clearly dependent on the characteristics of the applied organic amendments. In summary, a peat application led to the highest increase in SOC content compared to compost and green manure; however, compost-treated soil had a higher microbial population and higher microbial and enzyme activities, while the effects of both green manure and chemical N fertilizer on soil properties were similar. 相似文献