共查询到20条相似文献,搜索用时 15 毫秒
1.
棉花高光谱及其红边特征(Ⅰ) 总被引:6,自引:5,他引:6
通过大田和室内试验,测定了2个品种的棉花冠层、完全展开倒1、3叶在不同时期的高光谱反射率及对应叶片的叶绿素、类胡萝卜素含量.结果表明随发育期推移,棉花冠层光谱反射率在可见光范围降低,在近红外区域增高;叶片背面光谱反射率略高于正面,透射率小于反射率;叶面积指数、鲜叶重和干叶重与冠层反射光谱变量ρ800/ρ550、ρ800/ρ680、ρ680/ρ570之间存在显著相关;叶片叶绿素和类胡萝卜素浓度与其反射光谱变量ρ680/ρ570、ρ673/ρ640、ρ680/ρ550、PSSRa、PSNDa、Rch之间也呈显著相关. 相似文献
2.
棉花高光谱及其红边特征(I) 总被引:3,自引:0,他引:3
通过大田和室内试验,测定了2个品种的棉花冠层、完全展开倒1、3叶在不同时期的高光谱反射率及对应叶片的叶绿素、类胡萝卜素含量。结果表明:随发育期推移,棉花冠层光谱反射率在可见光范围降低,在近红外区域增高;叶片背面光谱反射率略高于正面,透射率小于反射率;叶面积指数、鲜叶重和干叶重与冠层反射光谱变量ρ800 ρ550、ρ800 ρ680、ρ680 ρ570之间存在显著相关;叶片叶绿素和类胡萝卜素浓度与其反射光谱变量ρ680 ρ570、ρ673 ρ640、ρ680 ρ550、PSSRa、PSNDa、RCh之间也呈显著相关。 相似文献
3.
基于光谱红边参数的棉花黄萎病叶片氮素含量诊断研究 总被引:1,自引:0,他引:1
以黄萎病胁迫下棉花叶片为供试材料,分析了黄萎病棉叶氮素含量(LNC)与光谱红边参数间的关系,建立了黄萎病棉叶LNC(Leaf nitrogen content) 的光谱红边参数诊断模型。结果表明:(1) 随着黄萎病严重程度的增加,棉叶LNC逐渐减小,且差异显著;(2)黄萎病棉叶红边参数红边位置(REP) 、红边振幅(Dr)、红谷位置(Lo) 、红边深度(Depth672)和红边面积(Area672) 均减小,红边宽度(Lwidth) 增加,且Area672的值减小的幅度最大,Dr减小的幅度最小,Lwidth的值增加的幅度较大; (3) 黄萎病棉叶LNC含量均与红边参数REP、Lo、Depth672和Area672呈极显著正相关,与Lwidth呈极显著负相关,与Dr未达显著相关;(4)基于红边参数建立的黄萎病棉叶LNC含量的诊断模型均达到极显著水平(P<0.01),其中以Area672为自变量建立的黄萎病棉叶LNC的诊断模型的精度最高,R2超过0.7,RMSE小于0.6,RE小于0.007,能很好地诊断黄萎病棉叶LNC。 相似文献
4.
棉花苗期冻害高光谱特征研究 总被引:4,自引:3,他引:4
通过盆栽、霜箱模拟冻害,结果表明:冻害棉苗叶绿素含量、光合、蒸腾速率显著低于对照组。叶绿素含量与高光谱特征相关分析表明对照组高相关波段集中在红、近红外波段,而冻害组集中在蓝、绿、红波段。根据相关系数及高光谱反射率、一阶导数、倒数后对数三类特征值差异显著性分析,反射率、一阶微分不易选取冻害胁迫诊断波段,利用反射率倒数后对数,B696、B720、B768、B845可作为诊断波段。由诊断波段的反射率值计算的植被指数与叶绿素含量相关性要比单一波段更高,由倒数对数和一阶微分值计算的植被指数与叶绿素含量相关性反而低于单一波段。利用诊断波段的倒数后对数光谱特征值用于反演苗期冻害叶片叶绿素含量。 相似文献
5.
高光谱数据与棉花叶绿素含量和叶绿素密度的相关分析 总被引:4,自引:5,他引:4
通过获取棉花不同品种、不同种植密度单叶和冠层关键生育时期的反射光谱,与其相应的单叶叶绿素含量(CHL.C,下同)和冠层叶绿素密度(CH.D,下同)进行多元统计的逐步相关分析。结果表明,棉花冠层CH.D在其反射光谱762 nm波段处的相关系数达最大值(RCH.D=0.8134**,n=94);对于一阶微分光谱,单叶CHL.C和冠层CH.D的敏感波段均发生在750 nm波段处,基于750 nm波段的微分数值,建立了棉花CHL.C和CH.D线性相关模型(RCHL.C=0.7382**,RMSE=0.1831,n=66;RCH.D =0.9027**,RMSE=0.3078,n=94),为利用高光谱遥感技术精确提取反映棉花生长状况的叶绿素信息提供了依据。 相似文献
6.
用高光谱数据诊断水分胁迫下棉花冠层叶片氮素状况的研究 总被引:5,自引:1,他引:5
利用ASD地物光谱仪,获取北疆棉花冠层关键生育时期的高光谱数据,应用一阶微分光谱,衍生出基于光谱位置变量的分析方法,以红边积分面积(SDr)为自变量,冠层全氮(TN)含量为因变量,做相关分析,结果表明:红边积分面积变量与冠层TN含量呈显著的相关性,相关系数是0.7394(n=40),利用构建的相关模型可以较为精确地估测棉花两个品种新陆早6号与8号冠层叶片的全氮含量,均方差(RMSE)分别为0.3859和0.4272。研究认为面积变量具有预测棉花冠层全氮含量的应用潜力。 相似文献
7.
冬小麦拔节期冻害后高光谱特征 总被引:3,自引:0,他引:3
以霜箱模拟冻害, 采用高光谱仪测定盆栽冬小麦叶片叶绿素含量及冠层高光谱反射率曲线, 以期为冻害遥感监测提供借鉴。结果表明, 冻害低温胁迫后, 对照组叶绿素含量比冻害组高约2~5个单位, 差异显著; 短期内高光谱曲线反射率接近, 线形相似, 约20 d后, 受损叶片过早衰败变黄, 高光谱曲线在黄、红波段区域反射率显著增强, “红谷”不明显, 曲线形状呈水平趋势; 光谱 “红边”具有“蓝移”、“红谷”具有“红移”现象。冻害程度的相关系数与绿峰、红边、红谷、光谱吸收指数分别为0.36*、-0.69*、0.42**、0.33**, 与蓝、绿、黄、红宽波段范围反射率面积分别为0.34*、0.43**、0.45**、0.44**, 与红边、红谷归一化植被指数为-0.33*, 与近红外、红波段反射率面积归一化植被指数为-0.39*, 与叶绿素含量为-0.49**。高光谱反射率曲线特征部位值差异显著性检验表明, 可利用近红外、红波段反射率面积构成的NDVI差异进行冻害识别, 其差异分级可划分冻害程度。 相似文献
8.
本文在棉花蚜虫危害主要生育时期测试不同严重度的蚜虫危害单叶光谱,分析并比较了不同时期、不同严重度棉蚜危害单叶光谱反射率特征,确定了其敏感波段,并建立了相应的估测模型。结果表明:棉花蚜虫单叶光谱特征明显,不同时期蚜虫单叶光谱反射率在可见光区均表现出先升后降的特征,近红外波段则表现出相同的趋势。434~727 nm可作为棉叶蚜虫的敏感波段,648 nm可作为棉叶蚜虫的最佳波段。基于敏感波段建立的棉蚜叶片遥感估测模型均达到显著相关水平,其中波段组合1 589-648/1 589+648建立的估算模型估算精度最高,均方根误差最小,RMSE为1.198,可作为棉叶蚜虫严重度的最佳识别模型。该研究为遥感监测棉花蚜虫光谱提供了理论依据及参考。 相似文献
9.
测试了棉花2个品种4水平种植密度的4个关键生育时期冠层反射光谱,应用微分技术处理棉花冠层反射光谱,提取了红边(680~750nm)波段范围的最大一阶微分值(Dr)和红边面积(SDr)参数。分析了棉花冠层红边参数在不同生育期的变化特征和棉花吐絮期的两种生长类型的冠层红边状况,表明红边位置可以指示它们的氮素状况。以新陆早8号的SDr为自变量与对应的LNA为因变量进行相关分析,SDr与冠层LNA达1%极显著相关(R=0.9186**,n=32),利用其构建的模型方程估算新陆早6号的LNA,实测LNA和估测LNA的估计标准差为0.8909g/m2,估算精度为88.1%(R=0.9277**,n=32),说明采用高光谱提取的红边参数信息是无损实时、快捷评价棉花氮素状况的有效方法。 相似文献
10.
基于高光谱数据提取棉花冠层特征信息的研究 总被引:1,自引:4,他引:1
采用ASD Field Spec Pro VNIR 2500型高光谱仪获取了不同生育时期棉花冠层的高光谱遥感数据,通过光谱分析技术研究了棉花冠层结构与其光谱数据之间的关系。结果表明,不同品种、不同密度、不同配置方式及不同生长状况间棉花的冠层光谱存在着较明显的差异,棉花冠层光谱反射率与其叶绿素含量、叶面积和生物量及生长发育阶段、健康状况和物候现象等因素密切相关。可见,运用高光谱遥感技术快速、有效、非接触、非破坏性地获取棉花冠层信息,对解释、预测和设计理想棉花群体意义重大,同时为新疆精准种植棉花和科学调控水肥提供了科学依据。 相似文献
11.
基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用 总被引:2,自引:0,他引:2
以冬小麦LAI为研究对象,利用孕穗期、开花期和灌浆期获取的无人机UHD185高光谱影像以及同步测定的地面数据(冬小麦冠层ASD反射率和冬小麦LAI),论证光谱特征(红边参数或植被指数)与偏最小二乘回归算法结合的改进型LAI拟合方法在无人机画幅高光谱遥感LAI探测方面的应用价值。首先,从光谱反射率相关性和植被指数相关性两方面比较UHD185与ASD,验证UHD185数据精度;结果表明,第3~第96波段(458~830 nm)的无人机UHD185高光谱数据具有较好的光谱质量,适宜探测冬小麦LAI。其次,分析光谱特征(6种植被指数和4种红边参数)与LAI的相关性,并通过独立验证和交叉验证方法,依次对基于红边参数或植被指数的传统LAI拟合方法和改进型LAI拟合方法的冬小麦LAI预测精度进行评价,相比于传统LAI拟合方法,改进型LAI拟合方法能大幅度提高冬小麦LAI的预测精度,特别是PLSR+REP。研究结果证实,改进型LAI拟合方法能更加充分地利用无人机UHD185高光谱数据预测冬小麦LAI,可望为无人机高光谱遥感的作物理化参数探测提供几点可借鉴的思路。 相似文献
12.
基于近地高光谱棉花生物量遥感估算模型 总被引:4,自引:0,他引:4
分析棉花地上鲜生物量冠层高光谱反射率变异系数,反射率光谱、一阶微分光谱与地上鲜生物量相关关系得结果表明:在可见光近红外波段棉花冠层反射率光谱变异系数在672 nm波段处最大;棉花地上鲜生物量与反射率光谱相关系数最大值在可见光波段出现在589~700 nm,在近红外波段出现在865~919 nm波段,且前者大于后者。地上鲜生物量与一阶微分光谱相关系数在可见光波段出现524~528 nm、552~588 nm、710~755 nm 3个高值区。基于以上研究,选择19个高光谱特征参数建立了棉花地上鲜生物量高光谱遥感监测模型,经检验,单波段中以F629估算水平最高,估算模型为Y = 9.7914 exp(-20.738 F629),准确度为83.9%、RMSE为0.64 kg m-2、预测值与实测值相关系数为0.940**;组合参数以[629, 901]指数形式估算模型估算水平最高,模型为Y = 0.0986 exp(4.3696[629, 901]),准确度达84.0%,RMSE为0.55 kg m-2,预测值与实测值相关系数为0.960**,上述两个模型为参选模型中估算棉花地上鲜生物量最佳高光谱估算模型。 相似文献
13.
棉花功能叶片色素含量与高光谱参数的相关性研究 总被引:2,自引:0,他引:2
叶片色素状况是评价植株光合能力、监测生长状况和预测产量潜力的重要指标,高光谱遥感技术为快速无损监测作物叶片色素提供了有效手段.本研究以4个棉花品种在3个施氮水平下的2年田间试验为基础,通过测定棉花(Gossypium hirsutum)功能叶片的高光谱反射率及对应的色素(叶绿素a、叶绿素b、叶绿素a b、类胡萝卜素)含量,定量分析了叶片高光谱参数与色素含量之间的相关关系.结果表明,与棉花功能叶片各色素指标相关性比较好的高光谱波段主要分布在500~700 nm;由敏感波段构建的光谱指数与各色素指标的相关性均在0.50以上;且红边最小值(Lo)可以作为共同的高光谱指数来估测不同棉花品种不同氮素水平下功能叶片的叶绿素总量(组合品种的R2为0.67).因此,通过高光谱参数来估算棉花功能叶片色素含量是可行的. 相似文献
14.
研究不同施磷条件下棉花叶片叶绿素含量的变化规律,旨在建立基于高光谱的叶片磷含量估测模型,实现棉花叶片磷含量快速监测。在盆栽试验条件下,设置不同的磷肥量,测定棉花功能叶叶绿素含量与磷含量,并利用植被指数和叶绿素含量的相关性构建磷含量的光谱变量,从而实现利用高光谱对棉花叶片磷含量的定量监测。结果表明:(1)棉花播种后100天左右,叶片磷含量与叶绿素呈现显著关系(决定系数R2=0.96)。(2)利用多个植被指数(X)和叶绿素含量(I)的相关性构建倒一叶、倒二叶、倒三叶、倒四叶的磷含量光谱变量,其中各叶片相关性最优的模型:倒一叶(L1)为I1=2.6131XRENDVI-0.4275,XRENDV为红边归一化植被指数,R2=0.71,RMSE=0.2;倒二叶(L2)为I5=0.0142XTVI+0.3274,XTVI为三角植被指数,R2=0.76,RMSE... 相似文献
15.
基于高光谱植被指数的棉花干物质积累估算模型研究 总被引:7,自引:6,他引:7
利用北疆8个棉花主栽品种(其中2个棉花品种设4水平种植密度)的各生育期冠层高光谱数据,经多元统计分析与光谱微分处理,建立了基于比值植被指数(RVI)和归一化植被指数(NDVI)的5种函数形式的棉花干物质积累估测模型,相关系数均达到了极显著水平(α=1%,n=96)。基于RVI和NDVI构建的估测模型,前者比后者具有更高的估测精度,指数函数、对数函数和双曲线函数形式的模型可以产生较高的预测精度;一阶微分光谱数据与棉花干物质积累量的逐步回归相关分析表明,相关系数的最高值发生在748 nm波段处(r=0.6920**),由748 nm波段处的微分数值建立的回归模型,估测精度较高,具有实际应用的潜力。 相似文献
16.
基于棉花冠层光谱的土壤氮素监测研究 总被引:4,自引:1,他引:4
通过连续2年小区氮肥试验,在棉花不同生育期采集冠层高光谱数据并同步测定土壤氮含量,分析棉花冠层高光谱参数与土壤氮含量间的关系,建立基于植株冠层光谱的土壤氮含量估算模型。结果表明:土壤全氮含量随着施氮水平的增加而增加,且差异显著;基于棉花不同时期冠层光谱构建的14种光谱参量与土壤氮含量间的相关性有显著差异。其中,利用冠层光谱参数P_Area1100、Depth980、Area672、PPR(550,540)建立的土壤氮含量监测模型分别在蕾期、花期、铃期、吐絮期4个关键生育期对土壤氮含量的预测均达到了较高的精度,能够很好地反映棉花土壤氮素营养状况。利用植株冠层光谱参数可以很好地监测土壤氮素营养,说明利用植株冠层光谱方法监测土壤氮含量是可行的。 相似文献
17.
18.
玉米和大豆LAI高光谱遥感估算模型研究 总被引:4,自引:2,他引:4
以ASD FieldSpec光谱仪实测了不同生长季的大田玉米、大豆的冠层高光谱与作物的叶面积指数LAI。采用单变量线性与非线性拟合和逐步回归分析的方式,建立了玉米、大豆LAI高光谱遥感估算模型,并对模型的估算结果进行了初步分析。分析结果表明,绿光波段反射峰区、红光波段以及近红外区的单波段反射率与作物的LAI有较强的相关性,而其他波段的反射率与作物的LAI的相关性相对较弱;以高光谱的窄波段构造的NDVI和RVI与作物的LAI的相关程度高,回归模型的预测水平高;而以多波段逐步回归方式构造的统计模型的预测效果最好。 相似文献
19.
基于高光谱数据的棉花冠层FPAR和LAI的估算研究 总被引:5,自引:3,他引:2
通过非成像高光谱仪和光量子传感器,获取了棉花2品种4水平种植密度冠层关键生育时期的反射光谱数据和光合有效辐射值;利用光谱多元统计分析技术与微分处理,分析表明,反射光谱813 nm(ρ813)和758 nm(ρ758)处分别是光合有效辐射截获量(FPAR)和叶面积指数(LAI)的敏感波段。用反射率ρ813和ρ758分别与FPAR和LAI建立的线性相关模型方程估测FPAR和LAI,经检验,它们的实测值与估测值之间均呈极显著的线性相关(rFPAR=0.7199**,rLAI=0.6430**,α=1%,n=70),模型方程的估算精度分别达96.5%、81.7%;而一阶微分光谱数据与FPAR在350 ~2500 nm波段范围相关不显著,与LAI的最大相关发生在734 nm波段处。基于一阶微分光谱ρ′734与棉花冠层LAI线性相关的模型方程,估测LAI,实测值与估测值之间呈极显著的线性相关(rLAI=0.6947**,α=1%,n=70),估算精度为82.4%,与反射光谱758 nm估测LAI的精度接近。结果表明,棉花冠层光谱数据可以对光合有效辐射截获量FPAR和LAI进行实时、无损、动态、定量的估算。 相似文献
20.
棉花冠层高光谱指数与叶片氮积累量的定量关系 总被引:3,自引:0,他引:3
利用冠层高光谱反射率及演变的多种高光谱植被指数(VI),分析了不同施氮水平下不同棉花品种叶片氮积累量与冠层反射光谱的定量关系,建立了棉花叶片氮积累量的敏感光谱参数及预测方程。结果显示,棉花叶片氮积累量和冠层高光谱反射率均随不同施氮水平显著变化;棉花叶片氮含量的敏感光谱波段为600~700 nm的红谷波段和750~900 nm的近红外波段,叶片氮积累量与光谱指数NVD672有密切的定量关系,且不同品种可以用统一的方程来描述,从而为棉花氮素营养的监测诊断与精确施肥提供了技术支持。 相似文献