首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water-ex tractable poly carboxy lie acids and alkali-extractable humic acids and fulvic acids, were isolated from agricultural top-soils of two soil associations. Samples from four soil series from each association were selected with drainage status varying from well-drained to very poorly-drained. The amounts of atkali-extractable humic acid and water-ex tractable polycarboxylic acids were highest in the very poorly-drained soils whilst the amounts of alkali-extractable fulvic acid were generally similar in all the soils, although the fulvic acid accounted for a lower proportion of the total organic matter in the poorly-drained soils. Oxalate-extractable aluminium decreased with increased drainage impedance, whilst no such trend was observed for oxalate-extractable iron. It is suggested that the fulvic acid-like polycarboxylic acids are removed from the soil solution by adsorption onto sesquioxides; so that the lower content of aluminium oxides in the very poorly-drained soils results in depressed levels of fulvic acid and increased concentrations of water-extractable polycarboxylic acids.  相似文献   

2.
Effects of acid pre-treatment and fractionation on the molecular weight distribution of OIM Na4P2O7 organic matter extracts were investigated in a chronosequence of weakly weathered soils developed on aeolian sand in New Zealand. Acid pre-treatment of soils with OIM HCl followed by OIM HCI:03M HF was found to enhance the polydispersion in the nominal molecular weights of the extracts. The same treatment resulted in significant increases in yield and reduction in ash content. However, prolonged standing of extracts in the acids led to acid-induced polymerization, resulting in a predominance of organic matter in the higher nominal molecular weight ranges. Fractionation of organic matter extracts by acid precipitation into humic and fulvic acids did not separate them according to molecular weight as commonly believed. Instead, fulvic acids from most soils were found to have similar nominal molecular weight distributions to those of their humic acid counterparts. A large proportion of soil fulvic acid compounds was in the > 100 000 nominal molecular weight range.  相似文献   

3.
Potentiomctric titrations of a variety of natural and synthetic poly-COOH's varying in molecular weight and COOH density gave pKm values varying from 3.5 to 5.2. The pattern of carboxylic acid group dissociation is discussed in terms of purely electrostatic assumptions and of COOH group clustering. Synthetic polymaleic acid showed many of the characteristics of both fulvic and humic acids, and therefore seems to be a reasonable representation of an average, hypothetical soil organic matter polycarboxylic acid.  相似文献   

4.
为探究有机酸对镉在纳米粒级土壤上的有效性及其形态的影响,基于超声—离心—冻融法,应用到四川省名山河流域老冲积黄壤中,获得纳米微粒(≤100 nm),分别研究不同分子量有机酸(柠檬酸、富里酸、EDTA)及其组合(柠檬酸+EDTA、柠檬酸+富里酸、富里酸+EDTA)对土壤纳米微粒吸附Cd~(2+)动力学特性的影响。结果表明,土壤纳米微粒对Cd~(2+)的动力学吸附量大小关系表现为:柠檬酸+EDTA富里酸柠檬酸+富里酸柠檬酸富里酸+EDTAEDTA。总的来看,EDTA的抑制作用最强,最能降低土壤纳米微粒对Cd~(2+)的吸附。  相似文献   

5.
Organic matter extracted with 9 : 1 formic acid : acetylacetone from twenty-five soils of widely varying organic content and precipitated with excess di-isopropyl ether was hydrolysed with 6N HC1. The relationships between the proportions of acid-soluble N, acid-insoluble N, amino-N, and ammonium-N thus produced, and the properties of the original soil were examined. The distribution of N in acid hydrolysates was similar to that reported in the literature for material isolated by neutral and alkaline extractants. The relatively large proportion of N released as ammonium-N from organic matter obtained from soils of high pH and low C : N ratio may derive from organically fixed ammonia. The low levels of amino-N in organic matter extracted by formic acid from soils of high clay content imply the existence of clay-amino complexes that resist extraction although formation of such complexes during extraction cannot be ruled out.  相似文献   

6.
We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were formed on old lava (about 9 000 years ago), old tephra (about 8 700 years ago), recent lava (about 2 600 years ago) and recent tephra (about 3 600 years ago). A part of the organic matter of the soils, deprived of HAs and fulvic acids (FAs), was isolated by glycerol extraction. The GEOF can not be extracted with alkaline solutions, probably because it is closely bound to the mineral component of the soil. The characterization of the extracted organic fraction was carried out using elementary and functional group analysis and Fourier transform infrared (FT-IR) spectroscopy. About 20 extractions were necessary to extract the HA and FA from the older soils and about 10 extractions to extract them from the younger soils. Data showed that the GEOFs had a greater ash content and a smaller N content, as well as a greater presence of aliphatic compounds and carboxylic groups as compared to the HA extracted from the same soil. The GEOFs extracted from younger soils also had a lower yield, ash and COOH-group content, and were more aliphatic than the GEOF extracted from older soils. Finally, the GEOFs were more closely bound to the amorphous component of the soil (‘short-range’ minerals) and consequently less subject to biodegradation.  相似文献   

7.
Four samples of soil organic matter and their humic acids, fulvic acids and humin were studied with solid-state 13CP MAS NMR. The whole soil samples were fractionated using NaOH and HCl in order to extract humic acids, fulvic acids and humin. This investigation indicates that conventional humus fractionation does not significantly change the content of different functional groups in soil.  相似文献   

8.
We studied the acid‐base properties of 16 fulvic acids and 16 humic acids isolated from the surface (3–15 cm) and subsurface (> 45 cm) horizons of two types of acid forest soils, derived respectively from amphibolite and granite rocks, under five different types of vegetation. The observed differences between the contents of humic substances in the two types of soils were related to the degree of Al‐saturation of the soil organic matter, as indicated by the molar ratio between pyrophosphate extractable Al and C. Humic fractions were characterized in terms of elemental composition, and CPMAS 13C NMR spectrometry. The contents of carboxylic and phenolic groups were estimated by potentiometric titrations conducted in 0.1 m KNO3 in a nitrogen atmosphere. The fulvic acids contained more carboxylic groups but less phenolic groups than the humic acids: the ratio of phenolic to carboxylic groups in the humic acids was 0.48 ± 0.10 and in the fulvic acids 0.23 ± 0.05. The mean values of the protonation constants of each of the humic substance fractions can be used as generic parameters for describing the proton binding properties. The fulvic acids isolated from the subsurface horizon of the soil contained between 2.6 and 23% more carboxylic groups, and the humic acids between 8 and 43% more carboxylic groups than those isolated from the surface horizon of the same soil.  相似文献   

9.
In order to analyze the behavior and phytoxicity of iodine in soil, the chemical forms of soil iodine must be identified. Therefore, a method for quantitative speciation of iodine in soil was proposed. Iodine extracted from soil samples with tetrametBPyIammonium hydroxide (TMAH) was separated into humic and fnalvic acid fractions at pH4 1.5 after the addition of ascorbic acid into the TMAH extract to reduce iodate into iodide. Since the iodide in the TMAH extract was recovered in the fdvic acid fraction by this procedure, iodine contained in the haamic acid fraction was considered to be organically bound. Podine in the fulvic acid fraction was separated into organic iodine bound to fnlvic acids and the total inorganic iodine. Furthermore, iodine soluble from soil in 0.1 mol L-1 potassium chloride was assumed to correspond to the amount of total iodide in soil, and from the difference in the concentration of total inorganic iodine and soluble iodide, the amount of iodate was calculated. By the application of this method, iodine in soil was separated into four fractions: organic iodine bound to humic acids, organic iodine bound to fulvic acids, iodate, and iodide. This speciation method was applied to two soils. It was found that s Barge proportion of iodine in soil occurred in an organicalPy bound form.  相似文献   

10.
饮用水使用氯化消毒产生的消毒副产物给人类健康带来了极大危害。利用XAD树脂与阴、阳离子交换树脂对贵州红枫湖水体中溶解有机质进行了富集分离,分成腐植酸、富里酸、疏水中性物质及亲水酸性、碱性及中性物质6种组分,比较了各组分在加氯消毒过程中卤代活性的大小及其三卤甲烷的生成情况,揭示了有机组分卤代活性与其结构之间的关系,并探讨了它们可能的来源,提出了相应的控制措施。结果表明,红枫湖水体溶解有机质以富里酸组分为主,占分离出总有机碳的56%。氯化消毒实验发现消毒副产物以三氯甲烷和一溴二氯甲烷为主,富里酸的卤代活性最强。结构分析显示各有机组分的卤代活性与紫外吸光系数和酚羟基含量之间具有显著相关性。6种分离组分的消毒副产物生成量中,富里酸是生成三卤甲烷的主要前驱物质,占消毒副产物总量的76%。有机组分的碳稳定同位素值与C/N比值表明,富里酸主要来自陆源有机物,其余组分兼有陆源和内源两种来源。因此,控制陆源污染是减少红枫湖消毒副产物前驱物的有效途径。  相似文献   

11.
The carbon-isotopic composition of fulvic and humic acid from the A horizons of eight soil types, developed under a wide variety of climatological conditions, was measured. The fulvic acid is always enriched in 13C as compared with the humic acid from the same soil by a rather constant factor of 0.9?. The fulvic acids are isotopically closer to the plant source of the organic matter and thus represent an intermediate stage in the formation of humic substances. Depth sections of peat soil showed that carbon isotopes can be used to evaluate the dynamic nature of the fulvic-acid fraction. With depth, a transfer of carbon groups from polysaccharides to fulvic acid is seen. Based on isotopic evidence it is shown that in addition to formation of β-humus, part of the fulvic acid is condensed with depth to a stable humic fraction — humin.  相似文献   

12.
The fractional composition of dissolved organic matter and the chemical nature of humic and fulvic acids were studied in lysimetric waters from forest soils of different altitudinal zones in the Sikhote Alin Range. The elemental composition, infrared absorption spectra, concentrations of acid functional groups, and pK spectra of humic and fulvic acids were determined. Fulvic acids predominated in the upper soil horizons, and fraction of nonspecific dissolved organic substances predominated in the lower mineral horizons. The portion of humic acids in the humus horizons markedly decreased from the low-mountain soils to the high-mountain soils; the nitrogen content of humic and fulvic acids decreased in the same direction. Three classes of carboxyl and phenolic groups were determined in pK-spectra of humic and fulvic acids. The soils of high-mountain zones had stronger acidic properties of humic and fulvic acids in comparison with the soils of low-mountain zones. The determined characteristics of the composition of dissolved organic matter and the trends of their changes contribute to our knowledge of pedogenetic processes in the altitudinal sequence of forest landscapes of the Sikhote Alin Range.  相似文献   

13.
Humic and fulvic acids were extracted from two Israeli and tour Italian soils and oxidized with alkaline permanganate solution after methylation. Following oxidation, the degradation products were separated by solvent extraction and chromatographic methods and identified by gas chromatography-mass spectrometry. Major oxidation products were aliphatic, phenolic and benzenecarboxylic acids. In toto, 33 oxidation products were identified. These were essentially the same compounds as those produced by the permanganate oxidation of methylated humic and fulvic acids extracted from soils formed under widely differing climatic and geologic conditions, except that yields of phenolic acids from Mediterranean humic and fulvic acids were lower than those produced under similar conditions from humic materials extracted from other soils. The information provided by chemical degradation suggests that humic and fulvic acids from widely differing soils have similar chemical structures.  相似文献   

14.
Water extracts were obtained from four types of soils (Brown Lowland soil, Yellow soil with manure application for 6 years, non-allophanic Andosol, and allophanic Andosol), and the organic matter in the water extracts was fractionated according to the solubility in acid and adsorption onto polyvinylpyrrolidone (PVP). For the water extracts and their fractions, the amounts of organic C, total N, and anthrone-reactive C (ARC) were analyzed, and high performance size exclusion chromatography (HPSEC) was carried out. The PVP-non-adsorbed fulvic acid (FA) fraction accounted for the largest proportion of the total water-soluble organic C, ranging from 52% for the Yellow soil to 96% for the allophanic Amdosol, followed by the PVP-adsorbed FA and humic acid (HA) fractions. The water extract of the allophanic Andosol was characterized by the lack of HA fraction and a small proportion of PVP-adsorbed FA fraction. For all the water extract samples, more than 90% of the ARC was recovered in the PVP-non-adsorbed FA fraction. The proportion of ARC in the total organic C in the fraction was also highest in the PVP-non-adsorbed FA fraction. The molecular weight (MW) of the humic substances (HS) at peak maximum was estimated at 1,300 Da for the water extracts and their fractions from the Brown Lowland soil and non-allophanic Andosol samples by HPSEC using polyethylene glycols as MW standards. Manure application increased the MW of HS in the HA and PVP-adsorbed FA fractions. On the other hand, only a small amount of HS was found in the water extract of the allophanic Andosol by HPSEC.  相似文献   

15.
Two arable soils and one pasture soil had previously been air-dried for 6 d and stored at room temperature. The enzyme activities remaining after this treatment were constant. The soils were then extracted with 140 mM sodium pyrophosphate at pH 7.1. Amino acid N and total organic C content of soils and soil extracts, together with humic and fulvic acids content of soil extracts were determined. Total organic C was determined in soil residues obtained after extraction. Chemical characterization of the organic matter of soils, soil extracts and soil residues was carried out by pyrolysis–gas chromatography (Py–GC). Protease activity was determined in soil extracts and soil residues by using three different substrates: N-benzoyl- -argininamide (BAA), specific for trypsin; N-benzyloxycarbonyl- -phenylalanyl -leucine (ZPL), specific for carboxypeptidases, and casein, essentially non-specific. Comparative studies between specific activities referred to organic C in soils, soil extracts and soil residues and their corresponding pyrogram composition, and also between total extracted or residual activity and the humine or unhumified organic matter content of the corresponding soil, allowed us to establish hypotheses about the type of organic matter the enzymes are associated with. From 12% to 21% of the soil organic C (33% to 39% of which were humic acids) and from 3% and 18% of amino acid N were extracted from soil using pyrophosphate. Py–GC analyses showed that pyrophosphate was effective in extracting condensed humic substances and glycoproteins and that the organic matter present in soil extracts was especially rich in intact or partially-decomposed fresh residues of carbohydrate origin and also in certain humus-associated proteins. Extracted BAA-hydrolysing activity accounted for 11% to 36% of the soil activity, depending on soil type. Extracted ZPL- and casein-hydrolysing activities were, with one exception, remarkably high, accounting for about 100% or even more of the soil activity, depending on soil type. According to the results BAA-hydrolysing proteases are probably mostly associated with highly condensed humus, ZPL-hydrolysing proteases with less condensed humic substances and casein-hydrolysing proteases with fresh organic matter.  相似文献   

16.
Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of Al,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of Al and Fe in stabilizing soil organic matter(SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride-and potassium chloride-extractable Al were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.  相似文献   

17.
Mo, V, and U are mobilized as anions by aerobically decomposing plant matter; the behaviour of the dissolved metals differs in several respects from what would be expected in inorganic systems. With respect to dialysis through cellophane, between pH I and 4 the mobilized Mo is fixed by colloidal organic decomposition products, with maximum retention at pH 1.5; V is retained between pH 1.5 and 7.0, with a maximum at pH 3. The specific fixation of Mo and V by soil organic matter was considerably less, and persisted over wider pH ranges–1.5-6.5 and 1.0-9.0 respectively. The fixation of U by both forms of humified organic matter increased sharply to a maximum around pH 4-5, and thereafter decreased slightly up to pH 8. The anionic forms of the three elements persisted when MOO:2-4, VO;-3 and UO, were incubated with anaerobically decomposing plant matter; under these conditions V(V) was probably reduced to V(IV), and it seems that an anionic V(IV) complex was formed. Although the molecular size of the colloidal decomposition products of lucerne was somewhat less than that of organic matter extracted from Rothamsted top soil, acid hydrolysates of the two humic acids contained the same twenty-three amino acids, in much the same relative proportions.  相似文献   

18.
Solutions of o.5N NaOH, o.1M pyrophosphate (pH 7), and o.5N Na(CO2?3/HCO?3) [2:1] extract humic acid and organic matter from a soil with decreasing effectiveness. Pre-treating the soil with o.1N HC1 increased the yield of humic acid obtained with the alkaline extractants. An additional pre-treatment with a mixture, which was normal with respect to HC1 and HF, gave a slight reduction in yield. Increasing the temperature of extraction increased the yield of humic acid. The total C extracted was usually in excess of the humic acid recovered. The difference was obtained as ‘humins’. The sum of the Fe2O3, SiO2, and A12O3 contents of the humic acids was always less than 2 per cent. Where the extraction was carried out at room temperatures the SiO2/Al2O3 ratio suggested that they might be present as clay mineral. When extraction was carried out at an elevated temperature this ratio was altered. Humic acids of low ash content (0.1–0.5 per cent) could be obtained by the use of hot reagents. Of all the extractants used at room temperature, pyrophosphate produced the humic acid of lowest ash content (~ 0.2 per cent). The Fe2O3 content of the humic acids was not correlated with their SiO2 or A12O3 content. The N-content of the humic acids was substantially independent of the method of extraction. The cation-exchange capacities (C.E.C.), average pK values and range of pK values, have been determined from the titration curves of the humic acids. These quantities vary with the method of extraction. There are good correlations between cation exchange capacity and both average pK values and the range of pK values. The within-molecule variation of pK values appears to be greater than the between-molecule variation. No correlation exists between C.E.C. and Fe, Al, Si, and N content of the humic acids.  相似文献   

19.
土壤水溶性有机物的紫外光谱特征及地域分异   总被引:14,自引:0,他引:14       下载免费PDF全文
张甲  曹军  陶澍 《土壤学报》2003,40(1):118-122
测定了中国中东部地区 1 7种土类 45个样点近表层 1 0cm土样中水溶性有机物的紫外光谱和分子量分布特征 ,同时测定部分样品富里酸的相应特征。在此基础上比较和分析水溶性有机物与富里酸紫外光谱特征的差异、紫外光谱特征与样品平均分子量分布的关系及其地域分异规律。结果表明土壤水溶性有机物和富啡酸具有相似的紫外光谱特征 ;WSOC样品紫外 /可见光比值与其平均分子量负相关 ,而WSOC单位浓度的紫外吸收值则与平均分子量正相关。研究区水溶性有机物的单位浓度紫外吸收值具有明显的自北向南和自东向西递降的趋势 ,从根本上受制于水热条件的WSOC分子量分布可能是影响样品紫外特征地域分异的主要因素。  相似文献   

20.
The study assesses the influence of soil aspect on differences in soil chemical and biochemical properties. We examined soils on contiguous south- and north-facing slopes of the Aspromonte Mountains (Calabria, Southern Italy), influenced by the same climate, vegetation and parent material. In each of the two topographic aspects, six study sites were described. The investigated variables were air temperature, soil temperature, soil water content, photosynthetically active radiation, soil microbial biomass C, organic matter content, total nitrogen, total water-soluble phenols, humic and fulvic acids. Fluorescein diacetate hydrolytic activity, dehydrogenase, protease urease, alkaline and acid phosphatases, enzymes related to soil microbiological activity and hydrolysing coefficient, an empiric indicator of soil quality, were analyzed and interpreted. Except in few cases, all considered soil properties and microclimate variables showed significant differences between topographic aspects. In the soil on the north-facing slope, a lower content of organic matter and microorganisms and a lower activity of the enzymes related to soil microbiological activity were observed. The differences may be attributed to topographic aspect-induced microclimatic differences, which causing differences in the biotic soil component and organic matter trend, affect soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号