首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为研究层叠式立体笼养肉鸡舍舍内环境参数变化规律,采用分次多点测量法,对山西省某公司养殖基地的一栋上述鸡舍内的温度、湿度、二氧化碳、氨气和空气菌落进行了定量检测。结果表明,在水平方向上,舍内近风机端位置的温度在不同日龄均高于其他位置,舍内不同位置湿度无显著差异(P0.05),靠近湿帘端附近的空气中氨气浓度与其他位置相比较低(P0.05),从近湿帘端位置到近风机端位置,舍内二氧化碳浓度呈现逐渐升高的趋势,随着日龄的增加,舍内菌落总数含量逐渐升高,在近风机端位置的空气菌落总数显著高于舍内其他位置(P0.05)。在垂直方向上,笼养肉鸡上中下三层之间温度、相对湿度、二氧化碳、氨气和空气菌落总数均差异不显著(P0.05)。同时,相关数据还表明舍内环境温度保持在20℃左右,湿度保持在40%~50%,能够满足不同日龄肉鸡生长所需温湿度要求。  相似文献   

2.
为掌握肉鸡层叠笼养模式舍内主要内环境参数时空分布规律,指导肉鸡养殖场户升级改造,采用监测仪器对舍内主要内环境参数(温度、湿度、二氧化碳、氨气、硫化氢)进行监测与分析研究。结果表明:肉鸡层叠笼养模式舍内温度控制较好,在时空分布上,温差控制在2.65~5.09℃;相对湿度在空间上控制较好,差异控制在7%左右;氨气、硫化氢等有害气体浓度均符合国家标准,二氧化碳在个别时段浓度较高。  相似文献   

3.
为研究夏季大型立体笼养肉鸡舍养殖环境参数变化规律,确立大型肉鸡舍的最佳环境管理模式,选取山西省晋中地区单栋饲养量为41 280只的密闭式肉鸡舍一栋,进行温度、湿度、CO2浓度、O2含量、风速等环境参数的分点多次检测与统计分析。结果显示:不同笼列位置,温度前端和末端与其它位置差异显著(P<0.05),位置L2、L21和L40差异不显著,温差在0.8℃左右;各位置湿度差异不显著(P>0.05),CO2浓度前端、L2和末端与L21、L40差异显著(P<0.05),O2含量末端与其它位置差异显著(P<0.05),风速差异显著(P<0.05)。不同笼层,温度、湿度和O2含量差异不显著(P>0.05);CO2浓度上层和下层差异显著(P<0.05),随着笼层增高浓度逐渐降低;风速上层显著高于中层和下层(P<0.05),随着笼层增高呈递增趋势。研究表明:炎热夏季该模式鸡舍内随着风速加大(减少),可以增加(降低)舍温和舍内氧气含量,降低(升高)CO2浓度和相对湿度,舍内环境参数适宜肉鸡生长。  相似文献   

4.
我国肉鸡养殖规模化水平越来越高,立体化笼养模式也越发普遍,层叠式、集约化笼养提高肉鸡生产效率的同时,也对养殖环境与管理提出了更高的要求.目前我国肉鸡养殖品种特别是白羽肉鸡主要来自美国等外来品种,对环境适应力差、抗逆性弱,而规模化立体笼养肉鸡舍空间相对狭窄,饲养密度高,鸡舍内环境参数的管理与调控是决定肉鸡能否发挥其遗传潜...  相似文献   

5.
试验以有窗封闭式笼养育雏鸡舍为对象,于2018年3月~2019年1月开展研究鸡舍内环境的温度、相对湿度、二氧化碳(CO2)、氨气(NH3)、硫化氢(H2S)、二氧化硫(SO2)浓度和细菌总数,并分析环境因子之间的关系。结果显示:不同季节育雏舍内环境温度满足鸡群正常需要,鸡群成活率超过97%。夏季舍内相对湿度达82.48%,并且料肉比高于春季、秋季和冬季。春季、秋季和冬季CO2浓度易超标,不同季节舍内白天温度均高于夜晚,而白天CO2浓度低于夜晚。不同季节舍内环境温度分别与相对湿度、CO2浓度呈负相关和正相关关系。试验表明:有窗封闭式育雏鸡舍内不同季节雏鸡生长发育良好,但夏季湿度过高,春季、秋季和冬季舍内CO2浓度高于标准。建议夏季应合理控制舍内相对湿度,春秋冬季注意平衡舍内的保暖和通风工作。  相似文献   

6.
试验旨在探讨饲养密度对黄羽肉鸡舍内有害气体、粉尘及微生物的影响.选用1 440只21日龄苏禽黄鸡(公雏),随机分成3个饲养密度组,即8只/m2组(低密度组,LSD)、16只/m2组(中密度组,MSD)、24只/m2组(高密度组,HSD),每组3个重复,共9间鸡舍,每间饲养面积均为10 m2.试验期为21 d.结果表明:HSD组42日龄肉鸡鸡舍内二氧化碳、氨气含量显著高于其他两组(P<0.05);LSD组28日龄肉鸡鸡舍内粉尘含显著低于其他两组(P<0.05);LSD组28、35、42日龄肉鸡鸡舍内空气中大肠杆菌的含量显著高于其他两组(P<0.05),且LSD组42日龄肉鸡鸡舍垫料中大肠杆菌含量显著高于HSD (P<0.05).由此可知,夏季适当降低饲养密度可以改善平养肉鸡舍中有害气体和粉尘状况,但对降低鸡舍中微生物含量效果不佳.  相似文献   

7.
不同类型商品肉鸡舍冬季环境指标调查   总被引:2,自引:0,他引:2       下载免费PDF全文
为调查安徽省不同类型的商品肉鸡舍内冬季环境指标情况,选取三种不同类型的肉鸡舍,按照日龄不同每种肉鸡舍各选6栋,检测肉鸡舍的主要环境指标,主要有氨气、二氧化碳、硫化氢、一氧化碳、温度、湿度、微生物等,分析各环境因素间的相关性及其与鸡舍结构和鸡群日龄等的关系。结果显示,所检测的大部分鸡舍环境均不符合标准,其中舍内氨气含量、温湿度、细菌超标严重,二氧化碳和一氧化碳含量超标稍轻,氨气浓度和细菌数与鸡舍结构、温湿度及饲养鸡群日龄大小显著相关(P<0.05)。试验结果说明鸡舍结构、通风和加温方式是影响舍内有害气体含量、温湿度及细菌数的主要因素。  相似文献   

8.
为研究采用地暖供热、封闭式有窗、层叠式笼养肉鸡舍中温度、湿度的分布与变化规律及二者的相关性,采用分次多点测量法,对山西某公司养殖基地一栋上述鸡舍内的温度、湿度进行定量检测。结果表明:在冬季该类型鸡舍内的温度呈中间高两边低,由上往下逐渐递增的态势,其变化范围可控制在定温的±2℃内;舍内湿度呈两边高中间低,中层略高于上下层的态势,由于冬季外界湿度较低,其变化范围在±7%内;该环境下温湿度之间相关系数R2=-0.2887,二者间相关性非常弱。提示:在冬季该类型鸡舍内温湿度分布合理而且变化范围小,适宜肉鸡生长,但要注意通风小窗的调控。  相似文献   

9.
为优化肉鸡立体养殖的饲养管理模式,试验选取山西省境内层叠式立体养殖单栋饲养量为32 000只、40 000只的全自动清粪系统肉鸡舍(A型)和单栋饲养量为21 000只的半自动清粪系统的肉鸡舍(B型)各1栋,进行舍内温度、湿度、有害气体浓度、空气细菌菌落数的测定及肉鸡体重的测定。结果表明:在相同的取暖系统和温控系统下,由于养殖数量与清粪方式的不同,3栋鸡舍之间的温湿度、CO2浓度、NH3浓度、细菌菌落总数和不同周龄肉鸡体重均存在差异;立体养殖模式下鸡舍清粪方式和清粪时间是影响鸡舍环境质量的关键因素,A型鸡舍可以适当加大养殖密度。说明A型鸡舍优于B型;B型鸡舍要加强消毒灭菌工作,A型鸡舍要加强饲养管理。  相似文献   

10.
为了探究不同季节猪舍环境温度、湿度和CO2浓度的变化规律,试验于2017年3,6,9,12月份分别对中国农业大学丰宁实验站规模化商品猪场空怀妊娠舍与生长育肥舍内温度、湿度和CO2浓度进行监测。结果表明:空怀妊娠舍和生长育肥舍中温度、湿度与CO2浓度呈明显季节性变化,秋季空怀妊娠舍温度最高(为24.2℃),冬季最低(为16.7℃),春季和夏季分别为18.7℃和23.0℃;秋季生长育肥舍温度最高(为21.9℃),冬季最低(为13.6℃)。空怀妊娠舍内湿度冬季最高,夏季最低。空怀妊娠舍内CO2浓度春、冬季极显著高于夏、秋季(P0.01)。一天不同时间段舍内温度呈规律性变动,为先升高后降低,而春、秋季畜舍内相对湿度先降低后升高。空怀妊娠舍内湿度与CO2浓度高度相关(P0.05或P0.01)。空怀妊娠舍秋季的温热环境指数为72.0,可加大通风量和通风频率以改善环境条件。  相似文献   

11.
The study was conducted to detect the indoor environmental quality parameters of broiler house with three-overlap cages and analyze the differences in winter and autumn. In the process of feeding, the same farming house in the same farm was chosen to carry out the test. The indoor ambient temperature, humidity and the air quality were determined in chicken house in different seasons. The measure points were distributed in 4 different positions in the house. The experiment period was from 3 to 6 weeks of broilers.The results showed that there was no significant difference in the ambient temperature between autumn and winter during experimental period (P >0.05). The ambient temperature in the house in winter was slightly higher than in autumn. The humidity in autumn was significantly higher than that in winter (P <0.05).The temperature and humidity in two seasons could meet the requirements of broiler growth. There was no significant difference in ammonia concentration between autumn and winter, while ammonia level in winter was slightly higher than that in autumn. The carbon dioxide in the house was significantly higher in winter than that in autumn (P <0.05). The total number of airborne bacteria in winter was significantly higher than that in autumn (P <0.05). The indoor temperature kept constant in autumn and winter seasons in closed poultry house. In winter, the humidity was reduced, the carbon dioxide concentration was increased, and the total number of bacteria in the air was increased.So, the ventilation should increase at the same time of heating in winter.  相似文献   

12.
试验旨在比较分析南方地区发酵床奶牛舍四个季节舍内环境卫生指标。主要测定了舍内温度、相对湿度、噪音、细菌密度、氨气浓度和温湿度指数等指标并分析了其间的相关性。结果表明:温度在四季间差异显著(P<0.05),夏季高达32.43℃,冬季低至1.53℃;春季、夏季和秋季的相对湿度显著高于冬季(P<0.05);温湿度指数(THI)在四季间差异显著(P<0.05);夏季和冬季的噪音显著高于春季和秋季(P<0.05);春季和秋季的细菌密度显著高于夏季和冬季(P<0.05);夏季氨气浓度为3.92 mg/m^3,显著高于其他季节的(P<0.05)。相关分析表明,一年中,牛舍温度与THI呈正高度相关关系(P<0.01),其余指标间相关性不高(|r|<0.70)或不相关(P>0.05)。另外,季节内的环境指标相关性分析表明:秋、冬季的温度和THI间皆呈正相关(P<0.01),冬季的温度与细菌密度呈正相关(P<0.05);春季的THI、噪音和细菌密度三者之间均呈正相关(P<0.05);秋季的氨气浓度与噪音高度也呈正相关关系(P<0.01)。综上,南方地区发酵床奶牛舍内,四季的环境卫生指标均达到了卫生标准,但夏季THI较高为85.36,奶牛易处于中度热应激状态。  相似文献   

13.
[目的] 探讨空间电场对冬春季畜舍内温室气体的净化效果以及对舍内温湿度的影响。[方法] 在畜舍内安装空间电场净化设备和温湿度监测仪,舍内外均设置3个取气点,每个取气点分0 m、0.5 m、1.0 m和1.5 m 4个采集高度,系统监测冬春季畜舍温室气体浓度以及温湿度变化情况。[结果] 空间电场显著(P<0.05或P<0.000 1)降低了冬春季畜舍内CH4、NH3和CO2气体的浓度,降低幅度分别可达39.8%、26.3%和24.0%。空间电场可显著(P<0.05)降低冬季舍内20:00—8:00和12:00—15:00的环境湿度,分别降低了4.5%和15.3%。春季湿度在9:00—17:00降低了31.9%(P<0.05)。[结论] 空间电场可有效地降低冬春季畜舍内CH4、NH3和CO2气体浓度,同时显著降低畜舍内不同时间段的环境湿度。  相似文献   

14.
北京地区发酵床养猪方式冬夏季环境状况测试与分析   总被引:1,自引:0,他引:1  
本试验在冬、夏两季选取北京某猪场有窗密闭式和塑料大棚式2种样式、漏缝地板和发酵床2种地面形式的育肥猪舍进行环境监测,综合评价不同季节、不同建筑样式下发酵床在减少猪舍有害气体、调节温湿度等方面的效果。结果表明:冬季用简易热风炉供暖的有窗密闭漏缝地板猪舍日平均温度、氨气和硫化氢的浓度与不供暖的有窗密闭发酵床舍无显著差异(P>0.05),但发酵床舍二氧化碳含量较高(P<0.05),夏季时,发酵床能显著降低舍内氨气和硫化氢浓度(P<0.05),但床面日平均温度、猪舍空气日平均温度和日最高温度均极显著地高于有窗密闭漏缝地板舍(P<0.01),猪的增重明显低于漏缝地板舍,大棚式发酵床舍空气日平均温度和日最高温度又显著高于有窗密闭发酵床舍(P<0.05),有窗密闭发酵床舍又显著高于有窗实体地面舍(P<0.05)。因此,做好冬,夏季发酵床的管理以及选择与发酵床相配套的猪舍类型和环境调控措施非常关键。  相似文献   

15.
试验通过可拆迁式猪舍与传统(固定)猪舍的饲养对比试验,研究了冬季可拆迁式猪舍对生长肥育猪的生长性能及舍内温度和相对湿度的影响。选取同期转群、体重30 kg左右杜大长生长猪216头,随机分成可拆迁式猪舍组和传统猪舍组,每组3个重复,每个重复36头。试验至猪体重达到100 kg左右出栏结束。结果表明:可拆迁式猪舍组试猪的平均日增重和平均日采食量分别比传统猪舍组提高17.28%(P0.01)和12.13%(P0.01),饲料料增重比降低7.00%(P0.05);可拆迁式猪舍的舍内平均温度为20.33℃,比固定猪舍的16.86℃高3.47℃,比室外的15.15℃高5.18℃,差异均极显著(P0.01)。试验结果表明,可拆迁式猪舍对生长育肥的生长性能和室内环境控制优于传统猪舍。  相似文献   

16.
河北省不同建筑类型羊舍环境参数的检测与分析   总被引:1,自引:0,他引:1  
试验选择3种建筑类型羊舍(有窗封闭舍、半开放舍和棚舍),对羊舍温度、二氧化碳(CO2)、氨气(NH3)、风速和光照进行定点定时检测,分析冬夏季节河北省不同建筑类型的羊舍环境,为标准化羊舍的建设提供依据。结果表明,冬季不同类型羊舍的温度表现为显著性差异(P<0.05),有窗舍最高,棚舍最低(早-4.13℃),有窗舍均温分别比棚舍和半开放舍高4.26和2.95℃,夏季不同舍温度未表现出显著性差异(P>0.05),早、午和晚分别达25.12、32.48和29.71℃,热应激明显;从有害气体结果可以看出,羊舍CO2含量分别为411.0~995.2 mg/m^3(夏)和402.9~2336.8 mg/m^3(冬),两季CO2日均含量有窗舍均最高,棚舍最低,不同舍CO2日均含量差异显著(P<0.01),有窗舍冬季早上含量高达2336.8 mg/m^3,已超国标。另外,所有羊舍未检测出NH 3。从风速结果可以看出,两季风速分别为0.06~0.36 m/s(夏)和0.03~0.26 m/s(冬),两季有窗舍的风速均显著低于其他两类舍(P<0.01)。从光照强度来看,棚舍光照强度显著高于其他两类舍(P<0.01),均符合国标。可见,冬季有窗羊舍虽然温度较高,但空气质量差,CO2含量超标,应加强通风换气,兼顾保温;夏季不管哪种类型舍,均应隔热降温以缓解热应激。  相似文献   

17.
1. We examined the effect of density (5, 7, 9 and 11 birds/m2) and season (summerand winter; different hens each season) on stress and behaviour in two flocks of 64 broiler breeder females divided among 8 pens. 2. The hens, approximately the same age and body mass in each season, were maintained on hard-packed ground, without litter, in an open-sided chicken house and were offered the same amount of food each season. 3. Mean house max/min temperatures varied between 18 and 33 degrees C in summer and 7 and 17 degrees C in winter. Mean relative humidity in summer varied between 68% at 08:00 h and 42% at 14:00 h and in winter was 64% at 08:00 h and 47% at 14:00 h. 4. No difference was found in heterophil:lymphocyte ratios among densities and between seasons; however, basophil numbers were higher in winter than in summer indicating prolonged stress in winter. 5. Stereotyped pecking increased with an increase in density and was higher in winter than in summer. Pecking on the ground was higher in winter, but was not affected by density. 6. In summer the hens spent more time lying and eating than in winter, whereas in winter the hens spent more time walking, preening and drinking than in summer. They spent the same amount of time standing in both seasons. None of these behaviours was density dependent. 7. We conclude that season had more of an effect than density on stress and behaviour in broiler breeder hens under the conditions of our study.  相似文献   

18.
试验旨在探索奶牛对气候变化较为敏感的血液常规指标,为荷斯坦奶牛低温应激研究提供相关数据支撑及科学依据,并对该地区冬季奶牛饲养管理及耐应激个体选育提供理论依据。以河北省承德市围场县某规模化奶牛场的健康荷斯坦泌乳奶牛为研究对象,连续监测了秋季(2018年10月24日至2018年10月30日)、初冬(2018年12月4日至2018年12月10日)和深冬(2018年12月25日至2018年12月31日)牛舍温湿指数(THI),并分别采集了15头荷斯坦奶牛血液样本,测定了9种血液常规指标,同时收集了试验牛群的8项产奶性能数据,分析荷斯坦奶牛在秋冬季节产奶性能及血液常规指标的变化规律,筛选气候变化较为敏感的血液常规指标。结果显示:秋季,牛舍平均温度为8.0 ℃,平均THI为49.38,说明试验牛群在该时期处于非低温应激状态;初冬,牛舍平均温度为-6.4 ℃,平均THI达到23.56,在168 h监测期,有92 h -8≤THI < 25,76 h 25≤THI < 39,试验牛群在该时期大部分时间处于中度低温应激状态;深冬,牛舍平均温度为-7.59 ℃,平均THI达到21.86,有43 h 25≤THI < 39,117 h 8≤THI < 25,试验牛群在该时期绝大部分时间处于中度低温应激状态。随着温度下降,奶牛直肠温度、呼吸频率显著降低(P < 0.05);冬季奶牛血中白细胞计数(WBC)、红细胞计数(RBC)、血红蛋白(HGB)、红细胞压积(HCT)、血小板总数(PLT)、血小板压积(PCT)、单核细胞数(MO)、淋巴细胞数(LY)极显著或显著升高(P < 0.01;P < 0.05);除红细胞压积(HCT)、白细胞计数外,其他各指标在初冬与深冬间差异不显著(P > 0.05);红细胞平均体积(MCV)在各季节间变化不显著(P > 0.05);与秋季相比,初冬、深冬奶牛平均日产奶量(AMY)分别下降0.71和1.17 kg/d(P < 0.01);初冬乳脂率(FP)、乳蛋白率(PP)、脂蛋比(F/P)显著或极显著下降(P < 0.05;P<0.01),深冬时期恢复至秋季水平(P > 0.05);乳中非脂肪固体物质率(SP)在初冬显著下降,在深冬显著上升(P < 0.05);初冬、深冬乳中体细胞数(SCC)分别比秋季高1.84×105、1.63×105 个/mL(P < 0.05);乳糖率(LP)及酸度在各时期均无显著差异(P > 0.05)。综合以上结果,冀北寒区荷斯坦奶牛在秋季处于非应激状态,在初冬和深冬处于中度低温应激状态,且牛群的生理指标和产奶性能受气候影响较为严重;奶牛血液红细胞、白细胞、淋巴细胞和单核细胞数为受气候影响变化较为灵敏的血液常规指标。  相似文献   

19.
旨在分析卷帘舍环境参数与奶牛泌乳性能及行为的相关性。本研究选择南北纵墙安装自动卷帘的全舍饲奶牛舍,存栏约200头5~6岁经产的健康荷斯坦泌乳奶牛(3~4胎,体重(650±100) kg)。通过检测该卷帘舍一个自然年度的环境参数,研究温热参数(温、湿度和风速)、气载微生物(细菌和真菌)、粉尘(PM2.5和PM10)和有害气体(二氧化碳(CO2)和氨气(NH3))与泌乳性能和行为的相关性。结果表明:1)各项环境参数均表现出季节性规律。真菌(1 049.91 cfu·m-3)和两种粉尘(PM2.5=17.86μg·m-3;PM10=193.07μg·m-3)含量夏季最高,细菌含量秋季最高(1.11×104 cfu·m-3),而CO2和NH3浓度冬季最高(1 302.85 mg·m-3;2....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号