首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 991 毫秒
1.
白斑综合征病毒(WSSV)是对虾养殖中主要的病原之一,病原与宿主作用是介导病毒感染的重要过程。RAS蛋白是Ras基因分泌的保守蛋白,为小G蛋白家族的一员,普遍存在于从酵母菌到哺乳动物的真核细胞中,具有偶联受体和效应系统传递跨膜信号的功能,在细胞增殖和分化中起双重调节的作用,但关于RAS与WSSV的作用尚不明确。本研究将凡纳滨对虾(Litopenaeus vannamei) Ras基因克隆至pBAD/gⅢA表达载体上,以E. coli Top10为宿主菌,在L-阿拉伯糖的诱导下获得RAS重组蛋白。以Co~(2+)亲和层析方法,获得纯化的RAS蛋白,质谱分析显示,该蛋白为凡纳滨对虾RAS。采用Far-western和ELISA检测方法分析RAS与WSSV结构蛋白VP26、VP28N和VP37的相互作用。Far-western结果显示,RAS与VP26有明显的结合作用,ELISA实验结果显示,RAS与VP26蛋白的相互作用随RAS量的增加而增强。本研究表明,RAS参与WSSV侵染过程,为进一步研究WSSV侵染机制提供了理论基础。  相似文献   

2.
将VP110基因的部分序列克隆到pET-28a载体中构建pET28a-vp110b重组质粒并进行原核表达,获得重组表达的蛋白rVP110-B;用rVP110-B注射凡纳滨对虾Litopenaeus vannamei后,经WSSV感染,实验表明,该蛋白注射使凡纳滨对虾感染WSSV的半数死亡时间比对照组延长了20%。用表达纯化的该重组蛋白制备了兔抗rVP110-B多克隆抗体,该抗体用于凡纳滨对虾鳃细胞膜蛋白与rVP110-B的Far-western分析显示,凡纳滨对虾鳃细胞膜蛋白中除90 kDa左右的血蓝蛋白外,在41.7 kDa存在结合条带,经质谱分析表明这条鳃细胞膜蛋白是肌动蛋白。  相似文献   

3.
采用蔗糖密度梯度离心从患病对虾组织中提取WSSV,应用SDS-PAGE对WSSV结构蛋白进行了分析。采用12%分离胶,将WSSV样品煮沸5min,应用SDS-PAGE分离了WSSV的中低分子量结构蛋白,并将该结果与其他学者已发表的结果进行了比较。首次通过延长样品煮沸时间,采用8%分离胶,应用SDS-PAGE分离到了WSSV100kD以上的13条高分子量结构蛋白,计算出了每条蛋白带的分子量及其在总蛋白中的百分含量。其中WSSV高分子量结构蛋白的分离丰富了WSSV的研究范围,对今后深入的研究工作具有重要意义。  相似文献   

4.
本研究对白斑综合征病毒(White Spot Syndrome Virus,WSSV)与传染性皮下及造血组织坏死病毒(Infectious Hypodermal and Haematopoietic Necrosis Virus,IHHNV)能否竞争虾鳃细胞膜上的NM23蛋白受体进行探索。先用蔗糖梯度离心法提纯WSSV的全蛋白,利用病毒覆盖蛋白印迹技术(VOPBA)与对虾鳃细胞膜NM23蛋白作用,将疑似蛋白条带进行LC-MS/MS分析,初步筛选出3种WSSV蛋白,分别为WSSV013、Wsv497和Wsv035,再构建这3种蛋白的原核表达载体,通过VOPBA和免疫共沉淀(co-immunoprecipitation)验证了Wsv497、Wsv035能与NM23蛋白相互作用,WSSV013不能与NM23蛋白相互作用。初步推测WSSV与IHHNV可能竞争对虾鳃细胞膜上的NM23蛋白受体,该结果为今后研究两种病毒竞争细胞膜受体和虾病毒蛋白作用机制提供理论基础。  相似文献   

5.
从感染白斑综合症病毒(Whitespotsyndromevirus,WSSV)的对虾中提取和纯化WSSV,对其蛋白酶活力进行分析。结果表明,WSSV蛋白酶具广泛的pH稳定性,当pH达7.5时,蛋白酶活性最大;pH高于10 0时,酶活力很低,其蛋白酶偏碱性。丝氨酸蛋白酶抑制剂苯甲基磺酰氟(PMSF)对酶活性有抑制作用。Ca2 、Mn2 、Fe2 和Cu2 可降低WSSV蛋白酶活性,但Mg2 有轻微的激活作用。胰蛋白酶抑制剂在浓度为12.5~25.0mg/L时,对WSSV蛋白酶活性无影响。Leupeptin使蛋白酶活性降低12.29%。Chymostatin在质量浓度为12.5~25.0mg/L时,对WSSV蛋白酶活性有强烈的抑制作用,表明WSSV蛋白酶类属胰凝乳蛋白酶。蛋白质修饰剂对WSSV蛋白酶活性影响的研究结果表明,组氨酸残基为WSSV蛋白酶活性基团,而巯基为非必需基团,说明WSSV蛋白酶为非巯基依赖型的蛋白酶。  相似文献   

6.
对虾白斑综合征病毒蛋白质组的研究进展   总被引:1,自引:0,他引:1  
白斑综合征病毒WSSV(White Spot Syndrome Virus,WSSV)是引起对虾大规模死亡的主要病毒性病原,且该病毒感染的宿主广泛。自WSSV基因组全序列公布以来,国内外的学者对WSSV的研究热点转移到该病毒基因产物功能的相关研究上面来。弄清WSSV感染机理是有效防治病毒的基础,而对其感染机理的阐释则主要是搞清病毒各蛋白在感染中的作用,这些是WSSV蛋白质组学的研究内容之一。分析WSSV蛋白同时可以在分子水平上为研究海洋和陆地生物病毒的进化趋势提供有力的基础。  相似文献   

7.
为了更好地研究对虾自斑综合征病毒(WSSV)蛋白VP19在WSSV感染过程巾的作用,利用VP 19的单克隆抗体直接对VP19进行了定位.从患白斑综合征的中国明对虾(Fenneropenaeus chinensis)鳃丝中提取WSSV,将提纯的WSSV经十二烷基磺酸钠-聚内烯酰胺凝胶电泳(SDS-PAGE)分离,然后洗脱提纯其病毒蛋白VP19并免疫Balb/c小鼠,取免疫小鼠脾细胞和骨髓瘤细胞融合,用间接免疫荧光技术(IFAT)和Western-Blot技术筛选出1株阳性杂交瘤细胞,将检测出的阳性杂交瘤细胞经有限稀释法克隆,研制出抗VP19的单抗,再利用免疫胶体金技术对病毒蛋白VP19进行定位,结果显示,胶体金粒子位于WSSV病毒的囊膜上,说明病毒篮白VP19位于WSSV囊膜上.[中国水产科学,2009,16(1):69-74]  相似文献   

8.
通过人工投喂携带WSSV的毒饵,对性腺发育成熟的中国对虾(Fenneropenaeus chinensis)雄虾(♂)进行感染实验。采用nest-PCR(巢式PCR)技术,检测感染后的中国对虾雄性生殖系统受WSSV感染情况,同时选取感染严重的虾样进行电镜观察。巢式PCR检测结果表明,感染组中国对虾的精巢、输精管和精囊均被WSSV感染,其中精囊呈阳性的最多,输精管次之,精巢最少。通过电镜进一步观察发现,WSSV粒子只存在于精巢、输精管和精囊的结缔组织中,而在其他组织和生殖细胞中均未发现病毒粒子。其中,精巢中WSSV粒子存在于精巢内两个生精小管之间的结缔组织;输精管中WSSV粒子存在于管壁的结缔组织;精囊中WSSV粒子也只存在于精囊内膜的结缔组织和精荚膜的结缔组织中。PCR检测和电镜观察结果均表明,WSSV粒子能感染中国对虾的雄性生殖系统且对性腺感染存在着一定的组织特异性。  相似文献   

9.
通过差速离心法提取桡足类组织细胞膜,依照本实验室确立的细胞膜与WSSV特异性的结合关系,进行了桡足类细胞膜与白斑综合症病毒(WSSV)结合实验。结果表明,桡足类细胞膜与WSSV之间存在着特异性的结合,二者的结合说明了桡足类细胞膜上存在有WSSV的受体蛋白,其为确定桡足类属于WSSV感染宿主提供了重要证据。同时,比较了凡纳滨对虾(Litopenaeus vannamei)鳃细胞膜对桡足类细胞膜与WSSV结合的影响作用,证实了凡纳滨对虾鳃细胞膜对二者的结合具有明显的封闭作用,侧面说明了WSSV在二者细胞膜上存在有相同的受体蛋白或结合位点。桡足类细胞膜经表面活性剂Triton x-100处理后,与WSSV的结合活性没有受到影响,而经Tween-20处理能显著提高与WSSV的结合活性,提示受体蛋白在细胞膜上可能占有一段较小的跨膜区域。经SDS-PAGE分析确定了桡足类细胞膜由分子量为18~207kD范围的约33条蛋白条带组成。  相似文献   

10.
为了解拟穴青蟹(Scylla paramamosain)前列腺6跨膜上皮抗原4基因(six-transmembrane protein of prostate 4,STEAP4)在拟穴青蟹抗白斑综合征病毒(white spot syndrome virus, WSSV)免疫应答中的作用,表达与纯化GST-STEAP4重组蛋白,(1)通过聚合酶链式反应(PCR)克隆了STEAP4基因,利用生物信息学分析软件分析其序列特征;(2)通过实时荧光定量PCR(qRT-PCR)技术检测其组织分布及WSSV感染后的表达情况;(3)构建原核表达载体pGEX-6p-1-STEAP4-like,诱导表达与纯化重组蛋白GST-STEAP4-like。结果表明:(1)拟穴青蟹STEAP4-like基因ORF长1 443 bp,编码480个氨基酸,N端含有NAD结合位点和一个NADP氧化还原酶辅酶结构域,C端含有一个铁还原酶跨膜结构域;(2)氨基酸序列与三疣梭子蟹STEAP4-like相似性最高,与三疣梭子蟹和突眼蟹亲缘关系最接近;(3)STEAP4-like基因在被检测组织中均有表达;(4)WSSV刺激后ST...  相似文献   

11.
A very simple and efficient method was developed for isolating intact White Spot Syndrome Virus (WSSV) particles from infected Litopenaeus vannamei tissue. No density gradient centrifugation, ultracentrifugation or protease inhibitors were required for the purification of intact WSSV virions using microfilters (100 kDa cut-off) combined with several steps of conventional centrifugation procedures. A mortality assay was run using healthy shrimp to prove that the virions obtained were infective. The concentrated viral preparations were further studied using polyacrylamide gel electrophoresis (PAGE). At least five distinct protein bands were detected when intact purified WSSV virions were found by sodium dodecyl sulphate-PAGE, followed by Coomassie Brilliant R-250 staining. The estimated molecular weights of these proteins were 23, 24, 29, 32 and 42-kDa, which could correspond to viral protein. Using this method, the virus does not lose its ability to infect healthy shrimp.  相似文献   

12.
The objective of this study was to investigate the reason for variation in the virulence of white spot syndrome virus (WSSV) from different shrimp farms in the Southeast coast of India. Six isolates of WSSV from farms experiencing outbreaks (virulent WSSV; vWSSV) and three isolates of WSSV from farms that had infected shrimps but no outbreaks (non‐virulent WSSV; nvWSSV) were collected from different farms in the Southeast coast of India. The sampled animals were all positive for WSSV by first‐step PCR. The viral isolates were compared using histopathology, electron microscopy, SDS‐PAGE analysis of viral structural proteins, an in vivo infectivity experiment and sequence comparison of major structural protein VP28; there were no differences between isolates in these analyses. A significant observation was that the haemolymph protein profile of nvWSSV‐infected shrimps showed three extra polypeptide bands at 41, 33 and 24 kDa that were not found in the haemolymph protein profile of vWSSV‐infected shrimps. The data obtained in this study suggest that the observed difference in the virulence of WSSV may not be due to any change in the virus, rather it could be due to the shrimp defence system producing certain factors that help it to accommodate the virus without causing any mortality.  相似文献   

13.
White spot syndrome virus (WSSV), an enveloped double‐stranded DNA virus, is the causative agent of a disease that has led to severe mortalities of cultured shrimps in Taiwan and many other countries. In the previous study, Penaeus monodon chitin‐binding protein (CBP) and glucose transporter 1 (Glut1), two cell membrane proteins, were found to at least interact with other 10 WSSV envelope proteins including VP51B. These envelope proteins might form a protein complex. According to the known information, VP51B was used to identify its role in the protein complex. Western blotting of the intact viral particles and fractionation of the viral components confirmed that VP51B is one of WSSV envelope proteins. In this study, the protein–protein interaction between VP51B and other WSSV envelope proteins was identified by far‐western blot experiment and VP51B was found to interact with VP24, VP31, VP32, VP39B and VP41A. Furthermore, the in vivo neutralization experiment using recombinant VP51B plus with VP39B showed the best inhibition. These data indicate that VP51B participates in the WSSV protein complex and plays an important role in WSSV infection.  相似文献   

14.
A multiplex PCR kit for simultaneous detection of white spot syndrome virus (WSSV) and hepatopancreatic parvovirus (HPV) was developed and field testing was conducted. A 604‐bp target sequence was selected from the vp28 gene of WSSV. A primer set was developed to amplify a 338‐bp DNA fragment at the junction of the NS2 and NS1 protein genes of HPV after alignment of eight sequences from different strains. Another internal positive control primer set produced a 139‐bp PCR fragment from the β‐actin gene by alignment of this gene from Litopenaeus vannamei, Fenneropenaeus chinensis and Penaeus monodon. The detection limits, tested using purified plasmids, for WSSV and HPV were 21.4 and 19.0 copies respectively. The optimum ratio for HPV, WSSV and β‐actin was 3:1:1, with an optimum annealing temperature of 57°C. Field test of the multiplex PCR with 170 L. vannamei individuals from 17 aquaculture farms showed 41.8% coinfection with WSSV and HPV, and 40.0% and 3.5% single infection with WSSV and HPV respectively. No virus‐free shrimp farm was found. Ten wild catch F. chinensis individuals showed 60% coinfection, and 40% were infected with HPV.  相似文献   

15.
Shrimp cell lines are yet to be reported and this restricts the prospects of investigating the associated viral pathogens, especially white spot syndrome virus (WSSV). In this context, development of primary cell cultures from lymphoid organs was standardized. Poly-l-lysine-coated culture vessels enhanced growth of lymphoid cells, while the application of vertebrate growth factors did not, except insulin-like growth factor-1 (IGF-1). Susceptibility of the lymphoid cells to WSSV was confirmed by immunofluoresence assay using monoclonal antibody against the 28 kDa envelope protein of WSSV. Expression of viral and immune-related genes in WSSV-infected lymphoid cultures could be demonstrated by RT-PCR. This emphasizes the utility of lymphoid primary cell culture as a platform for research in virus-cell interaction, virus morphogenesis, up and downregulation of shrimp immune-related genes, and also for the discovery of novel drugs to combat WSSV in shrimp culture.  相似文献   

16.
The VP 28 gene encoding a structural envelope protein of the white spot syndrome virus (WSSV) was cloned into a pET32a(+) expression vector for the production of the recombinant VP28 protein. A purified recombinant protein of 39.9 kDa size was used for polyclonal antibody production in rabbit. Specific immunoreactivity of the rabbit anti rVP28 antiserum to the viral antigen was confirmed by a Western blot. The specificity of this polyclonal anti‐rVP28 antiserum to detect the presence of the virus in WSSV‐infected Penaeus monodon was verified using a immunodot blot assay. Immunodot blot showed a positive reaction in infected shrimp tissues with prominent colour development using 3,3′,5,5′‐tetramethylbenzidine (TMB) as a chromogenic substrate when compared with 3–3′ diaminobenzidine tetrahydrochloride (DAB). Highest signal intensities of the immunodots were observed in infected shrimp pleopod extracts and haemolymph. On comparison with polymerase chain reaction (PCR), immunodot blot could detect 76% of PCR‐positive WSSV‐infected shrimp samples. Immunodot blot was found to be equivalent to first‐step PCR sensitivity to detect WSSV particles estimated to contain 1.0 × 105 viral DNA copies.  相似文献   

17.
SUMMARY: A calponin-like protein of 45 kDa was isolated from mussel anterior byssus retractor muscle (ABRM) and its inhibitory effects on actomyosin Mg2+-ATPase was demonstrated. The 2-D electrophoresis for ABRM myofibrils gave a spot of 45 kDa protein in addition to myofibrillar proteins such as myosin and actin. The 45 kDa protein, which was more basic and showed a slightly higher molecular weight than actin, was isolated by ion-exchange chromatography and subjected to chymotryptic digestion. N-terminal amino acid sequencing of polypeptide fragments produced gave two sequences, ASQKGMTSFGAVRHH and GMDRALISKMGSKYDSGL, both of which showed a high homology to those of vertebrate calponins and invertebrate calponin-related proteins. Furthermore, the 45 kDa protein strongly reacted with commercially available antibody raised against chicken smooth muscle calponin, demonstrating that the mussel ABRM 45 kDa protein is a new member of the calponin family. Then, actomyosin Mg2+-ATPase activity of ABRM was measured in the presence and absence of the 45 kDa protein. The 45 kDa protein clearly inhibited actomyosin Mg2+-ATPase activity in a dose-dependent manner as in the case of other vertebrate calponins. These results indicate that the 45 kDa calponin-like protein is involved in the thin filament-associated regulation of molluscan smooth muscle contraction, possibly of a unique contraction called catch.  相似文献   

18.
Shih  Wang  Tan  & Chen 《Journal of fish diseases》2001,24(3):143-150
Three hybridoma clones secreting monoclonal antibodies (MAbs) were produced from mouse myeloma and spleen cells immunized with white spot syndrome virus (WSSV) isolated and purified from Penaeus monodon (Fabricius), collected from north-eastern Taiwan. By sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), the protein profile of this isolate contained four major proteins with sizes of approximately 35 (VP35), 28 (VP28), 24 (VP24), and 19 kDa (VP19). Western blot analysis revealed that two MAbs (1D7 and 6E1) recognized epitopes on VP28 and one MAb (3E8) recognized an epitope on VP19. The MAb 6E1 isotyped to the IgG1 class was used in both an indirect immunofluorescence assay (IFA) and in an immunochemical staining protocol for successful identification and localization of WSSV in infected shrimp tissues. Antigenic similarity of isolates from Indonesia and Malaysia to the Taiwan isolate was illustrated by IFA with MAb 6E1. A MAb (2F6) which bound specifically to two shrimp proteins, 75 and 72 kDa, and reacted to the healthy and non-target tissues of WSSV in infected shrimp, such as hepatopancreas, is also described here and shows the necessity for specific identification of antibodies.  相似文献   

19.
Up to now, only a few brief procedures for purifying white spot syndrome virus (WSSV) have been described. They were mainly based on sucrose, NaBr and CsCl density gradient centrifugation. This work describes for the first time the purification of WSSV through iodixanol density gradients, using virus isolated from infected tissues and haemolymph of Penaeus vannamei (Boone). The purification from tissues included a concentration step by centrifugation (2.5 h at 60 000  g ) onto a 50% iodixanol cushion and a purification step by centrifugation (3 h at 80 000  g ) through a discontinuous iodixanol gradient (phosphate‐buffered saline, 5%, 10%, 15% and 20%). The purification from infected haemolymph enclosed a dialysis step with a membrane of 1 000 kDa (18 h) and a purification step through the earlier iodixanol gradient. The gradients were collected in fractions and analysed. The number of particles, infectivity titre (in vivo), total protein and viral protein content were evaluated. The purification from infected tissues gave WSSV suspensions with a very high infectivity and an acceptable purity, while virus purified from haemolymph had a high infectivity and a very high purity. Additionally, it was observed that WSSV has an unusually low buoyant density and that it is very sensitive to high external pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号