首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Soil biology & biochemistry》2001,33(7-8):965-971
Laboratory experiments were conducted to find out under which conditions the soil from Italian rice fields could change from a source into a sink of atmospheric CH4. Moist (30% H2O=68% of the maximum water holding capacity (whc)) rice field soil oxidized CH4 with biphasic kinetics, exhibiting both a low (145 ppmv CH4) and a high (20,200 ppmv CH4) Km value and Vmax values of 16.8 and 839 nmol gdw−1 h−1, respectively. The activity with the low Km allowed the oxidation of atmospheric CH4. Uptake rates of high CH4 concentrations (16.5% v/v) and of O2 linearly decreased with aggregate size of soil between 2 and 10 mm. Atmospheric CH4 (1.8 ppmv) was consumed in soil aggregates <6 mm, but soil aggregates >6 mm released CH4 into the atmosphere. Similarly, net uptake of atmospheric CH4 turned into net release of CH4 when the soil moisture was decreased below a water content of about 20% whc. The uptake rate of atmospheric CH4 increased threefold when the soil was amended with sterile quartz sand. Flooded microcosms with non-amended and quartz-amended soil emitted CH4 into the atmosphere. The CH4 emission rate increased when the flux was measured under an atmosphere of N2 instead of air, indicating that 30–99% of the produced CH4 was oxidized in the oxic soil surface layer. Removal of the flood water resulted in increase of CH4 emission rates until a water content of about 75–82% whc was reached, and subsequently in a rapid decrease. However, the soil microcosms never showed net uptake of atmospheric CH4. Our results show that the microorganisms consuming atmospheric CH4 were inactivated at an earlier stage of drainage than the microorganisms producing CH4, irrespective of the soil porosity which was adjusted by addition of quartz sand. Hence, it is unlikely that the Italian rice fields can act as a net sink for atmospheric CH4 even when drained.  相似文献   

2.
The rate of organic matter turnover in soil is a critical component of the terrestrial carbon cycle and is frequently estimated from measurements of respiration. For estimates to be reliable requires that isotopically labelled substrate uptake into the soil microbial biomass and its subsequent mineralization occurs almost simultaneously (i.e. no time delay). Here we investigated this paradigm using glucose added to an agricultural soil. Immediately after collection from the field, various concentrations of 14C-labeled glucose (1 μM to 10 mM) were added to soil and the depletion from the soil solution measured at 1–60 min after substrate addition. 14CO2 production from the mineralization of glucose was simultaneously measured. The microbial uptake of glucose from soil solution was concentration-dependent and kinetic analysis suggests the operation of at least two distinct glucose transport systems of differing affinity. At glucose concentrations reflecting those naturally present in the soil solution (54±10 μM), the half-time (t1/2) of exogenous glucose was extremely rapid at ca. 30 s. At higher glucose concentrations (100 μM to 10 mM), the t1/2 values for the high-affinity carrier were altered little, but increasing proportions of glucose were taken up by the low affinity transport system. Glucose mineralization by the soil microbial community showed a significant delay after its uptake into the microbial biomass suggesting a decoupling of glucose uptake and subsequent respiration, possibly by dilution of glucose in labile metabolite pools. By fitting a double first order kinetic equation to the mineralization results we estimated the t1/2 for the first rapid phase of respiration at natural soil solution glucose concentrations to be 6–8 min, but at least 87% of the added glucose was retained in the microbial biomass prior to mineralization. Our results suggest that in this soil the soil solution glucose pool turns over 100–1000 times each day, an order of magnitude faster than when determined from measurements of mineralization. These results imply that traditional isotopic based measurements of substrate turnover measured using CO2 may vastly underestimate their rate of cycling in soil.  相似文献   

3.
《Soil biology & biochemistry》2001,33(4-5):533-551
This study aimed to determine the factors which regulate soil microbial community organisation and function in temperate upland grassland ecosystems. Soil microbial biomass (Cmic), activity (respiration and potential carbon utilisation) and community structure (phospholipid fatty acid (PLFA) analysis, culturing and community level physiological profiles (CLPP) (Biolog®)) were measured across a gradient of three upland grassland types; Festuca–Agrostis–Galium grassland (unimproved grassland, National Vegetation Classification (NVC) — U4a); FestucaAgrostisGalium grassland, Holcus–Trifolium sub-community (semi-improved grassland, NVC — U4b); Lolium–Cynosurus grassland (improved grassland, NVC — MG6) at three sites in different biogeographic areas of the UK over a period of 1 year. Variation in Cmic was mainly due to grassland type and site (accounting for 55% variance, v, in the data). Cmic was significantly (P<0.001) high in the unimproved grassland at Torridon (237.4 g C m−2 cf. 81.2 g C m−2 in semi- and 63.8 g C m−2 in improved grasslands) and Sourhope (114.6 g C m−2 cf. in 44.8 g C m−2 semi- and 68.3 g C m−2 in improved grasslands) and semi-improved grassland at Abergwyngregyn (76.0 g C m−2 cf. 41.7 g C m−2 in un- and 58.3 g C m−2 in improved grasslands). Cmic showed little temporal variation (v=3.7%). Soil microbial activity, measured as basal respiration was also mainly affected by grassland type and site (n=32%). In contrast to Cmic, respiration was significantly (P<0.001) high in the improved grassland at Sourhope (263.4 l h−1m−2 cf. 79.6 l h−1m−2 in semi- and 203.9 l h−1m−2 unimproved grasslands) and Abergwyngregyn (198.8 l h−1m−2 cf. 173.7 l h−1m−2 in semi- and 88.2 l h−1m−2 unimproved grasslands). Microbial activity, measured as potential carbon utilisation, agreed with the respiration measurements and was significantly (P<0.001) high in the improved grassland at all three sites (A590 0.14 cf. 0.09 in semi- and 0.07 in unimproved grassland). However, date of sampling also had a significant (P<0.001) impact on C utilisation potential (v=24.7%) with samples from April 1997 having highest activity at all three sites. Variation in microbial community structure was due, predominantly, to grassland type (average v=23.6% for bacterial and fungal numbers and PLFA) and date of sampling (average v=39.7% for bacterial and fungal numbers and PLFA). Numbers of culturable bacteria and bacterial PLFA were significantly (P<0.001) high in the improved grassland at all three sites. Fungal populations were significantly (P<0.01) high in the unimproved grassland at Sourhope and Abergwyngregyn. The results demonstrate a shift in soil microbial community structure from one favouring fungi to one favouring bacteria as grassland improvement increased. Numbers of bacteria and fungi were also significantly (P<0.001) higher in August than any other sampling date. Canonical variate analysis (CVA) of the carbon utilisation data significantly (P<0.05) differentiated microbial communities from the three grassland types, mainly due to greater utilisation of sugars and citric acid in the improved grasslands compared to greater utilisation of carboxylic acids, phenolics and neutral amino acids in the unimproved grasslands, possibly reflecting substrate availability in these grasslands. Differences in Cmic, activity and community structure between grassland types were robust over time. In addition, broad scale measures of microbial growth and activity (Cmic and respiration) showed little temporal variation compared to measures of soil microbial community structure, which varied quantitatively with respect to environmental variables (temperature, moisture) and plant productivity, hence substrate supply.  相似文献   

4.
The flavonoid class of plant secondary metabolites play a multifunctional role in below-ground plant–microbe interactions with their best known function as signals in the nitrogen fixing legume–rhizobia symbiosis. Flavonoids enter rhizosphere soil as a result of root exudation and senescence but little is known about their subsequent fate or impacts on microbial activity. Therefore, the present study examined the sorptive behaviour, biodegradation and impact on dehydrogenase activity (as determined by iodonitrotetrazolium chloride reduction) of the flavonoids naringenin and formononetin in soil. Organic carbon normalised partition coefficients, log Koc, of 3.12 (formononetin) and 3.19 (naringenin) were estimated from sorption isotherms and, after comparison with literature log Koc values for compounds whose soil behaviour is better characterised, the test flavonoids were deemed to be moderately sorbed. Naringenin (spiked at 50 μg g?1) was biodegraded without a detectable lag phase with concentrations reduced to 0.13±0.01 μg g?1 at the end of the 96 h time course. Biodegradation of formononetin proceeded after a lag phase of ~24 h with concentrations reduced to 4.5±1% of the sterile control after 72 h. Most probable number (MPN) analysis revealed that prior to the addition of flavonoids, the soil contained 5.4×106 MPN g?1 (naringenin) and 7.9×105 MPN g?1 (formononetin) catabolic microbes. Formononetin concentration had no significant (p>0.05) effect on soil dehydrogenase activity, whereas naringenin concentration had an overall but non-systematic impact (p=0.045). These results are discussed with reference to likely total and bioavailable concentrations of flavonoids experienced by microbes in the rhizosphere.  相似文献   

5.
Polar ecosystems are currently experiencing some of the fastest rates of climate warming. An increase in soil temperature in High Arctic regions may stimulate soil permafrost melting and microbial activity, thereby accelerating losses of greenhouse gases. It is therefore important to understand the factors regulating the rates of C turnover in polar soils. Consequently, our aims were to: (1) assess the concentration of low molecular weight (MW) dissolved organic carbon (DOC) in soil, (2) to investigate the temperature-dependent turnover of specific low MW compounds, and (3) to analyse the influence of substrate concentration on C cycling. Microbial mineralisation of labile low MW DOC in two High Arctic tundra soils was investigated using soil solutions spiked with either 14C-labelled glucose or amino acids. Spiked solutions were added to the top- and sub-soil from two ecosystem types (lichen and Carex dominated tundra), maintained at three temperatures (4–20 °C), and their microbial mineralisation kinetics monitored. 14CO2 evolution from the tundra soils in response to 14C-glucose and -amino acid addition could best be described by a double first order exponential kinetic equation with rate constants k1 and k2. Both forms of DOC had a short half-life (t1/2) in the pool of microbial respiratory substrate (t1/2 = 1.07 ± 0.10 h for glucose and 1.63 ± 0.14 h for amino acids; exponential coefficient k1 = 0.93 ± 0.07 and 0.64 ± 0.06 h?1 respectively) whilst the second phase of mineralisation, assumed to be C that had entered the microbial biomass, was much slower (average k2 = 1.30 × 10?3 ± 0.49 × 10?4 h?1). Temperature had little effect on the rate of mineralisation of 14C used directly as respiratory substrate. In contrast, the turnover rate of the 14C immobilized in the microbial biomass prior to mineralisation was temperature sensitive (k2 values of 0.99 × 10?3 h?1 and 1.66 × 10?3 h?1 at 4 and 20 °C respectively). Concentration-dependent glucose and amino acid mineralisation kinetics of glucose and amino acids (0–10 mM) were best described using Michaelis–Menten kinetics; there was a low affinity for both C substrates by the microbial community (Km = 4.07 ± 0.41 mM, Vmax = 0.027 ± 0.005 mmol kg?1 h?1). In conclusion, our results suggest that in these C limiting environments the flux of labile, low MW DOC through the soil solution is extremely rapid and relatively insensitive to temperature. In contrast, the turnover of C incorporated into higher molecular weight microbial C pools appears to show greater temperature sensitivity.  相似文献   

6.
《Geoderma》2007,137(3-4):394-400
The field tension infiltrometer (TI) and the laboratory unit hydraulic gradient (UHG) methods are widely applied to determine the near-saturated soil hydraulic conductivity, K. Comparison between the two methods is relevant given that they differ in the explored soil volume (undetached or detached) and in the flow process (unconfined or confined). The objective of this investigation was to compare unconfined and confined measurements of unsaturated hydraulic conductivity. Twenty TI experiments were conducted in a relatively coarse-textured soil having an appreciable hysteretic behavior by using two different dry-to-wet-to-dry (DTWTD) sequences of pressure head, h0, values that differed by the highest h0 value imposed within the sequence (i.e. h0 =  150, − 75, − 30, + 5, − 30, − 75, − 150 in site A or h0 =  150, − 75, − 30, − 10, − 30, − 75, − 150 in site B). The same pressure head sequences were applied on twenty undisturbed soil cores, collected at the exact location of the TI measurements, to perform the laboratory UHG measurements. Regardless of the type of experiment (i.e. unconfined or confined) and the applied pressure head sequence (i.e. site A or B), higher K0 values were obtained with a drying sequence of h0 values (K0,d) than with a wetting one (K0,w)and the discrepancies between K0,w and K0,d decreased as the imposed h0 value increased, as it was expected due to hysteresis. A tendency of the UHG method to overestimate the K0 values was detected (ratios of mean K0,1D to mean K0,3D values ranging from 0.93 to 4.35), but the statistical significance of the observed differences varied with the considered sequence of pressure head values. It was concluded that both the TI and the UHG methods were effective in detecting hysteresis effects on K0, but the laboratory method resulted in K0 values that were higher and more variable probably as a consequence of a more substantial effect of macropore flow on the measured flow rates.  相似文献   

7.
We studied a semi-natural forest in Northern Italy that was set aside more than 50 years ago, in order to better understand the soil carbon cycle and in particular the partitioning of soil respiration between autotrophic and heterotrophic respiration. Here we report on soil organic carbon, root density, and estimates of annual fluxes of soil CO2 as measured with a mobile chamber system at 16 permanent collars about monthly during the course of a year. We partitioned between autotrophic and heterotrophic respiration by the indirect regression method, which enabled us to obtain the seasonal pattern of single components.The soil pool of organic carbon, with 15.8 (±4.5) kg m?2, was very high over the entire depth of 45 cm. The annual respiration rates ranged from 0.6 to 6.9 μmol CO2 m?2 s?1 with an average value of 3.4 (±2.3) μmol CO2 m?2 s?1, and a cumulative flux of 1.1 kg C m?2 yr?1. The heterotrophic component accounted for 66% of annual CO2 efflux. Soil temperature largely controlled the heterotrophic respiration (R2 = 0.93), while the autotrophic component followed irradiation, pointing to the role of photosynthesis in modulating the annual course of soil respiration.Most studies on soil respiration partitioning indicate autotrophic root respiration as a first control of the spatial variability of the overall respiration, which originates mainly from the uppermost soil layers. Instead, in our forest the spatial variability of soil respiration was mainly linked to soil carbon, and deeper layers seemed to provide a significant contribution to soil respiration, a feature that may be typical for an undisturbed, naturally maturing ecosystem with well developed pedobiological processes and high carbon stocks.  相似文献   

8.
《Soil & Tillage Research》2007,93(1):126-137
Although reduced tillage itself is beneficial to soil quality and farm economics, the amount of crop residues returned to the soil will likely alter the success of a particular conservation tillage system within a farm operation. We investigated the impact of three cropping systems (a gradient in silage cropping intensity) on selected soil physical, chemical, and biological properties in the Piedmont of North Carolina, USA. Cropping systems were: (1) maize (Zea mays L.) silage/barley (Hordeum vulgare L.) silage (high silage intensity), (2) maize silage/winter cover crop (medium silage intensity), and (3) maize silage/barley grain—summer cover crop/winter cover crop (low silage intensity). There was an inverse relationship between silage intensity and the quantity of surface residue C and N contents. With time, soil bulk density at a depth of 0–3 cm became lower and total and particulate C and N fractions, and stability of macroaggregates became higher with lower silage intensity as a result of greater crop residue returned to soil. Soil bulk density at 0–3 cm depth was initially 0.88 Mg m−3 and increased to 1.08 Mg m−3 at the end of 7 years under high silage intensity. Total organic C at 0–20 cm depth was initially 11.7 g kg−1 and increased to 14.3 g kg−1 at the end of 7 years under low silage intensity. Stability of macroaggregates at 0–3 cm depth at the end of 7 years was 99% under low silage intensity, 96% under medium silage intensity, and 89% under high silage intensity. Soil microbial biomass C at 0–3 cm depth at the end of 7 years was greater with low silage intensity (1910 mg kg−1) than with high silage intensity (1172 mg kg−1). Less intensive silage cropping (i.e., greater quantities of crop residue returned to soil) had a multitude of positive effects on soil properties, even in continuous no-tillage crop production systems. An optimum balance between short-term economic returns and longer-term investments in improved soil quality for more sustainable production can be achieved in no-tillage silage cropping systems.  相似文献   

9.
The increasing frequency of periodic droughts followed by heavy rainfalls is expected for this current century, but little is known about the effects of wetting intensity on the in situ biogenic greenhouse gas (GHG) fluxes of forest soils and soil microbial biomass. To gain new insights into the underlying mechanisms responsible for wetting-induced GHG fluxes in situ, rain simulation field experiments during a natural prolonged drought period were done under a temperate forest in northeast China. The intensity of rainfall-induced CO2 pulses increased from 0.84 to 2.08 g CO2–C m? 2 d? 1 with the intensity of wetting up to ca. 80% water-filled pore space, which coincided with an increase in soil microbial biomass and with a decrease in soil labile organic C following wetting. Methane uptake rates decreased from 1.76 to 0.87 mg CH4–C m? 2 d? 1 with the intensity of wetting. Wetting dry forest floor increased N2O fluxes from 6.2 to 25.9 μg N2O–N m? 2 d? 1, but there was no significant difference between all experimental wetted plots. The rainfall-induced N2O pulses with increasing wetting intensity were opposite to that of the CO2 pulses, showing a maximum response at the lowest wetting intensity. An analysis of the temperature sensitivity of GHG fluxes indicated that temperature had an increased effect on the in situ CO2 flux and CH4 uptake, respectively, under wetted and dry conditions. The global warming potential of GHG fluxes and Q10 value of the temperature response of CO2 fluxes increased linearly with wetting intensity. The results indicate that the rainfall-induced soil CO2 pulse is mainly due to enhanced microbial consumption on substrates and highlight the complex nature of belowground C-cycling responses to climate change in northeast China forests that normally experience periodic droughts followed by heavy rainfalls over the year.  相似文献   

10.
《Soil biology & biochemistry》2001,33(7-8):913-919
A reliable and simple technique for estimating soil microbial biomass (SMB) is essential if the role of microbes in many soil processes is to be quantified. Conventional techniques are notoriously time-consuming and unreproducible. A technique was investigated that uses the UV absorbance at 280 nm of 0.5 M K2SO4 extracts of fumigated and unfumigated soils to estimate the concentrations of carbon, nitrogen and phosphorus in the SMB. The procedure is based on the fact that compounds released after chloroform fumigation from lysed microbial cells absorb in the near UV region. Using 29 UK permanent grassland soils, with a wide range of organic matter (2.9–8.0%) and clay contents (22–68%), it was demonstrated that the increase in UV absorbance at 280 nm after soil fumigation was strongly correlated with the SMB C (r=0.92), SMB N (r=0.90) and SMB P (r=0.89), as determined by conventional methods. The soils contained a wide range of SMB C (412–3412 μg g−1 dry soil), N (57–346 μg g−1 dry soil) and P (31–239 μg g−1 dry soil) concentrations. It was thus confirmed that the UV absorbance technique described was a rapid, simple, precise and relatively inexpensive method of estimating soil microbial biomass.  相似文献   

11.
We used natural gradients in soil and vegetation δ13C signatures in a savannah ecosystem in Texas to partition soil respiration into the autotrophic (Ra) and heterotrophic (Rh) components. We measured soil respiration along short transects from under clusters of C3 trees into the C4 dominated grassland. The site chosen for the study was experiencing a prolonged drought, so an irrigation treatment was applied at two positions of each transect. Soil surface CO2 efflux was measured along transects and CO2 collected for analysis of the δ13C signature in order to: (i) determine how soil respiration rates varied along transects and were affected by localised change in soil moisture and (ii) partition the soil surface CO2 efflux into Ra and Rh, which required measurement of the δ13C signature of root- and soil-derived CO2 for use in a mass balance model.The soil at the site was unusually dry, with mean volumetric soil water content of 8.2%. Soil respiration rates were fastest in the centre of the tree cluster (1.5 ± 0.18 μmol m?2 s?1; mean ± SE) and slowest at the cluster–grassland transition (0.6 ± 0.12 μmol m?2 s?1). Irrigation produced a 7–11 fold increase in the soil respiration rate. There were no significant differences (p > 0.5) between the δ13C signature of root biomass and respired CO2, but differences (p < 0.01) were observed between the respired CO2 and soil when sampled at the edge of the clusters and in the grassland. Therefore, end member values were measured by root and soil incubations, with times kept constant at 30 min for roots and 2 h for soils. The δ13C signature of the soil surface CO2 efflux and the two end member values were used to calculate that, in the irrigated soils, Rh comprised 51 ± 13.5% of the soil surface CO2 efflux at the mid canopy position and 57 ± 7.4% at the drip line. In non-irrigated soil it was not possible to partition soil respiration, because the δ13C signature of the soil surface CO2 efflux was enriched compared to both the end member values. This was probably due to a combination of the very dry porous soils at our study site (which may have been particularly susceptible to ingress of atmospheric CO2) and the very slow respiration rates of the non-irrigated soils.  相似文献   

12.
Underestimation of nocturnal CO2 respiration using the eddy covariance method under calm conditions remains an unsolved problem at many flux observation sites in forests. To evaluate nocturnal CO2 exchange in a Japanese cypress forest, we observed CO2 flux above the canopy (Fc), changes in CO2 storage in the canopy (St) and soil, and trunk and foliar respiration for 2 years (2003–2004). We scaled these chamber data to the soil, trunk, and foliar respiration per unit of ground area (Fs, Ft, Ff, respectively) and used the relationships of Fs, Ft, and Ff with air or soil temperature for comparison with canopy-scale CO2 exchange measurements (=Fc + St). The annual average Fs, Ft, and Ff were 714 g C m−2 year−1, 170 g C m−2 year−1, and 575 g C m−2 year−1, respectively. At small friction velocity (u*), nocturnal Fc + St was smaller than Fs + Ft + Ff estimated using the chamber method, whereas the two values were almost the same at large u*. We replaced Fc + St measured during calm nocturnal periods with a value simulated using a temperature response function derived during well-mixed nocturnal periods. With this correction, the estimated net ecosystem exchange (NEE) from Fc + St data ranged from −713 g C m−2 year−1 to −412 g C m−2 year−1 in 2003 and from −883 g C m−2 year−1 to −603 g C m−2 year−1 in 2004, depending on the u* threshold. When we replaced all nocturnal Fc + St data with Fs + Ft + Ff estimated using the chamber method, NEE was −506 g C m−2 year−1 and −682 g C m−2 year−1 for 2003 and 2004, respectively.  相似文献   

13.
《Pedobiologia》2014,57(4-6):277-284
Assimilating atmospheric carbon (C) into terrestrial ecosystems is recognized as a primary measure to mitigate global warming. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the dominant enzyme by which terrestrial autotrophic bacteria and plants fix CO2. To investigate the possibility of using RubisCO activity as an indicator of microbial CO2 fixation potential, a valid and efficient method for extracting soil proteins is needed. We examined three methods commonly used for total soil protein extraction. A simple sonication method for extracting soil protein was more efficient than bead beating or freeze–thaw methods. Total soil protein, RubisCO activity, and microbial fixation of CO2 in different agricultural soils were quantified in an incubation experiment using 14C-CO2 as a tracer. The soil samples showed significant differences in protein content and RubisCO activity, defined as nmol CO2 fixed g−1 soil min−1. RubisCO activities ranged from 10.68 to 68.07 nmol CO2 kg−1 soil min−1, which were closely related to the abundance of cbbL genes (r = 0.900, P = 0.0140) and the rates of microbial CO2 assimilation (r = 0.949, P = 0.0038). This suggests that RubisCO activity can be used as an indicator of soil microbial assimilation of atmospheric CO2.  相似文献   

14.
Relationships between soil pH and microbial properties in a UK arable soil   总被引:1,自引:0,他引:1  
Effects of changing pH along a natural continuous gradient of a UK silty-loam soil were investigated. The site was a 200 m soil transect of the Hoosfield acid strip (Rothamsted Research, UK) which has grown continuous barley for more than 100 years. This experiment provides a remarkably uniform soil pH gradient, ranging from about pH 8.3 to 3.7. Soil total and organic C and the ratio: (soil organic C)/(soil total N) decreased due to decreasing plant C inputs as the soil pH declined. As expected, the CaCO3 concentration was greatest at very high pH values (pH > 7.5). In contrast, extractable Al concentrations increased linearly (R2 = 0.94, p < 0.001) from below about pH 5.4, while extractable Mn concentrations were largest at pH 4.4 and decreased at lower pHs. Biomass C and biomass ninhydrin-N were greatest above pH 7. There were statistically significant relationships between soil pH and biomass C (R2 = 0.80, p < 0.001), biomass ninhydrin-N (R2 = 0.90, p < 0.001), organic C (R2 = 0.83, p < 0.001) and total N (R2 = 0.83, p < 0.001), confirming the importance of soil organic matter and pH in stimulating microbial biomass growth. Soil CO2 evolution increased as pH increased (R2 = 0.97, p < 0.001). In contrast, the respiratory quotient (qCO2) had the greatest values at either end of the pH range. This is almost certainly a response to stress caused by the low p. At the highest pH, both abiotic (from CaCO3) and biotic Co2 will be involved so the effects of high pH on biomass activity are confounded. Microbial biomass and microbial activity tended to stabilise at pH values between about 5 and 7 because the differences in organic C, total N and Al concentrations within this pH range were small. This work has established clear relationships between microbial biomass and microbial activity over an extremely wide soil pH range and within a single soil type. In contrast, most other studies have used soils of both different pH and soil type to make similar comparisons. In the latter case, the effects of soil pH on microbial properties are confounded with effects of different soil types, vegetation cover and local climatic conditions.  相似文献   

15.
《Soil biology & biochemistry》2001,33(12-13):1581-1589
The activity and biomass of soil microorganisms were measured in soils from 25 different arable sites in the Pacific region of Nicaragua with the objective of elucidating their interrelationship with soil textural and soil chemical properties. All soils developed from recent volcanic deposits but differ in their particle size distribution. Short-term phosphorus fixation capacity varied widely and was, on average, 11% of added P. In contrast, long-term P fixation capacity varied within a small range of around 55%. Mean basal respiration was 8.6 μg CO2–C d−1 g−1 soil, average contents of biomass C, biomass P, and ergosterol as an indicator of fungal biomass were 116, 1.95, and 0.34 μg g−1 soil, respectively. They were all, except biomass P, significantly lower in the sandy than in the loamy soils. The mean biomass C-to-soil C ratio was 0.69%, the mean metabolic quotient 95 mg CO2–C d−1 g−1 biomass C, the mean ergosterol-to-biomass C ratio 0.31% and the mean biomass C-to-P ratio 107. The very low ergosterol-to-biomass C ratio indicates that fungi contribute only a relatively small percentage to the microbial biomass. The biomass C-to-P ratio exceeded considerably the soil C-to-total P ratio. Metabolic quotient qCO2 and ergosterol-to-biomass C were both negatively correlated with biomass C-to-soil C ratio and clay content, indicating positive correlations between qCO2 and ergosterol-to-biomass C ratio and between biomass C-to-soil C ratio and clay content. Key problems of soil fertility and soil quality in Nicaragua are low availability of soil organic matter and phosphorus to soil microorganisms, which are magnified by a low percentage of fungi, probably reducing the ability of soil to provide nutrients for plant growth.  相似文献   

16.
《Soil biology & biochemistry》2001,33(7-8):1103-1111
Biologically active fractions of soil organic matter are important in understanding decomposition potential of organic materials, nutrient cycling dynamics, and biophysical manipulation of soil structure. We evaluated the quantitative relationships among potential C and net N mineralization, soil microbial biomass C (SMBC), and soil organic C (SOC) under four contrasting climatic conditions. Mean SOC values were 28±11 mg g−1 (n=24) in a frigid–dry region (Alberta/British Columbia), 25±5 mg g−1 (n=12) in a frigid–wet region (Maine), 11±4 mg g−1 (n=117) in a thermic–dry region (Texas), and 12±5 mg g−1 (n=131) in a thermic–wet region (Georgia). Higher mean annual temperature resulted in consistently greater basal soil respiration (1.7 vs 0.8 mg CO2–C g−1 SOC d−1 in the thermic compared with the frigid regions, P<0.001), greater net N mineralization (2.8 vs 1.3 mg inorganic N g−1 SOC 24 d−1, P<0.001), and greater SMBC (53 vs 21 mg SMBC g−1 SOC, P<0.001). Specific respiratory activity of SMBC was, however, consistently lower in the thermic than in the frigid regions (29 vs 34 mg CO2–C g−1 SMBC d−1, P<0.01). Higher mean annual precipitation resulted in consistently lower basal soil respiration (1.1 vs 1.3 mg CO2–C g−1 SOC d−1 in the wet compared with the dry regions, P<0.01) and lower SMBC (31 vs 43 mg SMBC g−1 SOC, P<0.001), but had inconsistent effects on net N mineralization that depended upon temperature regime. Specific respiratory activity of SMBC was consistently greater in the wet than the dry regions (≈33 vs 29 mg CO2–C g−1 SMBC d−1, P<0.01). Although the thermic regions were not able to retain as high a level of SOC as the frigid regions, due likely to high annual decomposition rates, biologically active soil fractions were as high per mass of soil and even 2–3-times greater per unit of SOC in the thermic compared with the frigid regions. These results suggest that macroclimate has a large impact on the portion of soil organic matter that is potentially active, but a relatively small impact on the specific respiratory activity of SMBC.  相似文献   

17.
Forests are the largest C sink (vegetation and soil) in the terrestrial biosphere and may additionally provide an important soil methane (CH4) sink, whilst producing little nitrous oxide (N2O) when nutrients are tightly cycled. In this study, we determine the magnitude and spatial variation of soil–atmosphere N2O, CH4 and CO2 exchange in a Eucalyptus delegatensis forest in New South Wales, Australia, and investigate how the magnitude of the fluxes depends on the presence of N2-fixing tree species (Acacia dealbata), the proximity of creeks, and changing environmental conditions. Soil trace gas exchange was measured along replicated transects and in forest plots with and without presence of A. dealbata using static manual chambers and an automated trace gas measurement system for 2 weeks next to an eddy covariance tower measuring net ecosystem CO2 exchange. CH4 was taken up by the forest soil (?51.8 μg CH4-C m?2 h?1) and was significantly correlated with relative saturation (Sr) of the soil. The soil within creek lines was a net CH4 source (up to 33.5 μg CH4-C m?2 h?1), whereas the wider forest soil was a CH4 sink regardless of distance from the creek line. Soil N2O emissions were small (<3.3 μg N2O-N m?2 h?1) throughout the 2-week period, despite major rain and snowfall. Soil N2O emissions only correlated with soil and air temperature. The presence of A. dealbata in the understorey had no influence on the magnitude of CH4 uptake, N2O emission or soil N parameters. N2O production increased with increasing soil moisture (up to 50% Sr) in laboratory incubations and gross nitrification was negative or negligible as measured through 15N isotope pool dilution.The small N2O emissions are probably due to the limited capacity for nitrification in this late successional forest soil with C:N ratios >20. Soil–atmosphere exchange of CO2 was several orders of magnitude greater (88.8 mg CO2-C m?2 h?1) than CH4 and N2O, and represented 43% of total ecosystem respiration. The forest was a net greenhouse gas sink (126.22 kg CO2-equivalents ha?1 d?1) during the 2-week measurement period, of which soil CH4 uptake contributed only 0.3% and N2O emissions offset only 0.3%.  相似文献   

18.
We used the eddy-covariance technique to measure evapotranspiration (E) and gross primary production (GPP) in a chronosequence of three coastal Douglas-fir (Pseudotsuga menziesii) stands (7, 19 and 58 years old in 2007, hereafter referred to as HDF00, HDF88 and DF49, respectively) since 1998. Here, we focus on the controls on canopy conductance (gc), E, GPP and water use efficiency (WUE) and the effect of interannual climate variability at the intermediate-aged stand (DF49) and then analyze the effects of stand age following clearcut harvesting on these characteristics. Daytime dry-foliage Priestley–Taylor α and gc at DF49 were 0.4–0.8 and 2–6 mm s?1, respectively, and were linearly correlated (R2 = 0.65). Low values of α and gc at DF49 as well at the other two stands suggested stomatal limitation to transpiration. Monthly E, however, showed strong positive linear correlations to monthly net radiation (R2 = 0.94), air temperature (R2 = 0.77), and daytime vapour pressure deficit (R2 = 0.76). During July–September, monthly E (mm) was linearly correlated to monthly mean soil water content (θ, m3 m?3) in the 0–60 cm layer (E = 453θ ? 21, R2 = 0.69), and GPP was similarly affected. Annual E and GPP of DF49 for the period 1998–2007 varied from 370 to 430 mm and from 1950 to 2390 g C m?2, respectively. After clearcut harvesting, E dropped to about 70% of that for DF49 while ecosystem evapotranspiration was fully recovered when stand age was ~12 years. This contrasted to GPP, which varied hyperbolically with stand age. Monthly GPP showed a strong positive linear relationship with E irrespective of the stand age. While annual WUE of HDF00 and HDF88 varied with age from 0.5 to 4.1 g C m?2 kg?1 and from 2.8 to 4.4 g C m?2 kg?1, respectively, it was quite conservative at ~5.3 g C m?2 kg?1 for DF49. N-fertilization had little first-year response on E and WUE. This study not only provides important results for a more detailed validation of process-based models but also helps in predicting the influences of climate change and forest management on water vapour and CO2 fluxes in Douglas-fir forests.  相似文献   

19.
《Applied soil ecology》2010,46(3):254-261
Soil microorganisms mediate many important biological processes for sustainable agriculture. The effect of a polymer-coated controlled-release urea (CRU, ESN®) on soil microbial communities was studied at six sites across western Canada from 2004 to 2006. Fertilizer treatments were CRU, urea and an unfertilized control. Timing of fertilizer application (fall vs. spring) was studied in 9 of the 18 site-years (combinations of sites and years). Wheat (Triticum aestivum L.), canola (Brassica napus L.) and barley (Hordeum vulgare L.) were grown in rotation at five sites, and silage corn (Zea mays L.) was grown in all 3 years at one site, under conventional tillage (CT) or zero tillage (ZT). The fertilizers were side-banded at 50–60 kg N ha−1 for wheat, barley and canola, and broadcast at 150 kg N ha−1 for corn. Microbial biomass C (MBC) and bacterial functional diversity and community-level physiological profiles (CLPPs) were determined at about the flowering stage of each crop. In situ CO2 evolution (soil respiration) was measured, and microbial metabolic quotient (qCO2) determined, at one site in 2 years. In the rhizosphere, fertilizer effects on MBC and functional diversity were observed in 1 and 5 of 18 site-years, respectively; and in bulk soil in 4 site-years each. These effects were usually positive relative to the control. CRU increased MBC or functional diversity more than urea in 3 site-years, but the opposite was observed in 1 site-year. Time of fertilizer application affected MBC in 1, and functional diversity in 2, of 9 site-years in the rhizosphere, and no effects were observed in bulk soil. Fall-applied fertilizer increased MBC more than spring-applied fertilizer, but the opposite was observed for functional diversity. Tillage affected MBC and functional diversity in 4 and 5 of 18 site-years, respectively, in the rhizosphere, and in 3 and 4 site-years in bulk soil. Tillage effects were usually in favour of ZT. There were no treatment effects on CO2 evolution, but an interactive effect of fertilizer and tillage on qCO2 was observed in 1 year when qCO2 in the control treatment was greater than that in either fertilizer treatment under CT, but urea increased qCO2 relative to the control under ZT. Shifts in CLPPs were sometimes observed where the treatment effects described above were not significant. Notwithstanding the limitations of culture-dependent CLPPs, most fertilizer effects on soil microbiological properties were not statistically significant. Therefore, these fertilizers probably did not adversely affect most soil biological processes.  相似文献   

20.
It is known that carbon (C) amendments increase microbial activity in anoxic soil microcosm studies, however the effects on abundance of total and denitrifier bacterial communities is uncertain. Quantitative PCR was used to target the 16S rRNA gene for the total bacterial community, the nosZ functional gene to reflect a broad denitrifier community, and functional genes from narrow denitrifier communities represented by Pseudomonas mandelii and related species (cnorBP) and Bosea/Bradyrhizobium/Ensifer spp. (cnorBB). Repacked soil cores were amended with varying amounts of glucose and red clover plant tissue (0–1000 mg C kg? 1 of soil) and incubated for 96 h. Carbon amendment significantly increased respiration as measured by cumulative CO2 emissions. Inputs of red clover or glucose at 1000 mg C kg? 1 of soil caused increased abundance in the total bacteria under the conditions used. There was about an approximate 2-fold increase in the abundance of bacteria bearing the nosZ gene, but only in treatments receiving 500 or 1000 mg C kg? 1 of soil of glucose or red clover, respectively. Additions of ≥ 500 mg C kg? 1 soil of red clover and ≥ 250 mg C kg? 1 of glucose increased cnorBP-gene bearing denitrifiers. Changes in abundance of the targeted communities were related to C availability in soil, as indicated by soil respiration, regardless of C source. Applications of C amendments at rates that would occur in agricultural soils not only increase microbial activity, but can also induce changes in abundance of total bacterial and denitrifier communities in studies of anoxic soil microcosms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号