首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
内蒙古河套灌区ET0不同计算方法的对比研究(简报)   总被引:4,自引:3,他引:1  
为了提出适合内蒙古河套灌区ET0计算方法,该文根据实测田间微气象资料,分别对5种参考作物腾发量(ET0)的计算方法(FAO56Penman-Monteith,Priestley-Taylor、FAO Penman、Hargreaves-Samani、Irmark-Allen拟合)进行对比分析,并评价各方法的适用性。结果表明,FAO Penman法的计算结果与FAO56 Penman-Monteith计算结果最为接近,其平均绝对误差与平均相对误差分别为0.43mm/d,12.50%;其他方法在不同季节具有不同的正负偏差。其中,在整个计算时段内,Irmark-Allen拟合法与Hargreaves-Samani法计算值与Penman-Monteith计算结果偏差较大,不适于在此地区气候条件下使用。FAO Penman法与FAO56 Penman-Monteith法基本相同,适用于大多数气候条件;Hargreaves-Samani法适用于在温差较小地区计算ET0;Irmark-Allen法与Priestley-Taylor法适用于在相对湿度较大地区应用。  相似文献   

2.
湛江地区适宜参考作物蒸发蒸腾量计算模型分析   总被引:6,自引:4,他引:6  
用湛江市日平均、旬平均、月平均气象资料,以6种方法计算参考作物蒸发蒸腾量,并以FAO56 Penman-Monteith公式计算结果为标准,评价其他方法在湛江的适用性.结果表明:Hargreaves-Samani方法的年平均参考作物蒸发蒸腾量与FAO56 Penman-Monteith没有显著差异;月平均参考作物蒸发蒸腾量,除个别月份外,其他5种方法与FAO56 Penman-Monteith方法都有显著差异;不同方法计算结果与FAO56 Penman-Monteith法的均方偏差不同的时间尺度表现不同,日值计算,1948 Penman方法最小,Irmark-Allen次之;旬值计算,1948 Penman方法最小,Hargreaves-Samani、Irmark-Allen次之;月值计算Hargreaves-Samani最小,1948 Penman次之.1948 Penman、FAO24 Penman与FAO56 Penman-Monteith法的相关系数较大,Priestley-Taylor、Irmark-Allen次之,Hargreaves-Samani法的较小.  相似文献   

3.
高寒草甸蒸散量及作物系数的研究   总被引:2,自引:0,他引:2  
利用FAO Penman-Monteith计算法(FAO P-M法)、Penman修正公式法(P法)、Irmark-Allen拟合公式法(I-A法)分别计算了海北高寒草甸参考作物蒸散量,并以FAO P-M法计算结果为标准,与其它两种方法的结果进行比较。结果表明,海北高寒草甸地区年参考作物蒸散量为812.0mm,其中植物生长季的5-9月为500.9mm。FAO P-M法计算参考作物蒸散量较为合理,造成其他两种方法计算结果偏差的原因主要是辐射项的选取及土壤热通量的影响。利用实测土壤含水量资料和水量平衡方法计算的植物生长期的5-9月植被实际蒸散量为425.5mm,与FAO P-M法得到的参考作物蒸散量相比计算作物系数,得到植物生长初期、中期和末期的作物系数分别为0.51、0.96和0.87。  相似文献   

4.
四川省不同区域参考作物蒸散量计算方法的适用性评价   总被引:2,自引:2,他引:0  
为实现参考作物蒸散量(reference crop evapotranspiration,ET0)在资料缺失情况下的准确计算,对ET0简化算法在四川省不同区域的适用性进行科学评价,将四川省划分为4个区域(I东部盆地区、II盆周山地区、III川西南地区和IV川西高原区),采用46个气象站点1954-2013年逐日气象资料,以1998 FAO-56 Penman-Monteith(PM)法的计算结果为标准,对具有代表性的6种简易算法48 Penman(48PM)法、Hargreaves-Samani(HS)法、Pristley-Taylor(PT)法、Irmark-Allen(IA)法、Makkink(MAK)法和Penman-Van Bavel(PVB)法的计算精度进行对比,结果表明:6种方法在四川省不同区域计算精度差异明显,HS法、PT法和PVB法较为精准,48PM法、IA法和MAK法误差较大,其中I区表现最好的为HS法,II、III和IV区表现最好的方法均为PT法;同时,除PT法和PVB法外,其余方法空间变异性较大(HS法在海拔较低的I、II区较为精准,在海拔较高的III和IV区结果远小于PM法,48PM法在四川东南地区的计算误差为11.1%~37.5%,在浅山丘区和高原区计算误差多大于50%)。因此,计算四川省的参考作物蒸散量时,推荐在东部盆地区使用HS法,盆周山地区、川西南地区与川西高原区使用PT法。  相似文献   

5.
参考作物蒸散量(ET_0)的准确估算是作物需水量及区域农业水分供需计算的关键,尽管已提出大量方法,但缺乏基于实测值的严格检验。本文利用北京小汤山2012年称重式蒸渗仪实测日值,检验16个ET_0模型,包括5个综合法、6个辐射法、5个温度法模型。依据均方根误差RMSE值,各模型估算效果的排序为FAO79 Penman=1963 Peman1996 Kimberly PenmanFAO24 PenmanFAO56 Penman-Monteith(PM)TurcFAO24 Blaney-Criddle(BC)DeBruin-KeijmanJensen-HaisePriestley-Taylor(PT)FAO24RadiationHargreavesMakkinkHamonMcloudBlaney-Criddle(BC)。总体而言,综合法表现最好,其RMSE在1.33~1.47mm·d~(-1),以FAO79 Penman和1963 Penman为最好;辐射法次之,其RMSE在1.48~1.77mm·d~(-1),以Turc最好;温度法检验效果最差,其RMSE在1.50~2.68mm·d~(-1),以FAO24 BC为最好。FAO79Penman和1963 Penman比最好的辐射法和温度法模型的精度分别高10%和13%。综合法、辐射法模型普适性好于温度法的原因在于其均含有影响ET_0的关键因子——辐射或饱和水汽压差VPD。所有模型均具有低蒸发条件下高估、高蒸发条件下低估的阈值特点,综合法及辐射法平均低估0.14mm·d~(-1)和0.33mm·d~(-1),而温度法平均高估0.52mm·d~(-1)。前两类方法 ET_0阈值相对较低,更适于低蒸发力条件,而温度法较适于高蒸发力条件。所有综合法、辐射法模型及温度法的Hargreaves和FAO24 BC法估算值与实测值变化趋势一致,说明模型结构合理,可通过参数校正提高精度;但对于与实测值趋势不吻合的温度法,模型结构尚需优化。VPD和最大湿度RHx是影响综合法、辐射法估算偏差的两大主要因子,其中VPD对低估类模型偏差影响最大,且偏差随着VPD增加而增大;而RHx对高估类综合法模型(1963 Penman、FAO79 Penman)偏差影响最大,且偏差随RHx增加而减小。校正后的PT(1.38)、Makkink(0.83)、Turc(0.014)及Hamon(1.248)系数大于原系数,而Hargreaves(0.0019)和BC(0.192)校正系数低于原系数。此外,PT与Hamon的系数利用最小相对湿度、Turc和Makkink系数利用VPD、Hargreaves和BC系数利用辐射或日照时数能得到最佳估算。FAO56 PM表现不佳(RMSE=1.47mm·d~(-1))的原因与站点气候干燥程度、较低的空气动力项权重有关。后人对原始Penman式的诸多修正并没有显著改善精度,因此建议在类似气候条件地区继续使用老版本Penman式。同时,对FAO56 PM的进一步检验将有助于回答"FAO56 PM是否真正比其它综合法具有优势,在何种气候下表现好,在高蒸发条件下低估是否为普遍现象"等科学问题。  相似文献   

6.
两种Penman-Monteith公式计算草坪草参考腾发量的适用性   总被引:2,自引:0,他引:2  
为了揭示ASCE和FAO56两种Penman-Monteith公式在计算小时参考作物腾发量(ET0)时的差异,开展了充分供水草坪草腾发量观测试验。基于自动气象站的小时气象数据和蒸渗仪试验结果,在对比两公式计算结果差异基础上,以实测的日草坪腾发量为标准评价了2种计算公式小时ET0的日累积结果及以日的计算结果。结果表明:2种Penman-Monteith公式计算的小时ET0结果存在一定差异,ET0较高的时段差异也比较大。白天FAO56 Penman-Monteith公式的计算结果低于ASCE Penman-Monteith公式的计算结果,夜晚则正好相反,原因在于Cd取值的差异。与实测日ET0结果相比2种公式小时时段的ET0结果的累积值误差均比较大,ASCE的改进并没有使Penman-Monteith在计算结果上取得实质性的改进,相比之下以日为时段的Penman- Monteith公式(ASCE同FAO56)取得了与实测结果最为一致的效果。进一步根据实测的小时ET0数据以及更长序列的日ET0实测结果,评价FAO56 Penman-Monteith和ASCE Penman-Monteith结果的地区适用性将是今后研究内容之一。  相似文献   

7.
陕西关中地区ET0计算公式的适用性评价   总被引:4,自引:4,他引:0  
为明确参考作物蒸发蒸腾量(ET0)计算公式在陕西关中地区的适用性,该文按照FAO(1994)对Penman-Monteith公式的设定条件,采用称重式蒸渗仪测定ET0。以该实测值为标准,对具有代表性的ET0计算公式:FAO-17Modified-Penman(FAO-MP)、裴步祥修订的Modified Penman(PBX-MP)、Penman-Monteith(PM)、ASCEPenman-Monteith(ASCE-PM)公式进行对比分析,研究不同ET0计算公式在该地区的适用性及计算值产生偏差的原因。试验结果表明,ASCE-PM计算值与实测值最接近,线性回归系数为1.03(R2=0.87),绝对误差为0.31mm;其次为PM、PBX-MP、FAO-MP。气象因子对辐射项和空气动力项的不同影响造成各计算值与实测值的差异,其中,大气温度、日照时数及相对湿度对辐射项影响较大,风速对空气动力项影响较大。ASCE-PM公式可应用于陕西关中半湿润地区ET0计算。  相似文献   

8.
参考作物蒸散发(ET0,reference evapotranspiration)是计算植被耗水量、分析区域水分平衡、管理水资源的基本参数。由于区域间气象条件的差异,ET0模型在不同地区表现出不同的适用性。蒸渗仪实测是欧美地区评价参考作物蒸散发模型的经典方法,而中国尚少研究,华北地区未见报道。2012年生长季(4-10月),应用自动称重式蒸渗仪实测高羊茅草坪蒸散评价了Penman-Monteith(FAO-56)、Hargreaves-Samani、Priestley-Taylor、Penman-van Bavel模型在北京地区的适用性。在2个蒸渗仪中建植冷季型高羊茅草坪,以获得ET0标准数据。试验地安装Dynamet气象站,自动测量并记录气象数据:空气温度、空气相对湿度、太阳总辐射和高度2m的风速,用于模型计算参考作物蒸散发。应用线性回归与均方根误差(RMSE)、一致性指数(d)2个指标评价模型的预测准确性。研究结果表明,太阳总辐射与月蒸散之间呈现较强的线性关系(R2=0.95,p=2.72×10-7),说明太阳辐射能量是驱动SPAC(soil-plant-atmosphere continuum)系统中水分从植被向大气运动的主要动力。随着时间尺度减小,模型的估算准确度降低。由于模型的输入参数不同,在ET0计算中出现了不同方向的偏差。月尺度上,Priestley-Taylor模型低估,而Penman-Monteith、Hargreaves-Samani和Penman-van Bavel模型高估了蒸散。日尺度上,Hargreaves-Samani模型和Penman-van Bavel模型略微高估了日蒸散,比率分别为1.0167和1.0526;Penman-Monteith模型和Priestly-Taylor模型低估了日蒸散,比率分别为0.8204和0.7593。时尺度上,除了Priestly-Taylor模型全部得出最低的数值,其余模型在不同天气类型下得出不同的计算结果。综合月、日、时3个时间尺度的评价结果,Penman-van Bavel是最准确的ET0计算公式,RMSE分别为0.63 mm/d(月)、1.43 mm/d(日)、0.087mm/h(时),d值分别为0.96(月)、0.89(日)、0.87(时)。Penman-Monteith模型的计算准确性比Penman-van Bavel模型略低,d值为0.73~0.93。  相似文献   

9.
陆面潜在蒸散计算模型在甘肃省黄土高原的适用性研究   总被引:2,自引:0,他引:2  
甘肃省黄土高原地区处于半干旱半湿润气候过渡区,潜在蒸散的准确估算是该区水资源评估的重要工作之一.运用西峰国家基准气候站1961-2006年气象资料,选用5种半干旱地区研究潜在蒸散普遍适宜的计算模型,以该区的蒸发量为参考,对各种计算模型进行了评估.结果表明,FAO Penman-Monteith(1998)模型与蒸发量相关性显著,均方差值小,稳定性高,是计算该地潜在蒸散的首选模型;其次为FAO PPP-17模型;Hargreaves模型所需气候因子较少,计算便捷,准确性较好,有一定使用优势;Priestley-Taylor模型计算值有一定参考意义,但在夏季与蒸发量的相关水平较低,在使用时还要作进一步地订正;24Radiation模型的夏季计算值与蒸发量的相关性不能通过假设检验,有一定的时间局限性,不宜作为该地区研究潜在蒸散的计算模型.  相似文献   

10.
安徽省参考作物蒸散模型参数化   总被引:1,自引:1,他引:0  
模型参数优化是准确估算参考作物蒸散(reference crop evapotranspiration,ET0)的关键问题之一。该研究基于安徽省81个地面气象站点1961—2011年逐日气象数据和合肥、武汉、南京、杭州和南昌5个辐射站1993—2011年的逐日辐射数据,评估日尺度的净长波辐射、气压和水汽压模型在安徽地区的适用性;并结合已有研究获得的最优逐日太阳辐射参数化估算模型,建立安徽省本地化逐日ET0模型的最优参数化方案,探讨模型参数优化对ET0估算的影响。结果表明:7种净长波辐射估算参数化方案中,邓根云法的精度最高,在安徽地区的适用性优于其他方案,建议作为安徽本地化方案使用;FAO56 Penman-Monteith公式中推荐的气压估算模型和基于实测平均气温和相对湿度估算水汽压的模型在安徽省基本适用,但该研究认为在资料能够获取的情况下直接使用实测值为最优。与基于实测资料计算的ET0相比,该研究建立的本地化最优模型估算的ET0在日、月和年尺度上的相对误差分别为15.5%、9.05%和6.12%,能较好地适用于安徽地区。FAO56 Penman-Monteith公式推荐的参数化方案由于高估了安徽地区的太阳辐射,低估了净长波辐射,导致其与基于实测资料计算的ET0值相比,在日、月和年尺度上高估ET0达40.0%以上,不推荐安徽地区直接使用。研究可为安徽省准确估算作物需水量、农业旱涝评估和合理调度水资源等提供依据。  相似文献   

11.

Purpose

Rice-paddy-dominated watersheds in eastern China are intensively cultivated, and lands with two crops receive as much as 550–600 kg?ha–1?year–1 of nitrogen (N), mainly through the addition of N-based fertilizers. However, stream N concentrations have been found to be relatively low. Waterways in the watersheds are assumed to be effective “sinks” for N, minimizing its downstream movement. We directly measured net sediment denitrification rates in three types of waterways (ponds, streams/rivers, and a reservoir) and determined the key factors that control net sediment denitrification. Such information is essential for evaluating the impact of the agricultural N cycle on the quality of surface water.

Materials and methods

The pond–stream–reservoir continuum was sampled every 2 months at nine sites in an agricultural watershed between November 2010 and December 2011. Net sediment N2 fluxes/net sediment denitrification rates were determined by membrane inlet mass spectrometry and the N2/Ar technique. A suite of parameters known to influence denitrification were also measured.

Results and discussion

Net denitrification rates ranged between 28.2?±?18.2 and 674.3?±?314.5 μmol N2–N?m–2?h–1 for the streams, 23.7?±?23.9 and 121.2?±?38.7 μmol N2–N?m–2?h–1 for the ponds, and 41.8?±?17.7 and 239.3?±?49.8 μmol N2–N?m–2?h–1 for the reservoir. The mean net denitrification rate of the stream sites (173.2?±?248.4 μmol N2–N?m–2?h–1) was significantly higher (p?<?0.001) than that of the pond sites (48.3?±?44.5 μmol N2–N?m–2?h–1), and the three types of waterways all had significantly higher (p?<?0.01) mean net denitrification rates in summer than in other seasons. Linear regression and linear mixed effect model analysis showed that nitrate (NO3 ?–N) concentration in surface water was the primary controlling factor for net sediment denitrification, followed by water temperature. Using monitoring data on NO3 ?–N concentrations and temperature of the surface water of waterways and an established linear mixed effect model, total N removed through net sediment denitrification in the pond–stream–reservoir continuum was estimated at 46.8?±?24.0 t?year–1 from July 2007 to June 2009, which was comparable with earlier estimates based on the mass balance method (34.3?±?12.7 t?year–1), and accounted for 83.4 % of the total aquatic N. However, the total aquatic N was only 4.4 % of the total N input to the watershed, and thus most of the surplus N in the watershed was likely to be either denitrified or stored in soil.

Conclusions

High doses of N in a rice-paddy-dominated watershed did not lead to high stream N concentrations due to limited input of N into waterways and the high efficiency of waterways in removing N through denitrification.  相似文献   

12.
Phytoremediation is an emerging technology based on the use of green plants to remove, contain, inactivate or destroy harmful environmental pollutants. Recent developments in Europe and the USA show that the approach is somewhat different on both sides of the Atlantic. In Europe, phytoremediation has more basically been research driven and, based on the outcomes, applications have been envisaged. By contrast, the approach in the USA is more application and experience driven. In spite of a growing track record of commercial success, more demonstration projects are needed to prove that phytoremediation is effective in order to rigorously measure its underlying economics, and to expand its applications. More fundamental research is also required to better understand the complex interactions between pollutants, soil, plant roots and micro-organisms at the rhizosphere level, to increase the bioavailability of pollutants, to fully exploit the metabolic diversity of plants and, thus, to successfully implement this new green technology.  相似文献   

13.
Trace metals (Cd, Cu, Fe, Mn, Pb, and Zn) concentrations in atmospheric precipitation have been routinely monitored in Sweden since the autumn of 1983. Concentrations are highest in southern Sweden and decrease northward. It is postulated that the long range transport of anthropogenic pollutants from the rest of Europe is the major source of Cd, Pb, and Zn in precipitation. Evidence for this hypothesis is that enrichment factors indicate anthropogenic origin, and Swedish atmospheric emissions of Zn and Cd are 2 to 3 times smaller than deposition fluxes. Also, Cd, Pb, and Zn concentrations are correlated in both space and time and are also well correlated with exSO4 +, a substance known to be of anthropogenic origin transported long distances.  相似文献   

14.
Water, Air, & Soil Pollution - Epiphytic lichens were sampled in a Dutch national monitoring survey, which was carried out twice within 5 yr. The samples were analyzed by neutron activation...  相似文献   

15.
中国华北地区近40年物候春季变化   总被引:17,自引:4,他引:17  
根据华北地区7个观测站物候资料,分析了华北地区1963-1996年及北京1963-2005年物候春季的变化特征及其与气温的关系。结果表明:华北地区的物候春季有明显提早来临的趋势,而造成这一变化的主要因素是本地区近40 a来冬春季气温的明显上升。其中1963-1996年间华北地区1-3月及4月的平均气温分别上升了2.3℃与1.7℃,物候春季起止日期分别提前了9d和4d,因而使得春季长度也延长了5d;北京1963-2003年间1-3月及4月的平均气温分别上升了3.5℃与2.6℃,物候春季的起止日期分别提前了11d和10d,但春季长度没有明显变化。  相似文献   

16.
对天津周边半干旱地区不同种植年限的菜田土壤微生物状况调查研究表明 ,该地区土壤微生物以细菌为主 ,夏季微生物总量大大高于冬季 ;随着种菜年限的增加 ,耕层和亚耕层微生物总量都有增加趋势 ,其中细菌和放线菌增加明显 ,真菌有下降趋势 ;真菌类群分析表明 ,少数纤维素分解菌 ,如青霉 (Penicillium)、木霉 (Trichoderma)等为优势菌 ,而糖和木质素分解菌仅占少数。用尖孢镰刀霉 (Fusariumuoxysporum)、大肠杆菌 (Escherichia coli)接种不同种菜年限土壤 ,检测土壤拮抗菌状况发现 ,拮抗菌仅在种植年限长的老菜田的放线菌中发现。表明北方半干旱地区菜田土壤细菌为优势菌 ,主要存在于土壤微孔隙中 ;而适于生活在土壤疏松大孔隙中的真菌数量极少。应注意土壤结构的改良 ,为丰富土壤微生物提供良好的生态环境  相似文献   

17.
对天津周边半干旱地区不同种植年限的菜田土壤微生物状况调查研究表明 ,该地区土壤微生物以细菌为主 ,夏季微生物总量大大高于冬季 ;随着种菜年限的增加 ,耕层和亚耕层微生物总量都有增加趋势 ,其中细菌和放线菌增加明显 ,真菌有下降趋势 ;真菌类群分析表明 ,少数纤维素分解菌 ,如青霉 (Penicillium)、木霉 (Trichoderma)等为优势菌 ,而糖和木质素分解菌仅占少数。用尖孢镰刀霉 (Fusariumuoxysporum)、大肠杆菌 (Escherichia coli)接种不同种菜年限土壤 ,检测土壤拮抗菌状况发现 ,拮抗菌仅在种植年限长的老菜田的放线菌中发现。表明北方半干旱地区菜田土壤细菌为优势菌 ,主要存在于土壤微孔隙中 ;而适于生活在土壤疏松大孔隙中的真菌数量极少。应注意土壤结构的改良 ,为丰富土壤微生物提供良好的生态环境  相似文献   

18.
沈阳市城市表土中微生物区系变化的初步研究   总被引:2,自引:0,他引:2  
在沈阳市远郊-近郊-市区等不同城市化水平区内选取林地、草地和路边土几种不同利用方式下的表层土壤,对土壤中的微生物状况进行了初步分析。结果表明,随着城市化水平的提高,土壤中微生物的数量表现为明显的减少趋势。其中变化较大的是细菌,而真菌和放线菌的变化不明显。  相似文献   

19.
闽北不同土地利用方式径流量动态变化特征   总被引:6,自引:0,他引:6  
采用定位研究方法和小集水区试验技术方法,通过两年的降雨量数据观测,对闽北地区木荷林地、杉木林地、封山育林地和对照等不同土地利用方式的小集水区进行坡面径流动态规律研究。研究结果表明:试验小区地表径流的产生主要是受降雨量的影响,而与降雨强度的关系不大,地表径流量与降雨量之间呈现出极显著的非线性二次抛物线关系(P<0.01)。4种不同土地利用方式的月平均径流量一般随月降雨量的增大而增大,并且在同1月份间其平均地表径流量的大小趋势为:对照>封山育林>杉木>木荷,均是在6月份达到最大值,9月份出现最小值。对照比木荷林地、杉木林地、封山育林地更容易产生地表径流,林地具有较好的涵养水源和保持水土作用。  相似文献   

20.
2013年我国种植业化肥施用状况分析   总被引:25,自引:5,他引:25  
【目的】我国农用化肥消费量大,数据来源不同,统计口径各异,行业内大多引用国家统计局公布的数据,但该数据无法推算出氮肥、磷肥、钾肥分类消费量。我国区域间、季节间、作物间化肥消费情况的报道很少,在调节化肥供需、指导化肥行业健康发展时显得依据不足。调查种植业化肥施用状况可以为指导肥料生产、供应提供重要依据。【方法】以农业部339个国家级基层肥料信息网点为依托,根据我国农业生产习惯和我国政府部门统计习惯,将一年分为三个用肥季,1 5月份为春耕季,6 8月份为夏播季,9 12月份为秋冬种季。在三个季节,每个网点随机调查30个农户的主要种植作物施用氮肥、磷肥、钾肥、复合(混)肥(包括配合式)量,经两级土壤肥料部门审核后,采用省份、相似种植区域、全国三级逐级加权平均的方法,推算了不同区域、不同季节、不同作物单位面积施肥量;再用作物单位面积施肥量、该作物全国种植总面积、样本中施肥面积占该作物种植面积的比例推算了作物全年、不同季节化肥施用量。同时,分析了主要作物、不同季节化肥施用状况以及供需平衡情况,不同季节、不同区域供肥情况和农民的购肥习惯。【结果】2013年我国种植业化肥施用量5498万吨(折纯下同),其中,氮肥(实物量)3382万吨,磷肥1175万吨,钾肥941万吨。粮食作物化肥总用量为2782万吨,占种植业化肥总用量的50.6%;其次是果树和蔬菜,三类作物占种植业化肥施用总量的82.8%,经济、园艺作物单位面积化肥施用量大于粮食作物。春耕、夏播、秋冬种化肥施用量分别占全年化肥施用量的34.2%、35.6%、30.2%。复混肥料和尿素是农民最常购买的两种肥料,从全年来看,农民施用复混肥料和尿素的样本数分别占总样本数的72.5%和71.6%,春耕、夏播、秋冬种农民购买尿素和复合(混)肥的样本数分别占该阶段样本数的70.9%和62.9%、84.9%和78.1%、56.6%和83.9%。春耕和夏播时期农民多数选用尿素,秋冬种多数选用复混肥料,东北、西北、华中南地区农民多选用尿素,华北、西南、华东地区农民多选用复混肥料。另外,我国氮肥、磷肥供应分别过剩1080万吨、680万吨,钾肥缺口370万吨,供需矛盾突出。氮、磷、钾养分配合式为15-15-15的复混肥样本数占农民选购复混肥总样本数的33.3%,说明复混肥养分结构不尽合理。【结论】建议国家进一步遏制氮肥、磷肥过剩产能,优化产品结构,大力推广科学施肥技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号