首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural changes of alkali-treated rockfish protein isolate (AKPI) during frozen storage were elucidated using a Raman spectrometer and scanning electron microscope (SEM). The results were compared to conventional surimi (CS). No significant textural difference was noted between AKPI stored at pH 5.5 and 7.0. The strongest texture was found for AKPI frozen with cryoprotectants and CS, while the weakest texture was observed in AKPI frozen without cryoprotectants. SEM revealed the most discontinuity in gels of AKPI with no cryoprotectants and a more aggregated microstructure after storage at pH 5.5 than at neutral pH. Raman spectral analysis demonstrated refolding of AKPI by pH readjustment to 7.0, although the refolded structure was not identical to that before the pH shift. CS showed higher alpha-helix content (approximately 50%) than AKPI (approximately 20-30%). Frozen storage induced a decrease and an increase in the alpha-helix content of CS and AKPI samples, respectively. AKPIs were slightly less stable than CS during frozen storage.  相似文献   

2.
The conformation of oat globulin dispersions (10% in D2O) under the influence of pH, chaotropic salts, protein structure perturbants, and heating conditions was studied by Fourier transform infrared (FTIR) spectroscopy. The FTIR spectrum of oat globulin showed major bands from 1670 to 1634 cm(-1), corresponding to the four major types of secondary structures, that is, beta-turns, beta-sheets, alpha-helices, and random coils. At extreme acidic and alkaline pH conditions, there were changes in intensity in the bands attributed to beta-sheet structures (1626, 1634, and 1682 cm(-1)), and shifts of the bands to higher or lower wavenumbers, indicating changes in conformation. In the presence of some chaotropic salts, the 1626 and 1634 cm(-1) bands were shifted upward, with a marked decrease in the intensity of the 1634 cm(-1) peak. The addition of several protein structure perturbants led to a slight shift in the alpha-helix/random coil bands and a marked reduction in the beta-sheet peaks, suggesting protein unfolding. Heating under aggregating conditions led to slight shifts in all of the major bands and progressive changes in the intensity of the alpha-helix, beta-sheet, and beta-turn peaks, suggesting protein denaturation. This was accompanied by marked increases in intensity of the two intermolecular beta-sheet bands (1682 and 1624-1626 cm(-1)) associated with the formation of aggregated strands. The IR spectra of soluble and insoluble aggregates showed a redistribution of native and extensively denatured proteins in the two fractions.  相似文献   

3.
Pressure-induced conformational changes in D(2)O solutions of the two genetic variants of beta-lactoglobulin A (beta-lg A) and beta-lactoglobulin B (beta-lg B) and an equal mixture of both variants (beta-lg A+B) were studied by employing variable-pressure Fourier transform infrared (VP-FTIR) spectroscopy. Changes in the secondary structure of beta-lg A were observed at lower pressure compared to beta-lg B, indicating that beta-lg A had a more flexible structure. During the decompression cycle beta-lg A showed protein aggregation, accompanied by an increase in alpha-helical conformation. The changes in the secondary structure of beta-lg B with the pressure were minor and for the most part reversible. Upon decompression no aggregation in beta-lg B was observed. Increasing the pressure from 0.01 to 12.0 kbar of a solution containing beta-lg A+B resulted in substantial broadening of all major amide I bands. This effect was partially reversed by decreasing the hydrostatic pressure. beta-lg A+B underwent less aggregate formation than beta-lg A, possibly as a result of protein-protein interactions between beta-lg A and beta-lg B. Hence, it is likely that the functional or biological attributes of beta-lg proteins may be affected in different ways by hydrostatic pressure.  相似文献   

4.
The use of Fourier transform near-infrared (FT-NIR) spectroscopy and multivariate pattern recognition techniques for the rapid detection and identification of bacterial contamination in liquids was evaluated. The complex biochemical composition of bacteria yields FT-NIR vibrational transitions (overtone and combination bands) that can be used for classification and identification. Bacterial suspensions (Escherichia coli HB101, E. coli ATCC 43888, E. coli 1224, Bacillus amyloliquifaciens, Pseudomonas aeruginosa, Bacillus cereus, and Listeria innocua) were filtered to harvest the cells and eliminate the matrix, which has a strong NIR signal. FT-NIR measurements were done using a diffuse reflection-integrating sphere. Principal component analysis showed tight clustering of the bacterial strains at the information-rich spectral region of 6000-4000 cm(-1). The method reproducibly distinguished between different E. coli isolates and conclusively identified the relationship between a new isolate and one of the test species. This methodology may allow for the rapid assessment of potential bacterial contamination in liquids with minimal sample preparation.  相似文献   

5.
This article deals with the potential of Fourier transform (FT) Raman spectroscopy in discrimination of botanical species of green and roasted coffees. There are two species of commercial importance: Coffea arabica (arabica) and Coffea canephora (robusta). It is recognized that they differ in their lipid fraction, especially in the content of the diterpene kahweol, which is present at 0.1-0.3% dry matter basis in arabica beans and only in traces (<0.01%) in robusta. The visual examination of the Raman spectra of the lipid fraction extracted from arabica, robusta and liberica samples shows differences in the mid-wavenumbers region: arabica spectra have two characteristic scattering bands at 1567 and 1478 cm(-1). The spectrum of the pure kahweol shows the same bands. Principal component analysis is applied to the spectra and reveals clustering according to the coffee species. The first principal component (PC1) explains 93% of the spectral variation and corresponds to the kahweol concentration. Using the PC1 score plot, two groups of arabica can be distinguished as follows: one group with high kahweol content and another group with low kahweol content. The first group includes samples coming from Kenya and Jamaica; the second group includes samples from Australia. The main difference between these coffees is that those from Kenya and Jamaica are well-known for growing at a high altitude whereas those ones from Australia are grown at a low altitude. To our knowledge, the application of Raman spectroscopy has never been used in coffee analysis.  相似文献   

6.
In this feasibility study, Fourier transform infrared (FTIR) spectroscopy and chemometric analysis were adopted to discriminate coffees from different geographical origins and of different roasting degrees. Roasted coffee grounds were extracted using two methods: (1) solvent alone (dichloromethane, ethyl acetate, hexane, acetone, ethanol, or acetic acid) and (2) coextraction using a mixture of equal volume of the solvent and water. Experiment results showed that the coextraction method resulted in cleaner extract and provided a greater amount of spectral information, which was important for sample discrimination. Principal component analysis of infrared spectra of ethyl acetate extracts for dark and medium roast coffees showed separated clusters according to their geographical origins and roast degrees. Classification models based on soft independent modeling of class analogy analysis were used to classify different coffee samples. Coffees from four different countries, which were roasted to dark, were 100% correctly classified when ethyl acetate was used as a solvent. The FTIR-chemometric technique developed here may serve as a rapid tool for discriminating geographical origin of roasted coffees. Future studies involving green coffee beans and the use of larger sample size are needed to further validate the robustness of this technique.  相似文献   

7.
The purity and composition of commercial carrageenans vary widely and, therefore, have to be checked prior to their use in the food industry. Infrared spectroscopy is an alternative method to the expensive and time-consuming wet chemical and NMR methods to characterize carrageenan samples. The use of an attenuated total reflection accessory coupled to a Fourier transform infrared spectrophotometer allows a direct analysis of the sample without any preparation step, which is an additional benefit for the rapid identification check of raw material at reception in an industrial environment. Using a set of calibration samples, three multivariate calibrations were developed to predict the total carrageenan content as well as the molar ratio of kappa- and iota-carrageenans. A validation with an independent set of samples confirmed the robustness of the calibrations and the accuracy of the predictions. The accuracies of the calibrations given by their respective standard errors of prediction are 5.6 g/100 g, and 6.1 mol %, and 6.6 mol %, respectively, for the total carrageenan content and the molar ratios of kappa- and iota-carrageenans. The total preparation and analysis time is <5 min per sample.  相似文献   

8.
Fourier transform horizontal attenuated total reflectance (FT-HATR) was used to examine changes in the secondary structure of gluten proteins in a flour-water dough system during mixing. Midinfrared spectra of mixed dough revealed changes in four bands in the amide III region associated with secondary structure in proteins: 1317 (alpha-helix), 1285 (beta-turn), 1265 (random coil), and 1242 cm (-1) (beta-sheet). The largest band, which also showed the greatest change in second derivative band area (SDBA) during mixing, was located at 1242 cm (-1). The bands at 1317 and 1285 cm (-1) also showed an increase in SDBA over time. Conversely, the band at 1265 cm (-1) showed a corresponding decrease over time as the doughs were mixed. All bands reached an optimum corresponding to the minimum mobility of the dough as determined by the mixograph. Increases in alpha-helix, beta-turn, and beta-sheet secondary structures during mixing suggest that the dough proteins assume a more ordered conformation. These results demonstrate that it is possible, using infrared spectroscopic techniques, to relate the rheological behavior of developing dough in a mixograph directly to changes in the structure of the gluten protein system.  相似文献   

9.
Lysozyme (25% in D2O, corn oil, and their emulsions (10% w/w oil/D2O solution) were examined by Fourier transform Raman spectroscopy. Emulsions showed three layers, namely, top oil, middle cream, and bottom aqueous layers. Raman spectral analysis revealed hydrophobic interactions involving both protein and lipid components. Compared to lysozyme in D2O, the difference spectrum obtained after subtraction of oil from the cream layer spectrum showed reduced intensity of tryptophan bands at 760, 1013, 1340, and 1360 cm(-)(1), reduced intensity ratio of the tyrosine doublet at 850 and 830 cm(-)(1), and increased intensity of the C-H bending band at 1455 cm(-)(1). Compared to corn oil, the difference spectrum after subtraction of lysozyme from the cream layer spectrum indicated decreased intensity at 2855 cm(-)(1) (lipid CH(2) symmetric stretch) and 3011 cm(-)(1) (unsaturated fatty acid hydrocarbon chain =C-H stretch) and a higher intensity ratio of the C-H stretching band at 2900 cm(-)(1) to bands at 2885 and 2933 cm(-)(1). Spectra of the top and bottom layers resembled corn oil and lysozyme, respectively, except for changes in the D2O band. Raman spectroscopy can be used to detect structural changes in proteins, lipids, and D2O due to protein-lipid interactions.  相似文献   

10.
In some soils, aggregate coatings and walls of biopores differ in the content of clay and organic carbon from that of the aggregate interiors or the soil matrix. The composition of the organic matter on aggregates and on the surfaces of biopores is largely unknown. We have compared the composition of organic matter between inner and outer parts of aggregates and between biopore walls and the soil matrix in a loamy arable soil and a sandy forest one. Hot‐water‐ and sodium‐pyrophosphate‐extractable organic matter was analysed by Fourier transform infrared (FT‐IR) spectroscopy. For the sandy forest soil, the FT‐IR spectra showed that organic matter from the walls of root channels contains fewer functional groups with absorption bands at 1740–1710 cm?1 and 1640–1600 cm?1 than that from burrow fillings. For the arable soil, the content of these functional groups in hot‐water‐soluble organic matter from the coatings is less than in that from the interiors in the topsoil, and the reverse is so in the subsoil, probably because water‐soluble organic matter containing these functional groups has moved from topsoil to subsoil. The results indicate that root channels in the forest soil have more reactive zones in an otherwise relatively inert sandy matrix, whereas aggregate coatings in the arable subsoil have a greater cation exchange capacity and a greater sorption potential for hydrophobic substances than the aggregate interiors.  相似文献   

11.
Abstract

The rate of zinc (Zn) desorption from soil surfaces into soil solution is a dynamic factor that regulates its continuous supply to growing plants. To ascertain the pattern of Zn desorption as a function of phosphorus (P) application rate and pH, kinetics of Zn desorption from three surface soils representative of three major benchmark soil series were investigated using four equations. Zinc desorption decreased continuously with increase in pH from 4.25 to 8.00 in Oxisol. By contrast, Alfisol and Vertisol exhibited maximum Zn desorption at pH 5.50. Thereafter, Zn desorption decreased abruptly at pH 6.75 and finally steady state condition was obtained in both sodium chloride (NaCl) and calcium chloride (CaCl2) medium. The Elovich equation described Zn desorption kinetics much better at pH 4.25 and 5.50 followed by Parabolic diffusion equation at pH 6.75 and 8.00 for all the soils in NaCl medium. Whereas in the CaCl2 medium, the Elovich equation was superior in fitting the Zn desorption data irrespective of P level, pH, and soil. The Elovich constant (β) indicated that P affects Zn desorption inversely up to pH values 6.75.  相似文献   

12.
The collective term "conjugated linoleic acid" or "CLA" generally refers to a mixture of conjugated positional and geometric isomers of linoleic (cis-9,cis-12-octodecadienoic) acid. In nature, these isomers are mainly formed in the rumen by biohydrogenation of polyunsaturated fatty acids. This study concerns a first trial of CLA determination in cow's milk fat by Raman spectroscopy. The spectra of pure cis-9-oleic, cis-9,cis-12-linoleic, cis-9,trans-11-linoleic, and trans-10,cis-12-linoleic acids have been examined in comparison with the spectra of selected milk-fat samples containing between 0 and 3% of CLA. The trial of CLA determination by Raman spectroscopy on cow milk fat has reached its objective with the two following results. First, the examination of the Raman spectra allows to identify three specific Raman signals of the chemical bonds associated to the cis,trans conjugated C=C in the rumenic and trans-10,cis-12-octodecadienoic acids at 1652, 1438, and 3006 cm(-1). Second, the calibration of Raman spectrometer for the CLA determination has indicated that these three specific signals suit very well for the accurate and reliable measurement of CLA concentration in milk fat. To our knowledge, the present study is the first successful attempt to determine the CLA content of milk fat by a spectrophotometric method.  相似文献   

13.
Monovarietal white wines from Maria Gomes and Bical Portuguese Bairrada varieties were prepared according to different maceration and pectic enzyme clarification procedures. The polysaccharide-rich extracts, obtained by wine concentration, dialysis, and lyophilization, were fractionated by graded ethanol precipitation. A wide range of fractions rich in polysaccharides were obtained. Using the spectral region between 1200 and 800 cm(-)(1) of the FTIR spectra of the wine polysaccharide dry extracts, using PCA and CCA chemometric methods, it was possible to discriminate the extracts on the basis of their polysaccharide composition. Moreover, it was possible to identify the wine-making processes involved and their influence on the wine polysaccharides. Furthermore, a calibration model using a PLS1 was proposed for the quantification of mannose in the samples obtained by precipitation with 60% ethanol aqueous solutions. This information will allow an expeditious assessment and monitoring of the polysaccharide composition and modifications that occur during the wine-making processing and evolution.  相似文献   

14.
An improved method for the determination of pectin degree of esterification (DE) by diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was developed. Pectin samples with a range of DE as determined by gas chromatography were used for developing a calibration curve by DRIFTS. A linear relationship between the DE of pectin standards and FTIR peak ratio for ester carboxyl peak area to total carboxyl peak area was found (R(2) = 0.97). Pectin DE of various samples was calculated from the linear fit equation developed by DRIFTS. Accuracy of the DRIFTS method was determined by comparing the DE values of four commercial pectins obtained by DRIFTS methods to the values obtained by the gas chromatography method. Greater precision was obtained for the FTIR measurement of test pectin samples when the ester peak ratio was used relative to the ester peak area.  相似文献   

15.
The feasibility of rapid analysis for oligosaccharides, including isomaltose, isomaltotriose, maltose, and panose, in Chinese rice wine by Fourier transform near-infrared (FT-NIR) spectroscopy together with partial least-squares regression (PLSR) was studied in this work. Forty samples of five brewing years (1996, 1998, 2001, 2003, and 2005) were analyzed by NIR transmission spectroscopy with seven optical path lengths (0.5, 1, 1.5, 2, 2.5, 3, and 5 mm) between 800 and 2500 nm. Calibration models were established by PLSR with full cross-validation and using high-performance anion-exchange chromatography coupled with pulsed amperometric detection as a reference method. The optimal models were obtained through wavelength selection, in which the correlation coefficients of calibration (r(cal)) for the four sugars were 0.911, 0.938, 0.925, and 0.966, and the root-mean-square errors of calibrations were 0.157, 0.147, 0.358, and 0.355 g/L, respectively. The validation accuracy of the four models, with correlation coefficients of cross-validation (r(cv)) being 0.718, 0.793, 0.681, and 0.873, were not very satisfactory. This might be due to the low concentrations of the four sugars in Chinese rice wine and the influence of some components having structures similar to those of the four sugars. The results obtained in this study indicated that the NIR spectroscopy technique offers screening capability for isomaltose, isomaltotriose, maltose, and panose in Chinese rice wine. Further studies with a larger Chinese rice wine sample should be done to improve the specificity, prediction accuracy, and robustness of the models.  相似文献   

16.
Fourier transform infrared spectroscopy (FT-IR, 4000-600 cm(-)(1)) was used to discriminate between intact and sonication-injured Listeria monocytogenes ATCC 19114 and to distinguish this strain from other selected Listeria strains (L. innocua ATCC 51742, L. innocua ATCC 33090, and L. monocytogenes ATCC 7644). FT-IR vibrational overtone and combination bands from mid-IR active components of intact and injured bacterial cells produced distinctive "fingerprints" at wavenumbers between 1500 and 800 cm(-)(1). Spectral data were analyzed by principal component analysis. Clear segregations of different intact and injured strains of Listeria were observed, suggesting that FT-IR can detect biochemical differences between intact and injured bacterial cells. This technique may provide a tool for the rapid assessment of cell viability and thereby the control of foodborne pathogens.  相似文献   

17.
Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were used to study changes in the conformation of globulin from common buckwheat (Fagopyrum esculentum Moench) (BWG) under various environmental conditions. The IR spectrum of the native BWG showed several major bands from 1691 to 1636 cm(-1) in the amide I' region, and the secondary structure composition was estimated as 34.5% beta-sheets, 20.0% beta-turns, 16.0% alpha-helices, and 14.4% random coils. Highly acidic and alkaline pH conditions induced decreases in beta-sheet and alpha-helical contents, as well as in denaturation temperature (Td) and enthalpy of denaturation (DeltaH), as shown in the DSC thermograms. Addition of chaotropic salts (1.0 M) caused progressive decreases in ordered structures and thermal stability following the lyotropic series of anions. The presence of several protein structure perturbants also led to changes in IR band intensities and DSC thermal stabilities, suggesting protein unfolding. Intermolecular antiparallel beta-sheet (1620 and 1681 cm(-1)) band intensities started to increase when BWG was heated to 90 degrees C, suggesting the initiation of protein aggregation. Increasing the time of the preheat treatment (at 100 degrees C) caused progressive increases in Td and pronounced decreases in DeltaH, suggesting partial denaturation and reassociation of protein molecules.  相似文献   

18.
19.
为了实现对籽棉含水率的快速、无损检测,该研究采用傅里叶变换近红外光谱技术建立籽棉含水率定量检测模型。首先探究了籽棉样本密度对于光谱曲线的影响,该研究发现样本密度大小对光谱曲线影响显著,密度越小光谱信号越强,当样品密度不低于0.088 6 g/cm3时,光谱曲线变化趋于平稳。通过采集籽棉样本在3 900~11 000 cm-1波数范围的吸光度光谱数据,并应用了9种预处理方法对原始光谱数据进行处理。发现一阶导数结合消除趋势(first derivative-detrending,FD-DT)预处理方法在偏最小二乘回归(partial least squares regression,PLSR)模型建立时表现最佳。使用了竞争自适应重复加权法(competitive adaptive reweighted sampling,CARS)、信息增益法(information gain,IG)、连续投影法(successive projections algorithm,SPA)和相关系数(correlation coefficient,CC)等算法,来获...  相似文献   

20.
Extracted fractions from black and red common beans (Phaseolus vulgaris) were studied using Fourier transform infrared spectroscopy (FT-IR). Beans were stored under three conditions: control at 4 degrees C; hard-to-cook (HTC) at 29 degrees C, 65% RH for 3.5 months; and refrigerated at 2 degrees C, 79% RH for 3.5 months after a HTC period (called HTC-refrigerated). Two fractions isolated from the beans, the soluble pectin fraction (SPF) and the water insoluble residue of the cell wall (WIRCW), were analyzed using diffuse reflectance (DRIFTS) FT-IR. The soaking water and cooking water from the beans were also studied using attenuated total reflectance (ATR) FT-IR. The DRIFTS FT-IR results from the SPF and WIRCW fractions were consistent with previously published data for Carioca beans showing that in general, more phenolic compounds were associated with the SPF of HTC beans than in the control beans. Results also showed that HTC-refrigerated beans had higher concentrations of phenolic compounds than control beans in the SPF. The ATR FT-IR results for soaking and cooking waters from the HTC-refrigerated and HTC beans had higher concentrations of absorbing compounds than the control beans, indicating that they lost more constituents to the water. Additionally, results indicate that the mechanism(s) for reversibility of the HTC defect could be different than the one(s) involved in the development of the defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号