首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary Failure forms caused by axial ultimate compression stress in three softwood and nine hardwood species and in model specimens made of wood, paper and plastics are described. Three categories of failure forms are distinguished: 1. Wood characteristic failure forms are connected with the general anisotropic structure of the wood. 2. Failure forms specific to the species are modifications of the first category arising from predominant anatomical structures. 3. Modifications of the failure forms are also induced experimentally. The interdependence among the anatomical structure, strength characteristics and failure forms of the wood specimens are examined by statistical methods. The structure cipher introduced in this paper, as a numerical characteristic of the anatomical features of the wood species, is seen to be the most important influencing factor as regards the intensity and pattern of the fracture, followed in second and third place by the geometry of the specimen and its specific gravity. Specimen volume and other factors are shown to have only a marginal influence on the fracture morphology.The strength tests were carried out as part of a diploma thesis by K. Buchmüller. Also the assistance of E. Risi in measuring and evaluating is gratefully acknowledged  相似文献   

2.
以产自非洲国家的刺猬紫檀 (Pterocarpus erinaceus ) 木材为样品,测定分析木射线宽度与高度 的尺寸、细胞数目,木射线比率。结果表明:轴向薄壁组织带中的射线宽度尺寸均大于木纤维带中的射 线宽度尺寸。木射线的细胞数目及木射线比率则差异性小。从木射线组织解剖结果看,采自西非7 个国 家的刺猬紫檀应该同属一个木种。  相似文献   

3.
国产阔叶树材晶体的研究   总被引:1,自引:0,他引:1  
张立非  姜笑梅 《林业科学》1993,29(5):424-428
用扫描电镜和光学显微镜观察了国产阔叶树材620种(隶76科262属)木材的构造特征。其中含晶体的有231种(隶44科111属),占所观察树种的37%。晶体的主要形态为菱形,其它为针晶体,针晶束,柱状晶体,晶砂,晶簇等。晶体的形态,分布及其方式与树种有关,品体在木材识别与分类上具有一定的意义。晶体可以视为区分阔叶树材属或种的辅助特征。  相似文献   

4.
Variations in radial patterns of xylem water content and sap flow rate were measured in five laurel forest tree species (Laurus azorica (Seub.) Franco, Persea indica (L.) Spreng., Myrica faya Ait., Erica arborea L. and Ilex perado Ait. ssp. platyphylla (Webb & Berth.) Tutin) growing in an experimental plot at Agua García, Tenerife, Canary Islands. Measurements were performed around midday during warm and sunny days by the heat field deformation method. In all species, water content was almost constant (around 35% by volume) over the whole xylem cross-sectional area. There were no differences in wood color over the whole cross-sectional area of the stem in most species with the exception of E. arborea, whose wood became darker in the inner layers. Radial patterns of sap flow were highly variable and did not show clear relationships with tree diameter or species. Sap flow occurred over the whole xylem cross-sectional area in some species, whereas it was limited to the outer xylem layers in others. Sap flow rate was either similar along the xylem radius or exhibited a peak in the outer part of the xylem area. Low sap flow rates with little variation in radial pattern were typical for shaded suppressed trees, whereas dominant trees exhibited high sap flow rates with a peak in the radial pattern. Stem damage resulted in a significant decrease in sap flow rate in the outer xylem layers. The outer xylem is more important for whole tree water supply than the inner xylem because of its larger size. We conclude that measurement of radial flow pattern provides a reliable method of integrating sap flow from individual measuring points to the whole tree.  相似文献   

5.
Trees of tropical semi-deciduous forests range from "drought-avoiding" stem-succulent species with low-density wood (< 0.5 g cm(-3)), which maintain high stem water potentials (psi(STEM) > -0.7 MPa) throughout the year, to "drought-tolerant" deciduous hardwood species (wood density > 0.75 g cm(-3)), which dehydrate strongly during seasonal drought (psi(STEM) < -6 MPa). In stem-succulent and other drought-avoiding species, xylem vessels are surrounded by extensive parenchyma providing intracellular water storage, whereas in deciduous species stem water storage is mainly extracellular. Thirteen tropical and two temperate tree species, representing different functional types, were studied. The contribution of stem water storage to these species' water use during water stress was determined by time-series analysis of dehydration and rehydration of excised leaf-bearing branches of these trees. During dehydration, stem water potential slowly declined 1-2 MPa in drought-avoiding species, but in deciduous species it rapidly fell 4-5 MPa, suggesting that water storage capacitance was related to xylem anatomy. After immersion of dehydrated, leafless branches in water, the decline in xylem tension and rate of water uptake during rehydration were linearly related, as predicted by application of Ohm's law to water flux. The decline of xylem tension during rehydration was biphasic, with a phase of rapid water uptake into extracellular spaces being followed by a prolonged phase of slow water uptake into living cells. The rate of water uptake during rehydration and the minima of leaf water potential observed in the field during the dry season were highly correlated with water storage capacitance, indicating that wood anatomy is a major determinant of drought adaptation.  相似文献   

6.
The effect of water-stress conditioning on water relations and histological features ofPinus thunbergii Parl. inoculated with avirulent isolate ofBursaphelenchus xylophilus (Steiner and Buhrer) Nickle, pine wood nematode, were investigated. Pines were kept under 8 days cycle of severe water stress. One-half of the water-stressed pines died as a result of infection by avirulent pine wood nematode and water stress tended to induce increased susceptibility and/or decreased resistance of pines to avirulent pine wood nematode. In dead pines, the water conducting function of xylem was lost, and all of the parenchyma cells died. In surviving pines, the xylem hydraulic conductivity and the xylem water content were significantly reduced (12 to 23% and 77 to 83%, respectively) compared to controls. Safranin dye perfusion of excised axis stem segments indicated that the water conductance was limited to the very narrow peripheral area of xylem. Embolism caused by cavitation in the tracheids occurred in the central part of xylem and in that dysfunctional region of the xylem the axial parenchyma cells surrounding the epithelial cells, and ray parenchyma cells partly degenerated but the epithelial cells survived. The disruption of tracheid shape observed in surviving pines indicates that avirulent pine wood nematode temporarily disturbed cell division of the cambium. Considering the differences in responses between dead pines and surviving pines after inoculation with avirulent pine wood nematode, the death of water-stressed pines apparently resulted from death of cells, in particular the vascular cambium and the loss of xylem hydraulic function by cavitation.  相似文献   

7.
A coupled experimental and numerical modelling approach was used to investigate the mechanism of softwood fracture at the fibre level. First, a three-dimensional mixed lattice-continuum fracture model was developed to investigate the mechanism of wood fracture, taking into account the porosity of its structure and its heterogeneities at the fibre level. The critical volumes in the specimen where crack propagation was more probable were modelled by a lattice that could show the alternation of earlywood and latewood fibres, and the other regions were considered as the continuum medium. The proposed model was used to investigate the mode I fracture of a small softwood sample in RL orientation. Secondly, a method was developed for microscopic observation of the crack trajectory and investigating the mechanism of initiation and propagation of cracks. This approach was used for microscopic investigation of the fracture behaviour of spruce specimens in mode I and RL orientation. The results of the numerical study were compared with the experimental results. The prepeak and postpeak behaviour of the obtained stress-displacement curve and also the crack opening trajectory in cross-section and longitudinal section in the model and experiments were in good agreement. Both the model and the microscopic observation showed that in mode I fracture and RL orientation, the main trajectory of the crack propagates in the earlywood ring.  相似文献   

8.
木麻黄树干细胞组织结构与对星天牛抗虫性的关系   总被引:6,自引:0,他引:6  
黄金水  黄海清 《林业科学》1997,33(6):534-540
本文报道了4个品系木麻黄木材组织显微解剖结果,分析了木材导管、导管间区木化细胞和射线等物理特征,探讨了木麻黄抗虫机制。高抗品系C44木材导管数量少,单位面积(1mm2)仅有20.25个导管,且占木材面积少,仅为9.72%;导管间区木化细胞较明显,壁厚与腔径比值最大,为56.59;单位面积射线的束数、长度、宽度和射线面积/总面积等指标均为最低。说明该品系木麻黄木质部水分含量低、材质坚硬致密、木质部提供养分少,因而不利于星天牛幼虫的生存发育。  相似文献   

9.
Lignin deposition at consecutive secondary wall thickening stages of early and late xylem cells during annual ring wood formation in Scots pine (Pinus sylvestris L.) stems was studied. Lignin patterns, isolated by thioglycolic acid method, consisted of alcohol-soluble (LTGA-I) and alkali-soluble (LTGA-II) fractions. The sum of two fractions, being the total lignin content, gradually increased in the course of lignification. However, the increments of lignin amount at each development stage of early and late tracheids were different. The intensity of lignin deposition increased in the course of earlywood tracheid maturation and decreased toward the end of latewood cell differentiation. The deposition of two lignin fractions in each layer of forming wood also occurred oppositely. The increment of LTGA-I descended, whereas that of LTGA-II increased from the beginning to the end of early xylem lignification. In contrast, LTGA-I increment dropped, whereas LTGA-II rose during late xylem lignification. Gel permeation chromatography showed that the lignins, formed at the beginning of lignification, were more homogeneous and had higher molecular weight compared with the lignins at the end of cell differentiation. Besides, the content of cellulose, estimated as the residue after lignin isolation, and of cell wall substances, presented as cell wall cross-section areas, at consecutive maturation stages of early and late xylem cells have been found to be different. The data show that lignin deposition occurred in different conditions and with opposite dynamics during early and late xylem formation.  相似文献   

10.
Abstract

A coupled experimental and numerical modelling approach was used to investigate the mechanism of softwood fracture at the fibre level. First, a three-dimensional mixed lattice–continuum fracture model was developed to investigate the mechanism of wood fracture, taking into account the porosity of its structure and its heterogeneities at the fibre level. The critical volumes in the specimen where crack propagation was more probable were modelled by a lattice that could show the alternation of earlywood and latewood fibres, and the other regions were considered as the continuum medium. The proposed model was used to investigate the mode I fracture of a small softwood sample in RL orientation. Secondly, a method was developed for microscopic observation of the crack trajectory and investigating the mechanism of initiation and propagation of cracks. This approach was used for microscopic investigation of the fracture behaviour of spruce specimens in mode I and RL orientation. The results of the numerical study were compared with the experimental results. The prepeak and postpeak behaviour of the obtained stress–displacement curve and also the crack opening trajectory in cross-section and longitudinal section in the model and experiments were in good agreement. Both the model and the microscopic observation showed that in mode I fracture and RL orientation, the main trajectory of the crack propagates in the earlywood ring.  相似文献   

11.
ABSTRACT

Structural alterations in the wood cell walls of neem inoculated with by Trametes hirsuta and T. versicolor were studied by microscopic methods. In vitro decayed wood showed extensive weight loss of test blocks (26.7 and 41.38% by T. versicolor and T. hirsuta, respectively) at the end of 3 months. Selective delignification in the initial phase followed by simultaneous removal of lignin was evident in test blocks inoculated with both the species. The separation of middle lamellae and patches of cellulosic polysaccharides stained blue with Astra blue in the delignified region of the fiber wall during early stages indicates selective mode of decay. In contrast, the occurrence of erosion troughs with characteristic U-notch in tangential sections is a characteristic feature of simultaneous rot that was apparent after 3 months of incubation. The decay pattern occurred concomitantly in all the xylem elements irrespective of general resistance pattern shown by vessel and axial parenchyma cells. At an advance stage, both species of Trametes showed formation of erosion channels along the microfibrils angle of cellulose which is considered as characteristics of soft rot decay type. The sharing of white rot and soft rot decay pattern by both the fungi suggest a phylogenetic link between both groups of fungi.  相似文献   

12.
Abstract

Thermal modification at elevated temperatures changes the chemical, biological and physical properties of wood. In this study, the effects of the level of thermal modification and the decay exposure (natural durability against soft-rot microfungi) on the modulus of elasticity (MOE) and modulus of rupture (MOR) of the sapwood and heartwood of Scots pine and Norway spruce were investigated with a static bending test using a central loading method in accordance with EN 408 (1995). The results were compared with four reference wood species: Siberian larch, bangkirai, merbau and western red cedar. In general, both the thermal modification and the decay exposure decreased the strength properties. On average, the higher the thermal modification temperature, the more MOE and MOR decreased with unexposed samples and increased with decayed samples, compared with the unmodified reference samples. The strength of bangkirai was least reduced in the group of the reference wood species. On average, untreated wood material will be stronger than thermally modified wood material until wood is exposed to decaying fungi. Thermal modification at high temperatures over 210°C very effectively prevents wood from decay; however, strength properties are then affected by thermal modification itself.  相似文献   

13.
适于木材种类识别颜色空间的研究   总被引:2,自引:0,他引:2  
为了确定适合木材种类识别的颜色空间,分别在RGB、HSV、L^*a^*b^*、I1I2I3和归一化T五个常用颜色空间中,获取了木材样本的颜色直方图和颜色矩特征,并进行了识别试验。结果表明,HSV是最适合木材种类识别的颜色空间。  相似文献   

14.
Ultrasonic emission (UE) testing is used to analyse the vulnerability of xylem to embolism, but the number of UEs often does not sufficiently reflect effects on hydraulic conductivity. We monitored the absolute energy of UE signals in dehydrating xylem samples hypothesizing that (i) conduit diameter is correlated with UE energy and (ii) monitoring of UE energy may enhance the utility of this technique for analysis of xylem vulnerability. Split xylem samples were prepared from trunk wood of Picea abies, and four categories of samples, derived from mature (I: earlywood, II: 30-50% latewood, III: >50% latewood) or juvenile wood (IV: earlywood) were used. Ultrasonic emissions during dehydration were registered and anatomical parameters (tracheid lumen area, number per area) were analysed from cross-sections. Attenuation of UE energy was measured on a dehydrating wood beam by repeated lead breaks. Vulnerability to drought-induced embolism was analysed on dehydrating branches by hydraulic, UE number or UE energy measurements. In split samples, the cumulative number of UEs increased linearly with the number of tracheids per cross-section, and UE energy was positively correlated with the mean lumen area. Ultrasonic emission energies of earlywood samples (I and IV), which showed normally distributed tracheid lumen areas, increased during dehydration, whereas samples with latewood (II and III) exhibited a right-skewed distribution of lumina and UE energies. Ultrasonic emission energy was hardly influenced by moisture content until ~40% moisture loss, and decreased exponentially thereafter. Dehydrating branches showed a 50% loss of conductivity at -3.6 MPa in hydraulic measurements and at -3.9 and -3.5 MPa in UE analysis based on cumulative number or energy of signals, respectively. Ultrasonic emission energy emitted by cavitating conduits is determined by the xylem water potential and by the size of element. Energy patterns during dehydration are thus influenced by the vulnerability to cavitation, conduit size distribution as well as attenuation properties. Measurements of UE energy may be used as an alternative to the number of UEs in vulnerability analysis.  相似文献   

15.
Summary During a survey on the anatomy of New Zealand native woods, trabeculae were observed in the xylem cells of 6 hardwood species endemic to New Zealand. They were not found in a further 216 species. In some species they were observed only in the vessel members while in others they occurred in the vessel members, fibres and axial parenchyma cells. Their diameter is proportional to the thickness of the host cell wall. The similarites and differences between these trabeculae and those described as occurring in softwoods and other hardwoods are discussed. No explanation is proposed for their origin.We are indebted to the Conservators of Forests for Nelson and Westland, and to the Egmont, Abel Tasman, Urewera and Arthur's Pass National Park Boards for permission to collect wood samples; and also to Mr R. R. Exley, Physics and Engineering Laboratory D.S.I.R. for technical assistance.  相似文献   

16.
17.
植物激素与木材形成   总被引:7,自引:0,他引:7  
沈惠娟 《林业科学》1996,32(2):165-170
综述了植物激素在树木维管组织分化中的作用.生长素是调节木质部细胞分化的主要因子;细胞分裂素在诱导分生组织发端和分生细胞分化上起重要作用;赤霉素促进纤维的形成,赤霉素和生长素结合使用,可有效地促进次生木质部中纤维分化;乙烯能促进树木韧皮部和木质部分化。还讨沦了木材形成过程中的三个主要问题:生长素含量的多少直接控制了沿树轴木质部导管、管胞的大小和密度;外界环境因子影响木质部细胞分化;温带落叶阔叶树环孔材和散孔材形成的机理,生长素控制环孔材树种早材宽导管的形成以及晚材窄导管和纤维形成的假说。对今后改善树木木材的质和量上有一定参考价值。  相似文献   

18.
Wood density, a gross measure of wood mass relative to wood volume, is important in our understanding of stem volume growth, carbon sequestration and leaf water supply. Disproportionate changes in the ratio of wood mass to volume may occur at the level of the whole stem or the individual cell. In general, there is a positive relationship between temperature and wood density of eucalypts, although this relationship has broken down in recent years with wood density decreasing as global temperatures have risen. To determine the anatomical causes of the effects of temperature on wood density, Eucalyptus grandis W. Hill ex Maiden seedlings were grown in controlled-environment cabinets at constant temperatures from 10 to 35 degrees C. The 20% increase in wood density of E. grandis seedlings grown at the higher temperatures was variously related to a 40% reduction in lumen area of xylem vessels, a 10% reduction in the lumen area of fiber cells and a 10% increase in fiber cell wall thickness. The changes in cell wall characteristics could be considered analogous to changes in carbon supply. Lumen area of fiber cells declined because of reduced fiber cell expansion and increased fiber cell wall thickening. Fiber cell wall thickness was positively related to canopy CO2 assimilation rate (Ac), which increased 26-fold because of a 24-fold increase in leaf area and a doubling in leaf CO2 assimilation rate from minima at 10 and 35 degrees C to maxima at 25 and 30 degrees C. Increased Ac increased seedling volume, biomass and wood density; but increased wood density was also related to a shift in partitioning of seedling biomass from roots to stems as temperature increased.  相似文献   

19.
Seasonal change in the drought response of wood cell development in poplar   总被引:1,自引:0,他引:1  
Arend M  Fromm J 《Tree physiology》2007,27(7):985-992
Field-grown poplar trees (Populus nigra L. x P. maximowiczii Henry, clone Kamabuchi) were exposed to severe drought twice during the growing season to evaluate the impact on wood cell development. The drought treatment caused a reduction in leaf water potential, leaf wilting and a decreased concentration of osmotically active solutes in the cambial zone. Drought-induced changes in the anatomy of developing xylem cells were examined in stem sections and macerated wood samples. In early summer, drought significantly reduced the length and cross-sectional area of newly formed fibers, whereas no such effects were observed in late summer. In well-watered trees, fiber cross-sectional area declined between early and late summer. Similarly, drought reduced the cross-sectional area of vessel elements in early summer but not in late summer, whereas in both control and drought-treated trees, the cross-sectional area of vessel elements decreased between early and late summer. The vessel area to xylem area ratio was unaffected by drought because the drought-induced decrease in vessel size was matched by an increase in the number of newly formed vessel cells. In contrast to its effect in early summer, late-summer drought had no significant effect on fiber and vessel cell development, indicating that sensitivity of wood cell development to drought varies seasonally.  相似文献   

20.
Finite element techniques and models for wood fracture mechanics   总被引:1,自引:0,他引:1  
Numerical models for wood fracture and failure are commonly based on the finite element method. Most of these models originate from general theoretical considerations for other materials. This limits their usefulness because no amount of complexity in a model can substitute for lack of an appropriate representation of the physical mechanisms involved. As for other materials, wood fracture and failure models always require some degree of experimental calibration, which can introduce ambiguity into numerical predictions because at present there is a high degree of inconsistency in test methods. This paper explores avenues toward achieving models for wood fracture that are both appropriate and robust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号