首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
为降低田间振动干扰对谷物产量检测精度的影响,同时增加测产系统的实用性,设计了一种基于CAN总线技术、无线通信技术以及计算机网络技术的新型谷物智能测产系统。系统包括车载子系统和远程监测子系统2个部分,实现了谷物产量的现场监测、产量图绘制、远程监控与收获作业管理等功能。车载部分设计了弧形冲量传感器,提出了机械减振和双板差分方法来降低收割机振动对谷物流量测量的影响,采用数字阈值滤波的方法来提高谷物产量的测量精度,并建立了总产量和单位面积产量的数学模型。田间动态试验结果表明双板回归差分方式滤除干扰的效果优于直接差分,其最大测产误差为8.03%,测产平均误差为3.27%,最大测产误差比直接差分方式降低了7.12个百分点,最后绘制了试验地块的产量分布图。另外,系统的远程监控部分开发了界面友好的收获作业管理系统,实现了谷物产量的远程监测与管理。系统总体运行性能良好,满足了测产需要。  相似文献   

3.
平行梁冲量式谷物质量流量传感器弹性元件设计   总被引:9,自引:5,他引:4  
冲量式传感器具有结构简单、使用方便等优点,但容易受到基础振动的干扰。为此设计了平行梁结构冲量式谷物质量流量传感器弹性元件,对弹性元件安装端部采用了削弱设计。有限元分析表明该设计方案不仅符合应力集中原则,而且可以提高传感器抵抗振动干扰的能力。给出了传感器电桥电路,以及后续放大、电压电流变换等调理电路,使得传感器输出零点可以方便调节,降低了传感器在联合收割机上的安装要求。试验结果表明,传感器线性度误差小于0.1%,输出不受外力作用点的影响,同时具备了合适的工作频带宽度。  相似文献   

4.
为加速推进中国智慧农业发展,深入了解精准农业技术体系中田间谷物产量在线监测技术的研究现状,该研究重点概述了国内外谷物联合收获机在线测产方法,包括动态称量测量、体积测量、冲击力测量、射线测量及其他测量方法,介绍了不同测量方法的原理和测产传感器的关键技术与应用。从可行性、通用性、稳定性与准确性方面,分析归纳了中国当前谷物产量在线监测技术所存在的主要问题,指出冲击力测量方法应用广泛,但尚未考虑谷物与冲击板碰撞时对谷物造成的机械损伤等问题。同时,该研究提出了谷物联合收获机在线测产技术未来的研究重点与发展方向,旨在为作物产量信息监测技术与智能化农业机械装备的发展和应用提供理论依据和技术参考。  相似文献   

5.
谷物联合收割机测产数据中的误差分析与处理   总被引:2,自引:7,他引:2       下载免费PDF全文
产量分布图作为实施精细农业的起点与农业生产管理决策的基础,其精度至关重要,而产量数据误差分析与处理则是提高产量分布图精度的关键。通过连续两年使用带有测产系统的联合收割机进行收获试验,并对得到的产量数据进行分析,发现产量数据中主要存在三类误差,即割幅宽度设置误差、填充时间误差和延迟时间误差。讨论了这三类误差的产生原因、识别和处理方法,并对小麦和玉米在不同收获条件下的误差进行了比较。分析结果表明,割幅宽度设置误差数据所占的比例一般小于6%,填充时间误差数据大于10%,延迟时间误差数据小于1%。  相似文献   

6.
农业信息技术与精确农业的发展   总被引:18,自引:7,他引:18  
介绍了美国精确农业发展现状及当前进行的主要工作,阐述精确农业就是信息农业的概念。着重介绍SSCM(根据田间具体情况作物管理系统)系统和YieldMap产量图在精确农业发展中的作用及GIS与精确农业的不可分关系。  相似文献   

7.
农村土地承包到户以后,农作物产量的调查统计工作只能通过随机抽取样本,调查样本产量,然后用样本产量来推算总产量的方法完成。普遍采用的两种调查方法(以人为主的入户调查法和以地块为主的测产调查法)各有优势,文章通过对两种调查方法的比较,评价其优劣。  相似文献   

8.
产量影响因子分析是精准农业变量作业的重要前提,是产量、土壤、环境信息转化为变量作业决策不可逾越的重要环节。本研究阐述了国内外产量影响因子分析中的常用方法和相关软件,并对产量图分析系统进行了系统流程和功能模块设计。  相似文献   

9.
变量施肥对玉米产量及土壤养分影响的试验   总被引:13,自引:3,他引:13  
采用自主开发设计的基于GPS和GIS技术的自动变量施肥系统,于2003、2004年间进行了玉米种植条件下变量施肥田间试验。与相邻传统施肥地块相比,变量施肥在一定程度上增加了玉米产量,在合理控制化肥用量的情况下,可以达到既减少投入又增加产量的目的。土壤养分分析结果表明:两年试验前后,变量区与传统施肥区土壤中的碱解氮含量均有所增长,但变量区碱解氮含量的变异系数较传统区减少;变量区和传统施肥区速效磷的含量都有所下降,且变量区较传统区下降明显,变异系数减少;速效钾含量均增加,增加幅度基本一致,但变量区变异系数下降。说明变量施肥具有一定均衡土壤养分的作用。  相似文献   

10.
It depended on the spatial and temporal variation of soil and grain yield to implement precision agriculture.Grain yield monitoring on combine harvester was a cornerstone of precision fertilization.The intelligent grain yield monitoring system with the sensors and DGPS(differential global positioning system),which was loaded on the combine harvester,could get the different blocks’yield and produce the yield map.In this study,a new grain yield monitoring system based on CAN bus technology was developed.The system consisted of sensor unit,data acquisition unit,GPS module and LCD(liquid crystal display)terminal.The grain yield data were collected by the grain flow sensor,and processed by the signal condition circuit.And then the grain yield data and GPS signal were transmitted to the control unit by CAN bus.With the algorithm of grain yield conversion,all the collected data including real-time grain yield,harvest area and average grain yield were displayed on the LCD terminal.Flow sensor unit included grain yield flow sensor,force impact plate and mounting bracket.The sensor frame was mounted at the top of clean grain elevator of combine harvester.When the elevator paddles rotated around the sprocket,grain was propelled towards a flat impact plate.As grain momentum was lost in the subsequent collision with the impact plate,an effective force was measured by the impact parallel-beam load cell.Along with the calibration relationship between measured force and mass flow rate,the output of the impact parallel-beam load cell could indicate the flow rate of grain yield.Data acquisition unit included power conversion circuit,sensor signal acquisition circuit,analog-to-digital conversion circuit and CAN communication circuit.It could fulfill data acquisition function,CAN communication function and interrupt handling function.LCD terminal had the function of sensor detection,the function of GPS information collection,parameter calibration,data display and storage.It could display the real-time grain yield,total yield,average yield and harvest area.In order to evaluate the grain yield monitoring system,3 experiments which included static performance experiment of grain yield flow sensor,platform test experiment of grain yield monitoring system and dynamic performance experiment on combine harvester were carried out.The result of platform test experiment showed that the system error between predicted yield and measured yield was less than 3%and the system could avoid the effect of vibration from the platform effectively.Field dynamic experiment showed that the system error was less than 5%.Both the experimental results indicated that the grain yield monitoring system could satisfy the need of practical production.  相似文献   

11.
为了提高谷物收获作业过程中谷物产量在线监测的精度,研制了基于谷物流压力原理的车载谷物产量在线监测系统,该系统包括谷物流量监测装置、定位装置、割台高度控制开关、核心处理器以及人机交互装置.以谷物产量与谷物流压力间的谷物产量监测数学模型为指导,搭建了谷物产量监测试验台,采用Box-Behnken试验设计方法优化谷物流量监测...  相似文献   

12.
It depended on the spatial and temporal variation of soil and grain yield to implement precision agriculture.Grain yield monitoring on combine harvester was a cornerstone of precision fertilization.The intelligent grain yield monitoring system with the sensors and DGPS (differential global positioning system), which was loaded on the combine harvester, could get the different blocks’ yield and produce the yield map.In this study, a new grain yield monitoring system based on CAN bus technology was developed.The system consisted of sensor unit, data acquisition unit, GPS module and LCD (liquid crystal display) terminal.The grain yield data were collected by the grain flow sensor, and processed by the signal condition circuit.And then the grain yield data and GPS signal were transmitted to the control unit by CAN bus.With the algorithm of grain yield conversion, all the collected data including real-time grain yield, harvest area and average grain yield were displayed on the LCD terminal.Flow sensor unit included grain yield flow sensor, force impact plate and mounting bracket.The sensor frame was mounted at the top of clean grain elevator of combine harvester.When the elevator paddles rotated around the sprocket, grain was propelled towards a flat impact plate.As grain momentum was lost in the subsequent collision with the impact plate, an effective force was measured by the impact parallel-beam load cell.Along with the calibration relationship between measured force and mass flow rate, the output of the impact parallel-beam load cell could indicate the flow rate of grain yield.Data acquisition unit included power conversion circuit, sensor signal acquisition circuit, analog-to-digital conversion circuit and CAN communication circuit.It could fulfill data acquisition function, CAN communication function and interrupt handling function.LCD terminal had the function of sensor detection, the function of GPS information collection, parameter calibration, data display and storage.It could display the real-time grain yield, total yield, average yield and harvest area.In order to evaluate the grain yield monitoring system, 3 experiments which included static performance experiment of grain yield flow sensor, platform test experiment of grain yield monitoring system and dynamic performance experiment on combine harvester were carried out.The result of platform test experiment showed that the system error between predicted yield and measured yield was less than 3% and the system could avoid the effect of vibration from the platform effectively.Field dynamic experiment showed that the system error was less than 5%.Both the experimental results indicated that the grain yield monitoring system could satisfy the need of practical production.  相似文献   

13.
基于线结构光源和机器视觉的高精度谷物测产系统研制   总被引:1,自引:1,他引:1  
针对精准农业中谷物产量信息的高精度获取需求,设计了基于计算机视觉的谷物测产系统,由工业相机、线结构光发生器、电感式接近开关和工控机等组成。提出了基于线结构光的谷堆厚度测量方法,根据所建立的谷物几何模型计算出谷堆的体积,并采用电感式接近开关克服了传统光电式谷物测产系统存在的误触发问题。同时,研究了不同转速下结构光测量误差,建立了基于转速的线结构光测量修正模型,使得测量误差从1.1%减小为0.33%。在室内台架上进行了测产试验,试验结果表明,未使用线结构光修正模型的最大测产误差为12.73%,在使用了线结构光测量修正模型之后,相对测产误差在4.27%以内,该研究可为谷物测产研究提供理论依据。  相似文献   

14.
针对在谷物产量测量作业中收割机采用单一的全球定位系统(global positioning system,GPS)进行定位时定位信息不稳定的问题,提出利用具有定位和双向通信功能的北斗/GPS双模用户机,其内部采用北斗(BJ-54)和GPS(WGS-84)2种混合定位方式,将这2种定位方式互补使用,可以解决当使用单一定位情况下定位信息不稳定的问题。利用北斗/GPS双模用户机的定位信息实现谷物收割机行走线路图的测绘;利用北斗卫星的报文通信功能代替全球移动通信系统短信息服务,实现谷物收割机作业数据的远程传输功能。谷物收割机作业综合管理系统包括作业管理中心和车载子系统两部分。车载子系统实现收割机的地理位置、收割面积和谷物质量等数据的采集,然后将采集的数据通过北斗卫星传输给作业管理中心。作业管理中心利用这些数据可以绘制出收割机作业轨迹图和产量分布图,同时作业管理中心也可以向收割机发送作业指令,并通过文本语音转换模块将文本内容转换成语音信号输出,实现作业的综合管理与调度。田间产量测量试验表明,系统测量谷物收割面积相对误差为2.9%,谷物产量相对误差为3.47%,系统运行稳定、可靠。该系统可为南方丘陵山区谷物收割机跨区作业的产量测量、管理提供参考。  相似文献   

15.
为了获取农田作物产量分布信息,发展数字农业,研究了机收时粮食产量分布信息的获取和分析方法。借助于全球定位系统和地理信息系统,经过坐标转换等数据处理,快速生成计划收割区域的数字地图,在机载计算机上实时显示联合收获机行走的轨迹。对测产系统各传感器信息进行数据处理,由动态产量数据值及其定位信息,实时绘制采样点粮食产量分布图,结合割台高度信息,实时获取收获面积。借助于后处理手段,对实测数据进行空间数据分析,得到准确的粮食产量分布。本系统能快速生成待收割区域的数字地图,能实时显示联合收割机行走轨迹、产量波形曲线、产量分布图,实时显示收割面积。粮食产量分布信息数字化,为精准农业生产提供指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号