首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three studies were conducted to examine the effects of zinc concentration or source in diets of finishing beef steers. In Exp. 1, 108 (British x Continental) beef steers were supplemented with concentrations of added zinc (as ZnSO4) at 20, 100, or 200 mg/kg of dietary DM. No differences (P > 0.10) were noted among treatments for ADG or gain:feed for the 112-d finishing period. However, a linear (P < 0.10) decrease was noted in daily DMI with increasing zinc concentrations for the overall finishing period. No differences (P > 0.10) were noted in hot carcass weight; dressing percentage; longissimus muscle area; percentage of kidney, pelvic, and heart fat; or marbling score. There were, however, quadratic increases in s.c. fat thickness (P < 0.05) and yield grade (P < 0.01) with added zinc. In Exp. 2, 12 beef steers were used to examine effects of added dietary zinc on serum concentrations of cholesterol and fatty acid profiles. No differences (P > 0.10) were observed in cholesterol or fatty acids among the supplemental zinc levels. In Exp. 3, 84 Brangus- and Angus-sired steers were fed a steam-flaked corn-based diet containing 30 mg of supplemental zinc per kilogram of dietary DM from one of the following sources: 1) ZnSO4, 2) Zn amino acid complex, or 3) a zinc polysaccharide complex. No differences (P > 0.10) were noted for the overall 126-d trial for ADG, DMI, or gain:feed ratio. Percentage kidney, pelvic, and heart fat was increased (P < 0.10) in steers supplemented with ZnSO4 vs the average of Zn amino acid and Zn polysaccharide complexes. However, s.c. fat thickness was greater (P < 0.10) in steers supplemented with Zn amino acid and Zn polysaccharide complexes vs ZnSO4. Serum zinc concentration did not differ (P > 0.10) among zinc sources. Supplemental zinc concentration in finishing diets did not seem to influence feedlot performance and had a minimal impact on carcass quality. Either the organic or inorganic source can be included in finishing diets without affecting feedlot performance.  相似文献   

2.
This study was conducted to determine the effect of zinc level and source on growth performance, tissue Zn concentrations, intracellular distribution of Zn, and immune response in weanling pigs. Ninety-six 3-wk-old crossbred weanling pigs (BW = 6.45 +/- 0.17 kg) were assigned to one of six dietary treatments (four pigs per pen, four replicates per treatment) based on weight and litter origin. Treatments consisted of the following: 1) a corn-soybean meal-whey diet (1.2% lysine) with a basal level of 80 ppm of supplemental Zn from ZnSO4 (control; contained 104 ppm total Zn); 2) control + 80 ppm added Zn from ZnSO4; 3) control + 80 ppm added Zn from Zn methionine (ZnMet); 4) control + 80 ppm added Zn from Zn lysine (ZnLys); 5) control + 40 ppm added Zn from ZnMet and 40 ppm added Zn from ZnLys (ZnML); and 6) control + 160 ppm added Zn from ZnSO4. Zinc supplementation of the control diet had no effect on ADG or ADFI. Gain efficiency was less (P < 0.05) for pigs fed 80 ppm of Zn from ZnSO4 than for control pigs and pigs fed 160 ppm of Zn from ZnSO4. Organ weights, Zn concentration, and intracellular distribution of Zn in the liver, pancreas, and spleen were not affected (P = 0.12) by Zn level or source. Skin thickness response to phytohemagglutinin (PHA) was not affected (P = 0.53) by dietary treatment. Lymphocyte proliferation in response to PHA was greater (P < 0.05) in pigs fed ZnLys than in pigs fed the control diet or the ZnML diet; however, when pokeweed mitogen was used, lymphocyte proliferation was greatest (P < 0.05) in pigs fed the ZnMet diet than pigs fed the control, ZnLys, ZnML, or 160 ppm ZnSO4 diets. Antibody response to sheep red blood cells was not affected by dietary treatments. Supplementation of 80 ppm of Zn from ZnSO4 or ZnMet and 160 ppm of Zn from ZnSO4 decreased (P < 0.05) the antibody response to ovalbumin on d 7 compared with control pigs, but not on d 14. Phagocytic capability of peritoneal exudate cells was increased (P < 0.05) when 160 ppm of Zn from ZnSO4 was supplemented to the diet. The number of red blood cells ingested per phagocytic cell was increased (P < 0.05) in pigs fed the diet supplemented with a combination of ZnMet and ZnLys and the diet with 160 ppm of Zn from ZnSO4. Results suggest that the level of Zn recommended by NRC for weanling pigs was sufficient for optimal growth performance and immune responses, although macrophage function may be enhanced at greater levels of Zn. Source of Zn did not alter these measurements.  相似文献   

3.
Two 28-d randomized complete block design experiments were conducted to evaluate the effects of concentrations and sources of Zn on growth performance of nursery pigs. Seven stations participated in Exp. 1, which evaluated the efficacy of replacing 2,500 ppm of Zn from ZnO with 125, 250, or 500 ppm of Zn from Zn methionine. A control diet with 125 ppm of supplemental Zn was included at all stations. A total of 615 pigs were used in 26 replicates. Average weaning age was 20.6 d and the average initial BW was 6.3 kg. There were no differences in any growth response among the three supplemental Zn methionine levels fed in Exp. 1. Zinc supplementation from Zn methionine improved ADG compared with the control during all phases (P < 0.05), due primarily to an increase in ADFI. Pigs fed 2,500 ppm of Zn from ZnO gained faster (P < 0.01) than those fed the control diet during all phases, and faster (P < 0.05) than those fed supplemental Zn from Zn methionine for the 28-d experiment. Differences in gain were again due mainly to differences in feed intake. A second experiment compared five sources of supplemental organic Zn (500 ppm of Zn) with 500 and 2,000 ppm supplemental Zn from ZnO and a control (140 ppm total Zn). Six stations used a total of 624 pigs, with an average weaning age of 20.4 d and averaging 6.2 kg BW in 15 replicates. Pigs fed 2,000 ppm of Zn from ZnO gained faster (P < 0.05) than pigs fed the control or any of the 500 ppm of Zn treatments (ZnO or organic Zn). Pigs fed the 2,000 ppm of Zn from ZnO also consumed more feed than those receiving 500 ppm of Zn from ZnO or from any of the organic Zn sources (P < 0.05). Organic sources of Zn did not improve gain, feed intake, or feed efficiency beyond that achieved with the control diet. Supplemental Zn at a concentration of 500 ppm, whether in the form of the oxide or in an organic form, was not as efficacious for improved ADG as 2,000 to 2,500 ppm of Zn from ZnO.  相似文献   

4.
Four experiments were conducted to determine whether betaine (BET) could replace dietary methionine (MET) in diets for weanling pigs. Pigs in each experiment were allotted to treatments on the basis of weight in a randomized complete block design. Each treatment was replicated four (Exp. 4), five (Exp. 1 and 2), or six (Exp. 3) times with five or six pigs per replicate. In Exp. 1, pigs were fed a diet formulated to be deficient in total sulfur amino acids (TSAA) (negative control; NC) or the NC + 0.05 or 0.10% MET or BET during Phase 1 and 0.035 or 0.07% MET or BET during Phase 2. Growth performance was not affected (P > 0.10) by dietary treatments, indicating that the diets were not deficient in TSAA. In Exp. 2, graded levels of TSAA (0.74, 0.79, 0.84, 0.89, or 0.94%) were fed. Overall ADG was increased (0 vs added MET, P < 0.07) in pigs fed TSAA levels of 0.79% or greater, but gain:feed was not affected (P > 0.10) by diet. Overall ADFI was increased (linear, P < 0.08) and plasma urea N (PUN) was decreased (quadratic, P < 0.01) as the level of TSAA was increased. Most of the change in ADG, PUN, and ADFI occurred between 0.74 and 0.84% TSAA. Thus, the 0.74% TSAA diet was used in Exp. 3 as the NC. In Exp. 3, the diets included the following: 1) NC, 2) NC + 0.05% MET, 3) NC + 0.10% MET, 4) NC + 0.039% BET, or 5) NC + 0.078% BET. The addition of MET resulted in increased (linear, P < 0.10) ADG, ADFI, and gain:feed, but MET decreased PUN (linear, P < 0.05). Daily gain, ADFI, and TSAA intake were not different (P > 0.10) between pigs fed 0.05% MET or 0.039% BET, but gain:feed was decreased (P < 0.01) in pigs fed 0.039% BET compared with pigs fed 0.05% MET. In Exp. 4, a 2 x 2 x 2 factorial arrangement of treatments was used (MET, 0 or 0.072%; cystine, 0 or 0.059%; or BET, 0 or 0.057%). Overall ADG and gain:feed were increased (P < 0.10) in pigs fed MET. The intake of TSAA was increased (P < 0.05), and PUN was decreased (P < 0.10) in pigs fed MET or cystine. Overall ADFI was increased in pigs fed BET or MET independently but not affected when BET and MET were fed together (BET x MET, P < 0.10). The addition of BET to TSAA-deficient diets resulted in increased ADG, which was due to an increase in ADFI (TSAA intake). Thus, BET did not spare MET in this experiment.  相似文献   

5.
Three feeding trials (278 pigs) and one balance trial (14 pigs) were conducted to evaluate acceptance and utilization of diets containing a dry-fat product containing 90% fat. The fat was a mixture of equal parts vegetable and animal fats. In Trial 1, 4-wk-old pigs fed diets with 5% dry-fat added had average daily gain (ADG), average daily feed intake (ADFI) and gain/feed (G/F) values equal to pigs fed the diet containing 4.5% liquid fat, the unprocessed equivalent to the dry-fat. Values for G/F with both diets were higher (P less than .05) than for pigs fed the unsupplemented control diet. In Trial 2, dry-fat and roasted soybeans were compared as sources of supplemental fat in diets for finishing pigs. Both were efficiently utilized, with no differences (P greater than .05) among diets. In Trial 3, diets with 0, 5 and 10% levels of added dry-fat were fed to pigs from 34 to 100 kg. Rates of gain were not affected, but ADFI decreased (P less than .05) and G/F increased (P less than .05) with increased fat level. Carcass measurements were not affected by dietary treatment, but iodine number of backfat increased (P less than .05) with dietary fat level. In Trial 4, values for grams of N absorbed and retained and megacalories of energy absorbed and metabolized did not differ (P greater than .05) between diets with 0 and 5% added dry-fat. These results show that the dry-fat product was efficiently utilized by growing and finishing pigs.  相似文献   

6.
Studies were conducted to evaluate zinc methionine (ZnMet) as a source of Zn for ruminants. Experiment 1 compared the availability of Zn in ZnMet and zinc oxide (ZnO) in lambs fed a semi-purified diet deficient in Zn. Based on growth rate and animal performance, plasma Zn and plasma alkaline phosphatase activity, no differences in Zn availability were detected between the two Zn sources. Apparent absorption of Zn also was similar, but Zn retention was higher (P less than .01) in lambs fed ZnMet because of a tendency for lower urinary Zn excretion (P less than .19) in this group. Zinc absorption and retention by lambs were similar for the two Zn sources in Exp. 2 when 20 mg Zn/kg was added to an orchardgrass hay-based diet containing 30 mg Zn/kg. In Exp. 3, lambs were dosed orally with 300 mg of Zn as ZnO or ZnMet, and the increase in plasma Zn following dosing was monitored. The increase in plasma Zn above predosing values was similar at 6 h but was higher at 12 (P less than .10) and 24 h (P less than .05) postdosing in lambs given ZnMet. Thirty-six Hereford x Simmental heifers (271 kg) were used in Exp. 4 to determine the influence of supplementing Zn (25 mg/kg) as ZnO or ZnMet of growth performance and Zn status. Heifers were fed a corn silage-based diet that contained 23.1 mg Zn/kg during the 126-d study. Zinc supplementation to the basal diet increased (P less than .05) gain and feed/gain during the first 56 d, but not for the entire 126-d study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study was designed to evaluate the effects of dietary inclusion of zinc‐methionine (ZnMet) as a replacement for conventional inorganic zinc sources on performance, tissue zinc accumulation and some plasma indices in broiler chicks. A total of 450‐day‐old Ross male broiler chicks were randomly assigned to five pen replicates of nine experimental diets. Dietary treatments consisted of two basal diets supplemented with 40 mg/kg added Zn as feed‐grade Zn sulphate or Zn oxide in which, Zn was replaced with that supplied from ZnMet complex by 25, 50, 75 or 100%. At 42 days of age, three randomly selected birds from each pen were bled to measure plasma metabolites; then, the chicks were slaughtered to evaluate carcass characteristics. Results showed that dietary treatments affected (p < 0.05) feed intake during the starter period, and chicks on Zn oxide diets consumed more feed than sulphate counterparts. Furthermore, dietary substitution of inorganic Zn sources by ZnMet caused improvements (p < 0.01) in body weight gain during all experimental periods. Dietary supplementation of ZnMet improved feed conversion efficiency during 1–21 and 1–42, but not in 21–42 days of age. Complete replacement of inorganic Zn by that supplied from ZnMet caused an increase (p < 0.05) in relative liver weight. Similarly, dietary inclusion of ZnMet increased breast meat and carcass yields and reduced abdominal fat percentage (p < 0.05). Incremental levels of ZnMet increased (p < 0.05) zinc concentrations in liver and thymus, and the highest zinc accumulations were seen in 100% ZnMet‐supplemented birds. Interestingly, introduction of ZnMet into the diets partially in place of inorganic sources resulted in decreases (p < 0.01) in plasma uric acid and triglycerides concentrations. The present findings indicated that dietary ZnMet inclusion in replacement of inorganic sources in addition to improving growth performance, reduced plasma uric acid and triglycerides concentrations, consequently decreased abdominal fat pad and increased carcass meat yield.  相似文献   

8.
Zinc bioavailability in feed-grade sources of zinc   总被引:4,自引:0,他引:4  
Chick bioassays were used to assess bioavailability of zinc (Zn) from inorganic Zn sources. A soy isolate-dextrose diet containing 13 mg Zn/kg diet was supplemented with feed-grade sources of ZnSO4.H2O (ZnSO4) or ZnO and fed for 2 wk after a 7-d Zn-depletion protest period. Bioavailability of Zn in ZnO relative to ZnSO4 (set at 100%) was determined by multiple regression slope-ratio methodology, using both growth and tibia Zn accumulation in chicks fed graded levels of ZnO and ZnSO4. Linear responses for gain and tibia Zn occurred at dietary Zn levels (ZnSO4.7H2O) between 13 mg/kg (basal) and 33 mg/kg (gain) or 53 mg/kg (total tibia Zn). Therefore, two bioavailability assays were conducted using supplemental Zn levels of 0, 7.5 and 15 mg/kg from each Zn source. When weight gain was regressed on supplemental Zn intake, bioavailability of Zn in ZnO was only 61.2% (P less than .01) that of ZnSO4. When total tibia Zn was regressed on supplemental Zn intake, bioavailability of Zn compared with ZnSO4 (set at 100.0%) was 44.1% (P less than .001) for ZnO. With chicks fed soy-based diets, bioavailability of Zn from ZnO was less than that of ZnSO4.  相似文献   

9.
Two experiments were conducted to evaluate receiving-period performance, morbidity, and humoral immune response, as well as finishing performance and carcass characteristics of heifers fed different sources of supplemental Zn. In Exp. 1, 97 crossbred beef heifers (initial BW = 223.4 kg) were fed a 65% concentrate diet with no supplemental Zn (control) or 75 mg of supplemental Zn/kg of DM from Zn sulfate, Zn methionine, or Zn propionate. During a 35-d receiving period, heifers were monitored daily for signs of bovine respiratory disease. Serum samples were collected for Zn analysis on d 0, 14, and 28. After the receiving period, heifers were adapted to and fed a high-concentrate diet with no supplemental Zn for 42 d. Heifers were then assigned to finishing diet treatments, with the same concentrations and sources of supplemental Zn as during the receiving period and fed for an average of 168 d. Serum samples also were obtained on d 0 and 56 of the finishing period and at the end of the study. During the receiving period, control heifers had a greater (P < or = 0.05) BW and G:F on d 35 than heifers in the other treatments, but no differences were observed among treatments for morbidity or serum Zn concentrations (P > or = 0.50). For the finishing period, DMI and ADG did not differ among treatments; however, overall G:F tended (P = 0.06) to be less for control heifers than for heifers in the 3 supplemental Zn treatments. On d 56 of the finishing period, control heifers tended (P = 0.06) to have a lower serum Zn concentration than heifers in the 3 supplemental Zn treatments. In Exp. 2, 24 crossbred beef heifers (initial BW = 291.1 kg) were fed the same 4 treatments as in Exp. 1 for a 21-d period. The humoral immune response to treatments was determined by measuring specific antibody titers after s.c. injection of ovalbumin on d 0 and 14. Body weights and blood samples for serum Zn concentration and ovalbumin IgG titers were collected on d 0, 7, 14, and 21. Serum Zn concentration and specific ovalbumin IgG titers did not differ (P > 0.10) among the 4 treatments on any sampling day. Results from these 2 studies showed no major differences among the sources of supplemental Zn for receiving period morbidity, ADG, DMI, and humoral immune response of beef heifers; however, a lack of supplemental Zn during an extended finishing period tended to negatively affect G:F.  相似文献   

10.
Three experiments were conducted to determine the effects of phytase, excess Zn, or their combination in diets for nursery pigs. In all experiments, treatments were replicated with five to seven pens of six to seven pigs per pen, dietary Ca and available P (aP) levels were decreased by 0.1% when phytase was added to the diets, excess Zn was added as ZnO, a basal level of 127 mg/kg of Zn (Zn sulfate) was present in all diets, and the experimental periods were 19 to 21 d. In Exp. 1, pigs (5.7 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and three levels of excess Zn (0, 1,000, or 2,000 ppm) in a 2 x 3 factorial arrangement. Added Zn linearly increased ADG and ADFI during Phase 1 (P = 0.01 to 0.06), Phase 2 (P = 0.02 to 0.09), and overall (P = 0.01 to 0.02). Gain:feed was linearly increased by Zn during Phase 1 (P = 0.01) but not at other times. Dietary phytase decreased ADG in pigs fed 1,000 or 2,000 ppm Zn during Phase 2 (Zn linear x phytase interaction; P = 0.10), did not affect (P = 0.27 to 0.62) ADFI during any period, and decreased G:F during Phase 2 (P = 0.01) and for the overall (P = 0.07) period. Plasma Zn was increased by supplemental Zn (Zn quadratic, P = 0.01) but not affected (P = 0.70) by phytase addition. In Exp. 2, pigs (5.2 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and two levels of Zn (0 or 2,000 ppm) in a 2 x 2 factorial arrangement. Supplemental Zn increased ADG and G:F during Phase 2 (P = 0.02 to 0.09) and overall (P = 0.07 to 0.08), but it had no effect (P = 0.11 to 0.89) on ADG during Phase 1 or ADFI during any period. Phytase supplementation increased ADG (P = 0.06) and G:F (P = 0.01) during Phase 2. Gain:feed was greatest for pigs fed 2,000 ppm Zn and phytase (Zn x phytase interaction; P = 0.01). Bone (d 20) and plasma Zn (d 7 and 20) were increased (P = 0.01) by added Zn but not affected (P = 0.51 to 0.90) by phytase. In Exp. 3, pigs (5.7 kg and 19 d of age) were fed a basal diet or the basal diet with Ca and aP levels decreased by 0.10% and these two diets with or without 500 phytase units/kg. Supplemental phytase had no effect (P = 0.21 to 0.81) on growth performance. Reduction of dietary Ca and aP decreased (P = 0.02 to 0.08) ADG, ADFI, and G:F for the overall data. These results indicate that excess dietary supplemental Zn increases ADG and plasma and bone Zn concentrations. Dietary phytase did not affect plasma or bone Zn concentrations.  相似文献   

11.
Sixty Angus and Angus x Hereford steers (246 kg initial BW) were used to determine the effects of Zn level and source on performance, immune response, and carcass characteristics of growing and finishing steers. Treatments consisted of 1) control (no supplemental Zn), 2) ZnO, 3) Zn proteinate-A (ZnProt-A, 10% Zn), and 4) ZnProt-B (15% Zn). Treatments 2, 3, and 4 supplied 25 mg of supplemental Zn/kg diet. Steers were individually fed a corn silage-based diet during the 84-d growing phase and a high corn diet during the finishing phase. Cell-mediated and humoral immune response measurements were obtained between d 67 and 74 of the growing phase. Equal number of steers per treatment were slaughtered after receiving the finishing diets for 84 or 112 d. Performance and carcass measurements were similar in steers fed the two ZnProt sources. Zinc supplementation, regardless of source, increased (P < 0.05) ADG during the growing phase. In the finishing phase, ADG (P = 0.10) and gain/feed (P = 0.07) tended to be higher for steers fed ZnProt compared with those supplemented with ZnO. Gain and feed efficiency were similar for control and ZnO-supplemented steers during the finishing phase. Steers fed ZnProt had heavier (P < 0.05) hot carcass weights and slightly higher (P < 0.05) dressing percentages than those in the control or ZnO treatments. Quality grade, yield grade, marbling, and backfat were increased by Zn supplementation, but were not affected by Zn source. In vitro response of lymphocytes to mitogen stimulation and in vivo swelling response following intradermal injection of phytohemagglutinin were not affected by Zn level or source. Humoral immune response following vaccination with infectious bovine rhinotracheitis also was not affected by treatment. Soluble concentrations of Zn in ruminal fluid were higher (P < 0.05) in steers fed ZnProt compared to ZnO steers. Results indicate that ZnProt may improve performance of finishing steers above that observed with inorganic Zn supplementation.  相似文献   

12.
Two experiments were conducted to determine the efficacy of mannan oligosaccharides (MOS) fed at two levels of Cu on growth and feed efficiency of weanling and growing-finishing pigs, as well as the effect on the immunocompetence of weanling pigs. In Exp. 1, 216 barrows (6 kg of BW and 18 d of age) were penned in groups of six (9 pens/treatment). Dietary treatments were arranged as a 2 x 2 factorial consisting of two levels of Cu (basal level or 175 ppm supplemental Cu) with and without MOS (0.2%). Diets were fed from d 0 to 38 after weaning. Blood samples were obtained to determine lymphocyte proliferation in vitro. From d 0 to 10, ADG, ADFI, and gain:feed (G:F) increased when MOS was added to diets containing the basal level of Cu, but decreased when MOS was added to diets containing 175 ppm supplemental Cu (interaction, P < 0.01, P < 0.10, and P < 0.05, respectively). Pigs fed diets containing 175 ppm Cu from d 10 to 24 and d 24 to 38 had greater (P < 0.05) ADG and ADFI than those fed the basal level of Cu regardless of MOS addition. Pigs fed diets containing MOS from d 24 to 38 had greater ADG (P < 0.05) and G:F (P < 0.10) than those fed diets devoid of MOS. Lymphocyte proliferation was not altered by dietary treatment. In Exp. 2, 144 pigs were divided into six pigs/pen (six pens/treatment). Dietary treatments were fed throughout the starter (20 to 32 kg BW), grower (32 to 68 kg BW), and finisher (68 to 106 kg BW) phases. Diets consisted of two levels of Cu (basal level or basal diet + 175 ppm in starter and grower diets and 125 ppm in finisher diets) with and without MOS (0.2% in starter, 0.1% in grower, and 0.05% in finisher). Pigs fed supplemental Cu had greater (P < 0.05) ADG and G:F during the starter and grower phases compared to pigs fed the basal level of Cu. During the finisher phase, ADG increased when pigs were fed MOS in diets containing the basal level of Cu, but decreased when MOS was added to diets supplemented with 125 ppm Cu (interaction, P < 0.05). Results from this study indicate the response of weanling pigs fed MOS in phase 1 varied with level of dietary Cu. However, in phase 2 and phase 3, diets containing either MOS or 175 ppm Cu resulted in improved performance. Pharmacological Cu addition improved gain and efficiency during the starter and grower phases in growing-finishing pigs, while ADG response to the addition of MOS during the finisher phase seems to be dependent upon the level of Cu supplementation.  相似文献   

13.
Two experiments were conducted to refine the Ile needs in 7- to 11-kg pigs. In Exp. 1, 1,680 pigs were fed a 1.25% digestible Lys diet containing 7.5% spray-dried blood cells (as-fed basis) with supplemental crystalline Ile (0.06% increments) to generate seven levels of apparent digestible Ile (0.47 to 0.83%). There were 12 replicates of each treatment with 20 pigs per pen, and treatments were imposed at an initial BW of 7 kg and continued for 16 d. Responses in ADG, ADFI, G:F, and plasma urea nitrogen (PUN) were quadratic (P < 0.01) over the 16-d period. Data were fitted to both a single-slope broken line and a quadratic fit, and when the quadratic response curve was superimposed on the broken line, the points at which the quadratic curve first intersected the plateau of the broken line occurred at 0.70, 0.73, 0.66, and 0.65% digestible Ile for ADG, ADFI, G:F, and PUN, respectively. Using the ADG and ADFI obtained at this intersection point resulted in an estimate of 9.1 mg of digestible Ile per gram of weight gain. In Exp. 2, 1,840 pigs were fed similarly composed diets, except that digestible Lys was lowered in six diets to 1.10% by decreasing soybean meal. Crystalline Ile was supplemented at 0.09% increments to generate six levels of digestible Ile (0.37 to 0.83%). A seventh diet contained 1.25% digestible Lys by supplementing the 0.83% digestible Ile diet with 0.19% L-Lys HCl to verify that 1.10% digestible Lys was deficient for these pigs. There were 12 replicates of each treatment with 22 pigs per pen, and treatments imposed at an initial BW of 7 kg and continued for 16 d. Supplementation of Lys to the 0.83% digestible Ile diet (1.10 vs. 1.25% digestible Lys) did not affect ADG (260 vs. 264 g/d, P = 0.60) and ADFI (359 vs. 343 g/d, P = 0.20), whereas G:F (725 vs. 774 g/kg, P < 0.01) was improved by increasing dietary Lys. Responses in ADG, ADFI, and G:F to the first six diets were quadratic (P < 0.01) over the 16-d period. The points at which the quadratic curve first intersected the plateau of the broken line occurred at 0.686, 0.638, and 0.684% digestible Ile for ADG, ADFI, and G:F, respectively. Using the ADG and ADFI obtained at this intersection point results in an estimate of 9.9 mg of digestible Ile per gram of weight gain. These results suggest that although the percent digestible Ile requirement and digestible Ile:Lys ratio for starter (7 to 11 kg) pigs may be higher than 1998 NRC recommendations, the requirement may be lower than current recommendations when taking gain and feed intake into account.  相似文献   

14.
Three experiments were conducted to evaluate the effects of feeding dietary concentrations of organic Zn as a Zn-polysaccharide (Quali Tech Inc., Chaska, MN) or as a Zn-proteinate (Alltech Inc., Nicholasville, KY) on growth performance, plasma concentrations, and excretion in nursery pigs compared with pigs fed 2,000 ppm inorganic Zn as ZnO. Experiments 1 and 2 were growth experiments, and Exp. 3 was a balance experiment, and they used 306, 98, and 20 crossbred pigs, respectively. Initially, pigs averaged 17 d of age and 5.2 kg BW in Exp. 1 and 2, and 31 d of age and 11.2 kg BW in Exp. 3. The basal diets for Exp. 1, 2, and 3 contained 165 ppm supplemental Zn as ZnSO4 (as-fed basis), which was supplied from the premix. In Exp. 1, the Phase 1 (d 1 to 14) basal diet was supplemented with 0, 125, 250, 375, or 500 ppm Zn as Zn-polysaccharide (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). All pigs were then fed the same Phase 2 (d 15 to 28) and Phase 3 (d 29 to 42) diets. In Exp. 2, both the Phase 1 and 2 basal diets were supplemented with 0, 50, 100, 200, 400, or 800 ppm Zn as Zn-proteinate (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). For the 28-d Exp. 3, the Phase 2 basal diet was supplemented with 0, 200, or 400 ppm Zn as Zn-proteinate, or 2,000 ppm Zn as ZnO (as-fed basis). All diets were fed in meal form. In Exp. 1, 2, and 3, pigs were bled on d 14, 28, or 27, respectively, to determine plasma Zn and Cu concentrations. For all three experiments, there were no overall treatment differences in ADG, ADFI, or G:F (P = 0.15, 0.22, and 0.45, respectively). However, during wk 1 of Exp. 1, pigs fed 2,000 ppm Zn as ZnO had greater (P < or = 0.05) ADG and G:F than pigs fed the basal diet. In all experiments, pigs fed a diet containing 2,000 ppm Zn as ZnO had higher plasma Zn concentrations (P < 0.10) than pigs fed the basal diet. In Exp. 1 and 3, pigs fed 2,000 ppm Zn as ZnO had higher fecal Zn concentrations (P < 0.01) than pigs fed the other dietary Zn treatments. In conclusion, organic Zn either as a polysaccharide or a proteinate had no effect on growth performance at lower inclusion rates; however, feeding lower concentrations of organic Zn greatly decreased the amount of Zn excreted.  相似文献   

15.
In each of two experiments, 924 pigs (4.99 kg BW; 16 to 18 d of age) were assigned to 1 of 42 pens based on BW and gender. Pens were allotted randomly to dietary copper (Cu) treatments that consisted of control (10 ppm Cu as cupric sulfate, CuSO4 x 5H2O) and supplemental dietary Cu concentrations of 15, 31, 62, or 125 ppm as cupric citrate (CuCit), or 62 (Exp. 2 only), 125 (Exp. 1 only), or 250 ppm as CuSO4. Live animal performance was determined at the end of the 45-d nursery phase in each experiment. On d 40 of Exp. 2, blood and fecal samples were collected from two randomly selected pigs per pen for evaluation of plasma and fecal Cu concentrations and fecal odor characteristics. In Exp. 1, ADG, ADFI, and G:F were increased (P < 0.05), relative to controls, when pigs were fed diets containing 250 ppm Cu as CuSO4. Pigs fed diets containing 125 ppm Cu as CuCit had increased (P < 0.05) ADG compared with pigs fed diets supplemented with 15 or 62 ppm Cu as CuCit. The ADG, ADFI, and G:F did not differ among pigs fed diets containing 125 and 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. In Exp. 2, pigs fed diets containing 250 ppm Cu as CuSO4 had improved (P < 0.05) ADG, ADFI, and G:F compared with controls. In addition, ADG, ADFI, and G:F were similar when pigs were fed diets containing either 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. Pigs fed diets containing 62 ppm Cu as CuSO4 or CuCit had similar ADG, ADFI, and G:F. Plasma Cu concentrations were not affected by dietary Cu source or concentration, but fecal Cu concentrations were increased (P < 0.05) as the dietary concentration of Cu increased. Pigs consuming diets supplemented with 125 ppm Cu as CuCit had fecal Cu concentrations that were lower (P < 0.05) than pigs consuming diets supplemented with 250 ppm Cu as CuSO4. Fecal Cu did not differ in pigs receiving diets supplemented with 62 ppm Cu as CuSO4 or CuCit. Odor characteristics of feces were not affected by Cu supplementation or source. These data indicate that 125 and 250 ppm Cu gave similar responses in growth, and that CuCit and CuSO4 were equally effective at stimulating growth and improving G:F in weanling pigs. Fecal Cu excretion was decreased when 125 ppm Cu as CuCit was fed compared with 250 ppm Cu as CuSO4. Therefore, 125 ppm of dietary Cu, regardless of source, may provide an effective environmental alternative to 250 ppm Cu as CuSO4 in weanling pigs.  相似文献   

16.
An evaluation of barley in starter diets for swine   总被引:5,自引:0,他引:5  
Four growth trials and one digestibility trial were conducted to determine the effects of substituting barley for grain sorghum in weanling pig diets on pig performance and nutrient digestibility. Experiments 1 and 2 were 35-d growth trials in which barley was substituted for gain sorghum at levels of 0, 10, 20, 30 and 40% of the diet. Average daily gain (ADG), average daily feed intake (ADFI) and feed conversion (F/G) were not affected by dietary barley level (P greater than .50). Experiment 3 was a digestibility trial conducted to determine the apparent digestibility of dry matter (DMD), gross energy (GED), and N (ND) and percentage of N retained (%NRT) of pigs fed the 0, 20 and 40% barley diets. As dietary barley level increased, DMD and GED decreased linearly (P less than .05), whereas %NRT increased linearly (P less than .10). Apparent N digestibility was not affected by dietary treatment (P greater than .12). Experiments 4 and 5 were 35-d growth trials with treatments arranged in a 2 x 3 factorial design to determine the effects of barley particle size (fine, 635 microns or medium, 768 microns) and dried whey level (0, 10 or 20%) on pig performance. Average daily gain and ADFI increased linearly (P less than .01) as whey level increased. Pigs fed diets containing fine-ground barley grew faster and were more efficient (P less than .05) than those fed medium-ground barley diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two experiments were conducted using corn from clean or aflatoxin B1 (AFB1)-contaminated (182 ppb) sources. Weanling pigs (28 d) were fed one of eight dietary treatments arranged in a 2 x 2 x 2 factorial design. In Exp. 1 (192 pigs), treatments varied in corn source (clean or AFB1-contaminated), CP level (18 or 20%) and added fat (0 or 5%). At the end of the 28-d growth trials, plasma samples were obtained. An AFB1 x CP level interaction was detected (P less than .05) for growth rate (ADG), feed intake (FI) and feed/gain ratio (F/G). Feeding AFB1 reduced (P less than .05) ADG (.30 vs .37 kg/d) and FI (.57 vs .66 kg/d) and increased F/G (1.88 vs 1.78) of pigs fed 18% CP diets. Performance of pigs fed 20% CP diets was not altered by AFB1. Adding 5% fat to diets improved (P less than .05) F/G but did not improve ADG of pigs fed AFB1. There was an AFB1 x CP x fat interaction (P less than .05) for plasma cholesterol. Adding fat or increasing the CP level prevented the depression of plasma cholesterol in pigs fed AFB1. In Exp. 2 (96 pigs), all diets contained 18% CP and the treatments varied in corn source (clean or AFB1-contaminated), added L-lysine HCl (0 or .25%) and added DL-methionine (0 or .15%). Feeding AFB1 reduced (P less than .05) ADG of pigs fed the 18% CP diet (.44 vs .50 kg/d) but not of pigs fed diets supplemented with .25% lysine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Three experiments were conducted to evaluate the efficacy of phosphorylated mannans (MAN) and pharmacological levels of ZnO on performance and immunity when added to nursery pig diets. Pigs (216 in each experiment), averaging 19 d of age and 6.2, 4.6, and 5.6 kg of BW in Exp. 1, 2, and 3, respectively, were blocked by BW in each experiment, and penned in groups of six. A lymphocyte blastogenesis assay was performed in each experiment to measure in vitro lymphocyte proliferation response. In Exp. 1, diets were arranged as a 2 x 2 factorial with two levels of Zn (200 and 2,500 ppm) and two levels of MAN (0 and 0.3% from d 0 to 10, and 0 and 0.2% from d 10 to 38). Zinc oxide increased (P < 0.05) ADG, ADFI, and G:F from d 0 to 10, and ADG and ADFI from d 10 to 24. In Exp. 2, diets were arranged as a 2 x 3 factorial with two levels of Zn (200 and 2,500 ppm) and three levels of MAN (0, 0.2, and 0.3%). Pigs fed 2,500 ppm Zn from d 0 to 10 had greater (P < 0.05) ADG, ADFI, and G:F than pigs fed 200 ppm Zn. From d 10 to 24, ADG was similar when pigs were fed 200 ppm Zn, regardless of MAN supplementation; however, ADG increased (P < 0.05) when 0.2% MAN was added to dietscontaining 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). In Exp. 3, diets were arranged as a 2 x 3 factorial with two levels of MAN (0 and 0.3%) and three levels of Zn (200, 500, and 2,500 ppm). Zinc was maintained at 200 ppm from d 21 to 35, so only two dietary treatments (0 and 0.3% MAN) were fed during this period. Average daily gain was greater (P < 0.05) from d 7 to 21 when pigs were fed 2,500 ppm Zn compared with pigs fed 200 or 500 ppm Zn. The addition of MAN improved (P < 0.05) G:F from d 7 to 21 and d 0 to 35. Lymphocyte proliferation of unstimulated cells and phytohemagglutinin-stimulated cells was decreased (P < 0.05) in cells isolated from pigs fed MAN compared with cells isolated from pigs fed diets without MAN. Lymphocyte proliferation of pokeweed mitogen-stimulated cells isolated from pigs fed MAN was less (P < 0.05) than for pigs fed diets devoid of MAN when diets contained 200 ppm Zn; however, MAN had no effect on lymphocyte proliferation when the diet contained 500 or 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). Although the magnitude of response to MAN was not equivalent to that of pharmacological concentrations of Zn, MAN mayimprove growth response when pharmacological Zn levels are restricted.  相似文献   

19.
Three experiments were conducted to evaluate the use of an enzymatically digested animal protein (EDAP) as a source of protein for weanling pigs. In each experiment, treatments were replicated with four (Experiments 1 and 2) or seven (Experiment 3) pens of three to five pigs each. Each experiment lasted 3 to 4 wk for the combined Phase I (1.5% Lys in Experiments 1 and 2, 1.6% Lys in Experiment 3) and Phase II (1.3% Lys) periods. In Experiments 1 (6.7 kg; 23 d of age) and 2 (6.1 kg; 22 d of age), pigs were fed one of the following Phase I diets: 1) basal (B) diet containing corn, soybean meal (SBM), whey, fish meal, and blood cells (AP-301 G; American Protein Corporation, Ames, IA); 2) B + 4% spray-dried animal plasma (SDAP); or 3) B + 2% SDAP + 2% EDAP (SDAP + EDAP). In Phase II, the dietary groups from Phase I were divided into two subsequent groups. One group received a diet containing corn, SBM, whey, fish meal, and 2% blood cells, and the second group received the same diet with 2% EDAP, resulting in six treatments for Phase II and overall periods. In Experiment 1, ADG and ADFI were increased (P<0.10) during Phase I for pigs fed SDAP + EDAP, and ADFI was increased (P<0.10) in pigs fed SDAP. In Phase II, the EDAP addition did not affect (P>0.10) ADG, ADFI, or the ratio of gain to feed. Also, Phase I diets did not affect (P>0.10) growth performance during Phase II. Overall, ADG (P<0.10) and ADFI (P<0.04) were increased (P<0.10) in pigs fed SDAP + EDAP during Phase I. In Experiment 2, ADG and the ratio of gain to feed were increased (P<0.10) in pigs fed SDAP + EDAP during Phase I. During Phase II, ADFI was increased in pigs fed SDAP + EDAP or B + SDAP (P<0.01) relative to those fed B only (P<0.003) in Phase I. Also in Phase II, the ratio of gain to feed was increased in pigs fed SDAP + EDAP (P<0.03) relative to those fed B + SDAP. Overall, ADG and the ratio of gain to feed were not affected (P>0.10) by diet, but ADFI was increased (P<0.03) in pigs fed SDAP + EDAP relative to those fed B. In Experiment 3, all pigs (5.7 kg; 17 d of age) were fed a common Phase I diet containing SDAP + EDAP. In Phase II, ADG, ADFI, and the ratio of gain to feed were not affected (P>0.10) by the addition of 2% EDAP or 2% blood cells. In summary, pigs fed SDAP + EDAP perform equally well compared with those fed B + SDAP.  相似文献   

20.
Benefits of feeding pharmacological concentrations of zinc (Zn) provided by Zn oxide (ZnO) to 21-d conventionally weaned pigs in the nursery have been documented; however, several management questions remain. We conducted two experiments to evaluate the effect on growth from feeding 3,000 ppm Zn as ZnO during different weeks of the nursery period. In Exp. 1 (n = 138, 11.5 d of age, 3.8 kg BW) and Exp. 2 (n = 246, 24.5 d of age, 7.2 kg BW), pigs were fed either basal diets containing 100 ppm supplemental Zn (adequate) or the same diet with an additional 3,000 ppm Zn (high) supplied as ZnO. Pigs were fed four or two dietary phases in Exp. 1 and 2, respectively, that changed in dietary ingredients and nutrient content (lysine and crude protein) to meet the changing physiological needs of the pigs for the 28-d nursery period. Dietary Zn treatments were 1) adequate Zn fed wk 1 to 4, 2) high Zn fed wk 1, 3) high Zn fed wk 2, 4) high Zn fed wk 1 and 2, 5) high Zn fed wk 2 and 3, and 6) high Zn fed wk 1 to 4. In Exp. 1 and 2, pigs fed high Zn for wk 1 and 2 or the entire 28-d nursery period had the greatest (P < .05) ADG. During any week, pigs fed high Zn had greater concentrations of hepatic metallothionein and Zn in plasma, liver, and kidney than those pigs fed adequate Zn (P < .05). In summary, both early- and traditionally weaned pigs need to be fed pharmacological concentrations of Zn provided as ZnO for a minimum of 2 wk immediately after weaning to enhance growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号