首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
滴灌栽培杨树人工林细根空间分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]为探究滴灌条件下杨树人工林细根的空间分布特征,对大兴区林场滴灌栽培的5年生欧美107杨的细根分布进行研究。[方法]采用根钻法分别在株间、对角和行间方向距树干0.2、0.5、1.0、1.5 m处取样,取样深度为60 cm,每10 cm为1个土层。[结果]滴灌条件下,在不同方向的不同树干距离和土层深度,杨树人工林的细根生物量和根长表现出相似的分布特征,其分布受树干距离、土层及其交互作用的影响显著(P0.05)。滴灌条件下,株间方向的细根总长为12.7 cm,分别是对角和行间方向细根长的1.82倍和2.32倍,上述3个方向取样位点细根总长为25.2 cm,其中的86.4%在滴灌形成的湿润带范围内;0 40 cm土层的细根长占0 60 cm土层细根总长的84.5%。各方向的细根水平分布特征不同,株间方向细根长在距树干0.5 m处最大,为4.2 cm,占该方向细根总长的33.1%,且与其他树干距离处差异显著(P0.05);对角和行间方向细根长在距树干0.2 m处最大,分别为2.7、2.3 cm,占各自方向细根总长的38.1%和41.8%。各方向的细根垂直分布特征不同,株间方向细根长在0 10 cm土层最大,为3.7 cm,占该方向细根总长的29.1%,且与其他土层差异显著(P0.05);对角和行间方向细根长均在10 20 cm土层最大,分别为2.0、1.7 cm,占各自方向细根总长的27.9%和31.0%,与其他土层细根长差异显著(P0.05)。[结论]滴灌条件下,杨树人工林细根的空间分布特征可以采用细根生物量或细根长任一指标来表述。滴灌后形成的连续湿润带导致土壤水分条件的差异使细根在不同方向的水平分布和垂直分布特征不同,细根分布表现为株间对角行间,细根主要分布在湿润带范围内且在0 40 cm土层相对集中分布。依据滴灌栽培杨树人工林细根的水平和垂直分布规律,每次滴灌后应保证水分侧渗到距离树干至少50 cm的范围,下渗的深度至少达到40 cm深,以满足杨树人工林正常生长对水分的需求。本研究结果和结论为确定精准的单次有效灌溉量提供理论依据,从而实现既节水又确保林木正常生长的双重目标。  相似文献   

2.
2002年5-10月,采用连续钻取土芯法对帽儿山实验林场的水曲柳人工林细根(直径<1 mm)生物量、比根长(SRL)和根长密度(RLD)的季节动态,以及它们与土壤N的有效性、土壤10 cm深处月均温度和含水量的关系进行研究.结果表明:水曲柳细根生物量在春季和秋季分别具有1个明显的高峰,但比根长和根长密度只有1个高峰.在春季和夏季,比根长和根长密度较高,显示细根直径较小,而秋季,这2个参数显著下降,表明细根直径次生增厚或组织密度增加.细根的季节变化与土壤N的有效性、土壤温度和土壤含水量有重要关系.其中细根生物量与土壤铵态氮含量显著相关;硝态氮含量、10 cm深处土壤的温度和土壤含水量与细根的生物量、比根长和根长密度的季节变化正相关,但均不显著(P>0.05).4种因子的综合作用对水曲柳细根各参数的影响均达到了显著水平.不同季节细根生物量、比根长和根长密度的变化,显示出细根在生长季不同时期具有不同的生理生态功能.  相似文献   

3.
对桤木人工林细根、土壤养分含量的季节变化及其两者之间的关系进行了研究.结果表明:(1)桤木细根中大量元素N、Ca、K、Mg、P含量冬季高,春季最低;微量元素Fe、Mn、Zn、Cu、Pb、Ni、Cd含量冬季最低,春夏季较高.(2)土壤各层中大量元素N、Ca、K、Mg、P含量冬季最低,夏季最高;微量元素Mn、Zn含量在冬季最低,秋季最高;Fe、Ni、Pb、Cu、Cd含量在冬季最高,春秋较低.(3)细根和土壤中大量元素含量在冬季存在负相关关系,微量元素Fe、Ni、Cd含量在一年四季均存在显著负相关关系,Mn、Cu含量在春季、夏季和秋季存在负相关关系,Zn、Pb含量在春季、夏季和秋季存在正相关关系.  相似文献   

4.
以长沙市郊区的31~32年生樟树人工林为研究对象,采用根钻法,从2007年1月至12月对樟树人工林0~60 cm土层的细根(≤2 mm)生物量进行了定位研究.结果表明:樟树人工林中活细根生物量季节变化范围为1.162~3.687 t/hm2,死细根生物量为0.072~0.399 t/hm2,年均活细根和死细根生物量分别为1.958和0.184 t/hm2;樟树活细根和死细根生物量存在显著的季节变化(P<0.05),活细根生物量呈现单峰曲线,死细根生物量呈现双峰曲线;活细根和死细根生物量均随土壤深度增加而减少,0~15 cm土层的年均活细根生物量占0~60 cm土层的年均总活细根生物量的52.90%,死细根生物量占总死细根生物量的56.51%;15~30 cm土层年均活细根生物量占23.64%,年均死细根量占22.25%;30~45 cm土层年均活细根生物量占12.49%,死细根量占总死细根量的11.17%;45~60 cm土层年均活细根生物量占10.97%,死细根量占总死细根量的10.03%.  相似文献   

5.
以徐州林场50年生侧柏人工林为研究对象,采用挖掘法获取土壤根系样品,探究林分密度对侧柏人工林不同根序细根形态的影响。结果表明:细根的直径和根长随着根序上升而显著增大,而比根长则随着根序的上升而显著减小。低林分密度(1 679株/hm2)与中林分密度(2 250株/hm2)相比显著减小了表层土壤1、2级细根的平均直径和平均根长,亚表层土壤3级细根的根长,显著增大了亚表层土壤2级细根的平均比根长;高林分密度(3074株/hm2)比中林分密度显著增大了2级根的平均比根长。与高林分密度相比,低林分密度显著减小了表层土壤1、2级细根的平均直径,增大了亚表层土壤5级细根的平均直径。  相似文献   

6.
福建柏人工林细根形态和功能异质性研究   总被引:1,自引:0,他引:1  
以福建省安溪县白濑国有林场内福建柏人工林为研究对象,对其1-5级细根的形态、养分含量、呼吸进行了分析.结果表明:细根直径,根长,组织密度均随着序级升高而显著增加,比根长则显著降低;C含量以及C/N表现为随着序级升高而显著升高,N含量和比根呼吸随序级升高而显著降低.相关分析发现:细根形态中直径、根长、组织密度均与比根呼吸之间具有极显著负相关性,比根长与比根呼吸之间具有极显著正相关性;比根呼吸与C含量和C/N之间具有极显著的负相关性,与N含量之间具有显著的正相关性;直径、根长、组织密度与C含量和C/N均具有极显著的正相关性,与N含量具有极显著的负相关性,比根长与C含量和C/N具有极显著负相关性,与N含量具有极显著正相关性.  相似文献   

7.
【目的】研究青海高寒区4种人工林的细根生物量及其养分储量时空变化特征,为该地区植被恢复和人工林经营提供理论依据。【方法】在青海高寒区选择白桦、青杨、华北落叶松和青海云杉4种典型人工纯林,2019年5—10月采集0~60 cm土层细根样品,测定细根生物量及其C、N、P含量,通过方差分析探究季节、树种和土层对细根生物量及其养分储量的影响。【结果】白桦、青杨、华北落叶松和青海云杉4种人工林0~60 cm土层的细根生物量分别为7.63、6.89、6.11和19.31 t·hm-2,青海云杉林细根生物量显著高于其他林分(P<0.05)。各林分细根生物量季节差异显著(P<0.05),均表现为秋季>夏季>春季。细根生物量主要分布在表层土壤,0~20 cm土层占比超过68%,随土层加深呈指数型降低。阔叶林细根的养分含量高于针叶林,阔叶林生长表现出较高的养分需求。各林分细根C含量表现为秋季>夏季>春季,N、P含量总体表现为夏季显著低于春季和秋季(P<0.05)。细根C、N和P含量总体上随土层加深而减小。青海云杉林细根C、N、P储量在各季节均...  相似文献   

8.
在陕北黄土丘陵沟壑区的安塞县,采用生长季内连续钻取土芯法进行根系调查取样,研究刺槐细根面积的动态变化,结果表明:东南坡与西北坡刺槐累积细根面积存在显著差异。西北坡刺槐累积细根面积大于东南坡,分别为东南坡的1.58倍(4月)、1.86倍(7月)和1.24倍(10月)。同时,东南坡与西北坡刺槐累积细根面积都表现出10月>4月>7月的动态变化。东南坡与西北坡刺槐细根面积在各土层所占比例具有一定的差异。但是,不同坡向刺槐细根垂直分布的动态变化趋势基本相同。无论在东南坡还是西北坡4月和10月约70%的细根分布在0~150cm土层,30%分布在160~250cm土层。7月约80%的细根分布在0~150cm土层,20%分布在160~250cm土层。不同月份间,刺槐细根面积在0~40cm土层所占比例变动较大,而40~150cm土层变动较小。刺槐细根面积垂直分布的动态变化与剖面土壤水分的动态变化相吻合。  相似文献   

9.
杨树刺槐混交林细根养分动态研究   总被引:19,自引:0,他引:19  
对两树种细根在北京市潮白河沿河沙地加拿大杨 (2 7a生 )刺槐 (2 2a生 )混交林中的分解情况进行了研究 ,从细根养分循环角度探索了两树种混交协调生长的机理。结果表明 :(1)加拿大杨和刺槐林木细根的分解特点不同 ,杨树细根在分解前期的N、Ca、Mg元素浓度逐渐升高 ,P、K元素浓度则逐渐降低。刺槐细根分解过程中N、P、K元素浓度逐渐降低 ,杨树刺槐混交林细根混合分解中各元素含量变化介于两树种细根单独分解之间 ;(2 )细根的N、K、Mg年归还量以刺槐纯根最大 ,两树种混根次之 ,杨树纯根最小 ;(3)混交林中N素归还量的增加有利于改善杨树的N素状况 ,杨树细根的P素归还量大于刺槐细根 ,有利于改善刺槐的P素营养 ,混交林杨树与刺槐在细根N、P养分方面形成协调互补的关系  相似文献   

10.
刺槐人工林细根垂直分布模型的研究   总被引:11,自引:4,他引:7  
对陕西安塞县刺槐(Robinia pseudoacacia)人工林细根的垂直分布特征进行详细调查,以细根表面积为指标建立了在土壤入渗水和深层土壤水混合作用下的刺槐细根垂直分布模型S=AhB(C Dh Eh2 Fh3),式中:A、B、C、D、E、F为经验系数,其中A>0、B>0、F≠0;S为从地表到一定深度的细根表面积(cm2·dm-3);h为土壤深度(cm).该模型可以从理论上确定细根分布的最大深度hmax和细根分布达最大值时的土壤深度hp,以及土壤入渗水对根系生长影响的最大深度hq,hq可以近似的作为土壤入渗水和深层土壤水对细根生长影响的分界点.根据刺槐细根的垂直分布模型,刺槐林下土壤水分在剖面上的垂直分布可以分为3个层次:第1层水分活跃层,从土壤表层到hp处,该层受降水影响最大;第2层土壤水分衰减层,位于hp~hq之间,该层受降水的补给程度变化较大,水分与细根垂直分布有相同的变化趋势,大体均是从hp到hq逐渐减少;第3层土壤水分相对稳定层,位于hq以下,在这一深度以下土壤含水量相对稳定.运用该模型可解释细根分布与土壤水分之间的关系,揭示黄土高原地区普遍存在的土壤干化现象的成因,为生态脆弱的黄土高原地区进一步贯彻适地适树提供理论依据.  相似文献   

11.
连作杨树细根根序形态及解剖结构   总被引:3,自引:0,他引:3  
[目的]针对连作杨树人工林细根形态和解剖结构,从根序视角探讨连作杨树人工林细根生长的代际差异及其与人工林生产力衰退的联系,以期揭示连作杨树人工林衰退机制.[方法]分别在杨树人工林Ⅰ和Ⅱ代林分设立标准地,采用改良全根取样法获得杨树细根(<2 mm)并按根序进行分级,制作1~5级细根各根序石蜡切片.根系扫描仪结合分析软件获得各根序细根长度、直径,光学显微镜观察各根序细根剖面直径、皮层厚度、维管柱(中柱)直径等参数,并计算比根长、根组织密度、根长密度、维根比等.LSD分析1~5级根序形态参数的差异显著性,One-way ANOVA分析同一根序在不同代数间形态指标参数的差异显著性.[结果]杨树细根生物量表现为随根序增加而减小,且连作Ⅱ代人工林细根生物量分配高于Ⅰ代林,尤其在1,2级根序中更为显著(P<0.05);连作导致杨树1,2级细根平均长度减少而3~5级根长度增加;直径虽然在不同根序细根间差异并不显著,但Ⅱ代林显著高于Ⅰ代林;杨树细根表面积、比根长和根长密度总体表现为1,2级根显著高于3,4级根(P<0.05),但比根长在Ⅱ代林中差异不显著;连作导致杨树1,2级根表面积和根长密度显著增大,但比根长显著减小(P<0.05);细根解剖特征表明,横剖面宽度随根序逐渐增大,中柱面积占横剖面的比例随根序增加而增大,1,2级细根总体呈现初生结构的特征,从3级根开始出现木栓层且皮层开始脱落.[结论]杨树1~5级根序细根形态和功能存在显著差异,1,2级细根仅具初生结构,是杨树的吸收根,3级以上细根出现木栓层从而变为输导根.连作导致杨树细根形态发生显著变化,且低级细根生物量显著增加,表明连作导致杨树人工林对地下部分的生长投入增大,这与养分匮乏生境中植物光合产物最优分配理论相一致.伴随细根死亡和周转,连作杨树人工林细根生物量分配格局将影响人工林地上部分生产力的形成.  相似文献   

12.
福建柏和杉木人工林细根生产力、分布及周转的比较   总被引:20,自引:3,他引:20  
对福建三明福建柏和杉木人工林细根生产力、分布及周转进行了为期 3年的研究 ,结果表明 ,福建柏年均细根生物量达 389 7g·m- 2 ,是杉木林 (2 77 2g·m- 2 )的 1 4 1倍 ;活细根年均生物量达 2 16 3g·m- 2 ,是杉木林(14 8 4g·m- 2 )的 1 4 6倍 ;<0 5mm细根生物量 (2 4 2 2g·m- 2 )则是杉木林 (12 4 7g·m- 2 )的 1 94倍 ,其占总细根生物量比例 (6 1 2 % )比杉木林 (4 5 0 % )的高出 16 2 %。福建柏和杉木细根垂直分布在 0~ 10cm土层差异最大 ,该层福建柏总细根密度 (14 4 2g·m- 2 )是杉木 (70 2g·m- 2 )的 2 1倍。福建柏林活细根生物量 1年只出现 1次峰值 (3月 ) ,而杉木林活细根则出现 2次 (3月和 9月 )。福建柏不同径级细根第 1年分散速率及分解系数均低于杉木的。福建柏林细根年净生产量 (32 0 2g·m- 2 a- 1 )和细根年死亡量 (32 6 5g·m- 2 a- 1 ) ,分别是杉木林 (2 5 1 3和 2 4 9 2g·m- 2 a- 1 )的 1 2 7倍和 1 31倍。福建柏细根年均周转速率为 1 4 8a- 1 ,低于杉木林的 (1 6 9a- 1 )。福建柏和杉木细根生物量分别仅占其乔木层生物量的 1 70 %和 1 18% ,但细根净生产力却分别占其乔木层总净生产力的 19 84 %和19 2 1% ,细根年死亡量分别占地上部分凋落物量的 4 8 74 %和 5 1 0 0  相似文献   

13.
农林复合系统中,地下生物量的分配格局是目的物种和间作作物竞争的结果,因而可以看作是模式物种选择及系统设计的依据。在花椒杂草系统模式更新改造中,为了达到间作作物选择和行间配置的合理性,采用壕沟法研究了系统地下生物量的空间分配现状。结果表明:(1)花椒杂草系统地下生物量总量248.57g·m^-2,杂草生物量占82%,花椒仅占18%;(2)该系统地下生物量总量和杂草生物量在水平空间上呈均匀分配,而在垂直空间上随土层加深呈负指数分配,其表达式分别是Y=1024.6exp^-0.5254x(R^2=0.9688,x为土层深度,cm)和Y=1187.2exp^-0.6889(R^2=0.9989,x为土层深度,cm);花椒根量均匀分配于垂直空间,而在水平空间上呈负指数式分配,其表达式为Y=118.3exp^-0.3817x(R^2=0.8215,x为距树干距离);(3)花椒吸水根生物量均匀分配于地下空间,杂草吸水根生物量的分配呈现出明显的分层现象,其吸水根总量的81.11%分配于0~15cm土层,而15cm以下土层仅占18.89%;(4)所研究的256个500cm^3的取样单元中,花椒和杂草吸水根的重合率50.4%,非重合率49.6%;然而在127个吸水根非重合单元中,花椒吸水根仅占29.1%,杂草吸水根却占了70.9%。文中根据花椒和杂草地下空间生物量的分配现状,讨论了四川盆地丘陵区退耕还林地花椒模式更新中间作物选择、行间配置和水肥管理应注意的问题.  相似文献   

14.
The mixed plantation of poplar (Populus spp.) and black locust (Robinia pseudoacacia) is one of the typical mixed stands with nitrogen-fixing and non-nitrogen-fixing species. Interaction between the two species in the mixed stand is harmonious and productivity is high, making this kind of mixed plantation a very successful pattern on poor sandy sites in north China. In this study, the fine root decomposition of the two species was investigated in the mixed plantation of 27-year-old Canadian poplar (P. canadansis) and 22-year-old black locust on sandy sites along the Chaobai River in Beijing. Mechanism of harmonious interaction between the two species was observed in the view of the nutrient cycle of fine roots. Results showed that: (1) the fine root decomposition of Canadian poplar and black locust trees was different. Concentrations of N, Ca and Mg gradually increased and those of P and K gradually decreased in the fine roots of poplar during the period of decomposition. Concentrations of N, P and K gradually decreased in the fine roots of black locust during decomposition. The speed of nutrient decomposition in mixed fine roots of the two species fell between the speed of the two pure samples. (2) During decomposition, the annual return amount of N, K and Mg in fine roots of black locust was highest, followed by the mixed fine roots of the two species, and then the fine roots of poplar. (3) The increased return amount of N in mixed fine roots could improve the N nutrient condition of poplar trees. The return amount of P in poplar fine roots was greater than that of black locust, which could improve the P nutrient of black locust trees. The interaction of mutual supplements of N and P nutrient cycle of fine roots between these two species formed. Translated from Scientia Silvae Sinicae, 2004, 4(4) (in Chinese)  相似文献   

15.
细根在森林生态系统物质循环和能量流动中具有十分重要的和不可替代的作用.为了解川西亚高山/高山森林生态系统功能,研究了川西亚高山/高山冷杉林(PFF)、20 a生和10 a生粗枝云杉林(SF20和SF10)以及红桦次生林(BF)的细根生物量及其碳储量.所有生态系统的细根生物量及碳储量均随着土壤深度增加而递减,并与土壤剖面结构和物种有关.61.5%细根分布在0-20 cm层,13.3%和25.2%细根分布在有机层和深层土壤.由于表层土壤具有较高的养分含量,因而吸收根系分布在表层土壤有利于林木的生长发育.PFF、SF20、SF10和BF的细根生物量分别为1489 Kg·hm-2、938 kg·hm-2、838 kg·hm-2、773 ks·hm-2,根系碳储量分别为0.775MgC·hm-2、0.469 MgC·hm-2、0.419 MgC·hm-2、0.387 MgC·hm-2.  相似文献   

16.
河北石质山区花椒细根分布特征   总被引:4,自引:1,他引:4  
@@ 近年来,有关林木根系的研究已经成为森林培育学研究中的一个热点,植物活性根的分布模式在决定最佳株行距、最佳间作模式等方面具有重要意义(Schroth,1995).  相似文献   

17.
为了提高徐州市石灰岩山地侧柏人工林的生态和景观质量,该研究以云龙山侧柏人工林为对象,利用Win-RHIZO根系分析仪对2个样地不同土层深度细根的形态参数、比根长、根长密度和生物量进行了综合分析。结果表明:(1)细根直径随根序等级的升高而增加,细根长度、比根长、表面积表现为下降趋势,而细根体积表现为先减小后增加的趋势;(2)在不同立地条件下,细根长度、比根长、表面积和体积均表现为表层高于底层,东坡高于西坡的规律;(3)单位面积上细根的生物量随根序的升高而增加,而根长密度则明显下降;表土层中细根生物量和根长密度都要高于底层,东坡高于西坡。  相似文献   

18.
黄土丘陵区燕沟流域人工刺槐林的细根空间分布特征   总被引:3,自引:0,他引:3  
对黄土丘陵区燕沟流域10年生人工刺槐林的细根生物量、比根长、根长密度和根面积指数的空间分布特征,以及这些根系参数与土壤物理因子(土壤含水量、土壤温度和土壤密度)的关系进行研究。结果表明:1)人工刺槐林细根在0~180cm土层中随深度呈层次性衰减(a,b,c,d,e);其中,细根生物量、根长密度和根面积指数等随深度变化均可用负指数函数描述,根系集中分布在0~60cm土层,峰值都在0~20cm土层,该土层3项指标分别占各自0~60cm土层总量的42.72%,44.44%和47.14%;比根长随深度增加衰减趋势较弱,在80~140cm土层中出现反复,其随土层深度的变化可用三次多项式描述。2)细根生物量、根长密度和根面积指数等均随距树干基部的距离增加而减小,比根长在0~40cm随距树干距离增加而增加,在40~80cm达到最大值,120~160cm内最少。3)根系分布受环境因子影响,其影响程度依次为:土壤温度>土壤含水量>土壤密度,建立根系参数与土壤物理因子的多元线性回归模型,模型均达到95%以上显著水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号