首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]通过构景因素控制试验,揭示林木胸径与密度对森林景观的影响规律,为林分密度调控提供参考。[方法]以枫香林为例,综合应用PhotoShop、AutoCAD、SpeedTree等软件,开展森林景观模拟;借助林业试验设计方法开展胸径、密度与景观美景度关系的两因素、单因素控制性试验。[结果](1)在设定的10个密度水平下,胸径变化对美景度(SBE)的影响总体不显著,景观优劣次序为20 cm30 cm10 cm;但若取各胸径级前3个高分SBE比较,则优先次序为30 cm20 cm10 cm;(2)密度对美景度的影响总体上为极显著,不同胸径级的美景度随密度变化均为先升后降趋势,以适中密度为最优,但随着树体的增大,峰值密度向左偏移,10 cm、20 cm、30 cm的最佳密度分别为1 389、833、389株·hm-2。密度-美景度曲线拟合结果为二次曲线,函数形式分别为SBE10=3.435+0.005X1-1.639E(-6)X12(R2=0.719)、SBE_(20)=4.013+0.004X2-1.677E(-6)X_2~2(R~2=0.713)、SBE_(30)=6.355+0.001X3-8.128E(-7)X32(R2=0.728);(3)胸径与密度的交互效应对美景度有极显著影响,但同一密度、同属随机分布的不同模拟场景对美景度的影响不显著。[结论]组合应用多种软件进行森林景观模拟与评价取得了良好结果,方法可行;林分美学质量受胸径、密度两个因素的综合影响,随着胸径增大而提高,但不同胸径有不同的最佳配密匹配度。  相似文献   

2.
林木直径大小多样性量化测度指数的比较研究   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]为了客观恰当地量化表达林分水平上的林木直径大小多样性。[方法]采用6块定位样地数据,对比分析基于直径分布的Simpson(D_N)、Shannon(H_N)及单木断面积Gini系数(GC),基于直径大小分化度的Simpson(DT)、Shannon(HT)及其均值(T-)这6种林木直径大小多样性量化测度指数,筛选出符合逻辑排序且具有较好辨别能力的直径大小多样性量化测度指数。[结果]6块样地的林木直径大小多样性逻辑排序为吉林胡桃楸针阔混交林经营样地吉林胡桃楸针阔混交林对照样地甘肃锐齿栎阔叶混交林经营样地甘肃锐齿栎阔叶混交林对照样地北京油松落叶松人工混交林样地北京侧柏人工纯林;林木直径大小多样性为天然林高于人工林,更为成熟的吉林老龄林样地高于甘肃中龄林样地,经过至少5年结构化经营的样地高于对照样地,人工混交林样地高于人工纯林样地。基于直径分布的DN、HN和GC测度的6块样地林木直径大小多样性排序结果与逻辑排序不一致;基于直径大小分化度的D_T、H_T和珔T测度的各林分林木直径大小多样性排序与逻辑排序一致。[结论]基于直径分布的D_N、H_N和GC量化测度指数不能恰当地表达林木直径大小多样性。基于直径大小分化度的D_T、H_T和珔T量化测度指数能恰当表达林木直径大小多样性;相对D_T和H_T,珔T是一个连续型变量的测度指数,而且能从林分整体水平上量化林木间的大小分化程度,易于解释其生物学意义。因此,认为珔T是恰当表达及区分各林分林木直径大小多样性的最优量化测度指数。  相似文献   

3.
We derived an allometric model of the height–diameter curve for even-aged pure stands, which was a modification of the earlier model proposed by Inoue (2000a). An individual-dependent allometric equation was used as the height–diameter curve. Using the discriminant analysis method, all trees composed of a stand were stratified into upper and lower trees. It was assumed that both relationships between mean tree height H m and upper tree height H u and between mean DBH D m and mean DBH of upper trees D u could be described by the time-dependent allometric power equations. The height–diameter curve showed an average relationship between tree height and DBH of a given stand at a given time, and hence it could be assumed that the height–diameter curve contained two points (D m , H m ) and (D u , H u ). With these assumptions, we derived an allometirc model of height–diameter curve, which allowed the coefficients of the curve to be estimated from mean tree height and mean DBH. The proposed model was fitted to Japanese cedar (Cryptomeria japonica D. Don) data. The error ratio of the allometric model ranged from 2.254% to 13.412% (mean = 6.785%), which was significantly smaller than that of the earlier model. When the error of mean tree height was ±1.0 m or less, the effect of the error of mean tree height on the error ratio was comparatively small. This suggested that the error of ±1.0 m in mean tree height could be accepted in the estimation of height–diameter curve using the allometric model. These features enable us to combine the allometric model with Hirata’s vertical angle-count sampling or growth models. In conclusion, the allometric model would be one of the most practical and convenient approaches for estimating the height–diameter relationship of even-aged pure stands.  相似文献   

4.
《Southern Forests》2013,75(3):113-122
This study compared models for estimating carbon sequestered aboveground in Cupressus lusitanica plantation stands at Wondo Genet College of Forestry and Natural Resources, Ethiopia. Relationships of carbon storage with tree component and stand age were also investigated. Thirty trees of three different ages (5, 12 and 24 years), comprising 10 trees from each stand, were sampled in order to generate dry biomass and carbon data from tree components. Five linear and non-linear biomass and carbon models were compared and evaluated for estimation of overall aboveground carbon, carbon by age groups, and carbon by diameter at breast height (DBH) classes using performance indicator statistics. Among the models compared, a carbon model described by Y = b 0 D 2 H + ? (p-value < 0.001), where D = DBH (in cm), H = total height of the tree (in m), ? = error, and b 0 is a parameter, was found to be the best model for estimation of carbon sequestered aboveground in C. lusitanica plantation stands of the study area. The study also indicated the overall superiority of carbon models over biomass models in estimation of aboveground carbon of C. lusitanica. It was concluded that, for the range of DBH utilised in the current study, the carbon model described can be a useful tool in estimation of carbon storage of C. lusitanica plantations in the study area and other related sites.  相似文献   

5.
云南铁杉地理种源表型变异研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李立  李昆  崔凯 《林业科学研究》2007,20(6):768-774
采用以树冠光竞争高度为基础的林分垂直层数量化方法研究了云蒙山几种典型森林群落的垂直结构特征,并将不同群落的垂直层划分结果与树高系统聚类分析结果相比较,发现在森林群落垂直层划分过程中,树冠光竞争高度附近的树被误划的几率较高;截止系数a=0.4时,平均误划率最低,为10.10%.对几种森林群落结构指标相关性分析表明:森林群落垂直分层数与乔木高度多样性指数、树高变异系数及乔木物种多样性指数呈显著正相关;乔木高度多样性指数和树高变异系数与灌木层多样性指数呈极显著正相关,而与草本层多样性指数却均呈显著负相关.几种描述林分垂直结构的指标能很好地描述森林群落的垂直分层情况,同时森林群落的垂直结构对下层植物的物种组成具有重要影响.  相似文献   

6.
Wind damage to forests is an important ecological disturbance factor. At the same time, it can have serious economic consequences due to a reduction in timber production. Current models for predicting the risk of wind damage are useful, but generally only focus on the “mean” tree within uniform stands. This paper presents measurements made of wind loading on trees of different sizes within four forest stands of different structure and management history, but all well-acclimated to current wind conditions. Each tree demonstrated a linear relationship between the maximum hourly turning moment and the square of the average hourly wind speed at the canopy top; we defined this ratio (the gradient of the line M max vs. u 2) as the turning moment coefficient (T C). T C was correlated with tree size, in a relationship that differed little between the four forest sites despite the differences between the stands. The relationship between T C and individual tree competition within each stand was investigated, using both distance-independent and distance-dependent competition indices. All sites showed decreasing T C with increasing competition. However, the relationships differed between sites and would also be expected to change through time for a single site. The distance-dependent indices offered no improvement over the simpler, non-spatial indices that required only a diameter distribution. We suggest how, subject to further work, the results presented could be applied to calculate the risk of wind damage to trees of different sizes within a forest stand, and how the risk of wind damage to individual trees might change in response to thinning.  相似文献   

7.
Previous studies have demonstrated a clear relationship between diameter at breast height (DBH) and tree transpiration (Q T) in multi-specific broadleaved forests. However, these studies were conducted with a limited range of tree sizes and species, and thus many multi-specific broadleaved forests fall outside these conditions. Therefore, this study examined the relationship between DBH and Q T in a warm-temperate multi-specific broadleaved forest (n = 12 species) with a wide range of tree sizes (5.0–70.0 cm DBH) using the Granier-type heat dissipation method. The results showed that, although sap flow density varied between individual trees and species, there was a significant relationship between log Q T and log DBH (r 2 = 0.66, P < 0.001) because of the strong dependence of sapwood area on DBH. This study confirmed the applicability of the relationship for the stand transpiration (E C) estimates even in a multi-specific broadleaved forest with a wide variation in DBH. Our results also revealed that selecting the sample trees in descending order of DBH effectively reduced potential errors in E C estimates for a specific sample size, as larger trees contribute more to E C. This information should be useful for future studies investigating the transpiration of multi-specific broadleaved forests, reducing errors during the scaling-up procedure.  相似文献   

8.
Farm-level simulators such as the Agroforestry Estate Model use as inputs either yield tables or outputs from forest modeling tools. Forest models rely upon assumptions on site index, stem diameter (DBH) distribution, wood production and tree mortality, which may or may not apply to agroforestry practices. Differences may arise because of the effects on tree growth of unusual spacings and configurations, fertilizer, pruning and grazing regimes, and tree-understory relationships as well. We examined data from published or existing field trials to determine mid- and long-term trends in tree growth and understory yields in silvopastoral practices with southern pines (Pinus spp.) in the United States. Tree DBH and height were greater in practices with improved pastures than in those with spontaneous grasses. Understory affected DBH more than height and, therefore, DBH-height relationships differed among practices. Sigmoidal models predicted that tree height will peak at different age depending on tree spacing and understory type. These changes may affect the accuracy of site indices and wood yield predictions. Livestock gains decrease linearly with increasing stand basal area and stand age, although forage yields sometimes decay exponentially. In one of the experiments, livestock gains decreased to almost zero at age 19 but with stand basal areas at that age markedly differing (14 and 25 m2 ha–1) for two different spacings. Additional data would allow to generate empirical algorithms to obtain farm-level simulations of broad application, improve economic analysis and generate hypotheses to guide future experimental work. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Crown size is a good indicator of the growth potential of trees and is often used in forest management for outlining thinning guidelines or constructing forest growth models. The aim of this study was to analyse mean crown radius as a function of stem size, stand density and site productivity in even-aged stands of pedunculate oak (Quercus robur L.). Data included measurements of 620 trees from 53 plots in nine thinning experiments and one operational stand in Sweden, Denmark and Great Britain, representing a wide spectrum of thinning practices ranging from the strictly unthinned control to extremely heavy thinning with essentially solitary trees. Three sets of models were constructed based on different predictor variables, including indicators of individual stem size (diameter at breast height, DBH), stand density/thinning grade (quadratic mean diameter and stand basal area) and site productivity (stand top height). Preliminary results indicated a significant effect of DBH and (nominal) thinning grade on crown radius. The response pattern of the final models indicated an increasing crown radius with increasing DBH, with increasing thinning grade (decreasing stand density) and with decreasing site productivity. The models are valid for predicting the crown radius of pedunculate oak in even-aged forest stands.  相似文献   

10.
Granier’s probes were applied to measure the sap flow of 14 sample trees in an Acacia mangium forest on the hilly lands in Heshan City, Guangdong, during the time period of October, 2003. The photosynthetically active radiation (PAR), air relative humidity (RH) and temperature of air (T) above the forest canopy were recorded. The sap flow measurement was used in combination with morphological characteristics of tree and forest structure to calculate the whole-tree transpiration (E), stand transpiration (E t), and mean canopy stomatal conductance (g c). Analyses on the relationships between tree morphological characters and whole-tree water use, and on the responses of g c to PAR and vapor pressure deficit (D) were conducted. The results showed that whole-tree transpiration correlated significantly and positively with tree diameter at breast height (DBH) (p<0.0001), with sapwood area (p<0.0001), and with canopy size (p = 0.0007) logarithmically, but exponentially with tree height (p = 0.014). The analyses on the responses of canopy stomatal conductance showed that the maximum g c (g cmax) changed with PAR in a hyperbolic curve (p<0.0001) and with D in a logarithmic one (p<0.0001). The results obtained with sap flow technique indicate its reliability and accuracy of the methods of estimation of whole-tree and stand transpirations and canopy stomatal conductance. __________ Translated from Chinese Journal of Applied Ecology, 2006, 17(7): 1149–1156 [译自: 应用生态学报]  相似文献   

11.
Tree biomass plays a key role in sustainable management by providing different aspects of ecosystem. Estimation of above ground biomass by non-destructive means requires the development of allometric equations. Most researchers used DBH (diameter at breast height) and TH (total height) to develop allometric equation for a tree. Very few species-specific allometric equations are currently available for shrubs to estimate of biomass from measured plant attributes. Therefore, we used some of readily measurable variables to develop allometric equations such as girth at collar-height (GCH) and height of girth measuring point (GMH) with total height (TH) for A. rotundifolia, a mangrove species of Sundarbans of Bangladesh, as it is too dwarf to take DBH and too irregular in base to take Girth at a fixed height. Linear, non-linear and logarithmic regression techniques were tried to determine the best regression model to estimate the above-ground biomass of stem, branch and leaf. A total of 186 regression equations were generated from the combination of independent variables. Best fit regression equations were determined by examining co-efficient of determination (R2), co-efficient of variation (CV), mean-square of the error (MSerror), residual mean error (Rsme), and F-value. Multiple linear regression models showed more efficient over other types of regression equation. The performance of regression equations was increased by inclusion of GMH as an independent variable along with total height and GCH.  相似文献   

12.
[目的]通过分析大兴安岭呼中林区兴安落叶松天然林胸径和树高的一元、二元分布特征,揭示脆弱地带森林群落的林木大小分布特征。[方法]在大兴安岭呼中林场设置3种不同类型兴安落叶松林固定样地,利用整体和分层的方法,对样地林分胸径和树高的变化规律以及两者之间的关系进行研究。[结果]表明:(1)草类-落叶松林直径分布为单峰分布,其他2块样地为双峰分布; 3块样地林木直径分布均呈左偏。杜鹃-落叶松林树高分布为多峰分布,其他2块地均为单峰分布; 3块样地林木树高分布均呈右偏。(2) 3块样地上、下层林木的直径分布均为单峰分布,上层木直径分布均呈左偏,下层木直径分布草类-落叶松林右偏,杜鹃-落叶松林左偏,杜香-落叶松林为近似正态。杜鹃-落叶松林的树高上、下层分布为双峰,其他2块样地均为单峰,3块样地上层木树高分布均左偏,而下层木树高分布均右偏。(3)草类-落叶松林和杜鹃-落叶松林小径阶林木株数占绝大多数。3块样地林分中树高与胸径的比值在小径阶林木中明显大于大径级林木。草类-落叶松林和杜鹃-落叶松林上层木中小径阶林木株数所占比例稍大,杜香-落叶松林和杜鹃-落叶松林下层木中大径阶林木株数比例稍大,但3块样地上层和下层木树高与胸径的比值在大小径阶林木中均无明显差异。[结论]高密度的杜鹃-落叶松林平均树高要高于低密度的杜香-落叶松林和草类-落叶松林平均树高,而平均胸径无明显差异。3块样地林分中树高与胸径的比值小径阶林木中明显大于大径级林木,但其差异在上层和下层林分中均表现不明显。  相似文献   

13.
Managed forest stands are typically younger and structurally less diverse than natural forests. Introduction of non-native tree species might increase the structural changes to managed forest stands, but detailed analyses of tree- and stand-structures of native and non-native managed forests are often lacking. Improved knowledge of non-native forest structure could help clarify their multiple values (e.g. habitat for native biodiversity, bioenergy opportunities). We studied the structural differences between the introduced, non-native Pinus contorta and the native Pinus sylvestris and Picea abies over young forest stand ages (13–34 years old) in managed forests in northern Sweden. We found that P. contorta stands had greater mean basal areas, tree heights, diameters at breast height, and surface area of living branches than the two native species in young stands. The surface area of dead attached branches was also greater in P. contorta than P. abies. Although this indicates greater habitat availability for branch-living organisms, it also contributes to the overall more shaded conditions in stands of P. contorta. Only one older 87 years old P. contorta stand was available, and future studies will tell how structural differences between P. contorta and native tree species develop over the full forestry cycle.  相似文献   

14.
In order to accurately estimate the size of the carbon pool and the capacity of the carbon sink in the forested areas of Xiaolong Mountain in Gansu Province, we have established regression equations of organ biomass of eight tree species. We measured and investigated the biomass of different forest stand types based on data from 1259 standard sample plots and 836 standard sample trees. The results show that stand biomass, expressed in t·hm−2 for eight types of forest stands on Xiaolong Mountain, are as follows: Quercus aliena var. acuteserrata 84.05, Pinus tabulaeformis 62.44, Quercus variabilis 81.77, Populus sp. and Betula sp. combined 77.44, Larix sp. 69.00, Pinus armandii 70.07, Picea sp. 96.49 and Abies sp. 98.72. We also looked at other broad-leaved mixed forests. Our study shows that the biomass of a single tree of each tree species is closely related to the diameter at breast height (DBH) and to tree height. The biomass of single trees as well as stand volumes is closely related to average DBH, average tree height and to stand density. __________ Translated from Journal of Beijing Forestry University, 2007, 29(1): 31–36 [译自: 北京林业大学学报]  相似文献   

15.
Tree mortality is a poorly understood process in the boreal forest. While large disturbances reset succession by killing all or most trees, background tree mortality was hypothesized to be affected by competition, ageing, and stand composition. We tested these hypotheses on jack pine (Pinus banksiana Lamb.) mortality using data from long-term repeatedly measured permanent sample plots collected between 1952 and 1989 in Ontario, Canada. The probability of mortality over a 5-year period was modeled using logistic regression with the maximum likelihood estimation employed for parameter estimation. Relative competitiveness measured as the ratio of individual tree diameter at breast height (DBH) to mean stand DBH explained more variation in mortality than stand age did. Mortality increased rapidly with decreasing DBH ratio. A U-shaped mortality pattern with stand age was found while stand composition had no effect on mortality. Developed by using a residual sequential regression approach, our final mixed-effects model with a 81% model correctness of mortality prediction conclusively demonstrated that relative competitiveness is the key determinant for jack pine mortality.  相似文献   

16.
立地水分条件决定的植被承载力是干旱缺水地区森林合理经营的重要依据。考虑到干旱缺水地区的森林蒸散耗水在水分输出中占据绝对主导地位,其大小直接与叶面积指数(LAI)相关,将林冠LAI在生长季一段时间内的最大值(LAImax)作为植被承载力(LAIc)的量化指标,利用冠层分析仪(LAI-2000),在六盘山香水河小流域和叠叠沟小流域的44个华北落叶松人工林样地,实测了冠层LAI的季节动态变化,研究了生长季内LAImax与林分断面积、郁闭度、平均树高、密度等常用林分结构指标的关系。结果表明:LAImax与林分不同结构指标均呈幂函数关系,其决定系数(R2)依次为0.84、0.82、0.56、0.47,说明能同时反映林分密度和树体大小的林分断面积与林冠LAI相关最紧密。将LAImax与林分断面积的幂函数关系嵌入了林分平均胸径与林分密度和林龄关系的模型,用以描述LAImax与林龄和密度的关系,并利用样地实测数据拟合了模型参数。拟合建立的模型对所有样地的LAImax的计算值与实测值的相对误差平均为8.6%(0%20.4%),能较好地描述LAI与林龄和密度的关系。利用此模型,进一步导出了能依据给定的LAIc,简捷计算出不同林龄时的可承载林分密度的模型,从而为基于立地水分植被承载力的林分密度管理和森林多功能经营等提供技术支持。  相似文献   

17.
To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We so...  相似文献   

18.
Two models for determination of the number of stems per hectare in forest stands (N) from attributes derived by aerial photo‐interpretation were developed. The models relied on the assumption that N could be determined by dividing the total stand volume per hectare with the volume of the “average tree”; defined by stand mean height and the diameter corresponding to mean basal area of a stand. Input variables of the models were stand mean height, crown closure and site quality. Additionally, model II required input of average stand volume per hectare and average mean diameter derived from stratified field sample plot inventories. Material for 143 coniferous stands was used for the testing of the models. The stands were recorded by intensive field measurements. Aerial photographs at the approximate scale of 1:15 000 were used for photo‐interpretation. The N value was underestimated in model I by 5.4–47.0%. The standard deviation for the differences was 15.2–26.2% for mature stands and 41.4–44.2% for young thinning phase stands. For model II, the mean difference between the predicted and observed N value was in the range ‐16.1% to 12.2%.  相似文献   

19.
《Southern Forests》2013,75(3):261-271
Forests are the largest biological reservoir of biomass and carbon on the planet. This fact turns them into the main tool to neutralise the CO2 emitted by human activities. Despite such importance, the uncertainties associated with biomass estimates in forests, especially in (sub)tropical forests, are enormous. Facing this scenario, the objectives of this study were (1) to quantify through destructive sampling the aboveground biomass (AGB) of 105 trees of 47 species occurring in a secondary subtropical evergreen rainforest in Brazil; (2) to investigate the AGB distribution in different tree compartments; and (3) to fit tree-level models to improve biomass estimates for the referred forest type. The results revealed that most of the AGB was stored in the compartments stem and large branches (diameter 5 cm). There was an increase in the proportion of biomass – in relation to the total tree AGB (kg) – allocated in the large branches as tree diameter at breast height (DBH) increased; this pattern was not observed for the compartments stem, thin branches (diameter < 5 cm), and leaves. The compartments thin branches and leaves represented between 5.4% and 17.0%, and 1.3% and 2.9% of the total tree AGB, respectively. From the 10 fitted biomass models, the linearised power models yielded the smallest errors. The best performance model, which returned a mean bias of 1.7%, may be written as AGB = exp(?8.9807 + 2.1642·ln[DBH] + 0.5072·ln[h] + 0.9999·ln[ρbas]); Baskerville’s factor = 1.0175. If there are no (reliable) data on tree total height (h; m), the following model, which embedded the DBH and wood basic specific gravity (ρbas; kg m?3), may be employed: AGB = exp(?9.0086 + 2.4606·ln[DBH] + 1.0895·ln[ρbas]); Baskerville’s factor = 1.0206.  相似文献   

20.
Different multiple linear regression models of maximum leaf area index (LAImax) based on stand characteristics, site quality, meteorological variables and their combinations were constructed and cross-validated for three economically important tree species in Flanders, Belgium: European beech (Fagus sylvatica L.), Pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.). The models were successfully tested on similar datasets of experimental sites across Europe. For each species, ten homogeneous and mature stands were selected, covering the species’ entire stand productivity range based on an a priori site index classification. LAImax was derived from measurements of leaf area index (LAI) made by means of hemispherical digital photography over the whole growing season (mid-April till end October 2008). Species-specific models of LAImax for beech and oak were mostly driven by management practice affecting stand characteristics and tree growth. Tree density and dominant height were main predictors for beech, while stand age and tree-ring growth were important in the oak models. Scots pine models were more affected by site quality and meteorological variables. The beech meteorological model showed very good agreement with LAI at several European sites. Scots pine’s stand model predicted well LAI across Europe. Since the species-specific models did not share common predictors, generic models of LAImax were developed for the 30 studied sites. Dominant height was found to be the best predictor in those generic models. As expected, they showed a lower predictive performance than species-specific ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号