首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
[目的]通过分析不同林层林木之间的竞争情况,以期揭示林木间相互竞争的类型、林木受到的竞争压力与林木垂直分布之间的关系,为森林资源的保护与利用提供科学依据。[方法]在福建万木林自然保护区内设5块典型中亚热带天然阔叶林样地,采用Hegyi的竞争指数,按分层和不分层两种情形研究林木间的竞争强度。[结果]在1—5号样地,当取样半径超过4 m后,林木间的竞争强度随取样半径的增大而减小的趋势变缓,4 m是分析林木竞争的适宜半径;以4 m为半径分析林木间的竞争,发现有一半以上的组成树种只发生种间竞争,剩余同时发生种间和种内竞争的树种,其竞争木构成中数量占优势的普遍是与其相异的树种,且种间竞争强度普遍强于种内竞争;各样地的乔木层都可以划分出由高到低的3个林层,在平均水平,越高层的林木距离竞争木越远、在竞争木的组成中较矮小的第3林层林木数量也越多;越高层的林木,平均每株对象木与其全部竞争木之间的竞争压力越小。[结论]在调查的典型群落中,普遍发生的是种间竞争,而林木受到的竞争压力及其竞争木的组成都与它们的垂直分布关系密切,在森林资源保护和经营中应对垂直分布予以更多的关注;乔木层中的优势树种未发生激烈种间或种内竞争;可以发生激烈种间竞争的乔木树种有米槠、庆元冬青、少叶黄杞和杜英,不存在特定的竞争木与它们竞争,它们与竞争木相近、主要分布在第2或第3林层;种内竞争过于激烈的有山杜英、华杜英、山黄皮、野含笑和羊舌树,也主要分布在第2或第3林层。  相似文献   

2.
Model computations were made on the critical combination of snow loading and windspeed for snow damage of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.) and birch sp. (Betula sp.) at the newly formed stand edge with varying tree height and stem taper using the model developed by H. Peltola, S. Kellomäki and H. Väisänen (1996, HWIND: A Mechanistic Model for Wind and Snow Damage of Scotts Pine, Norway Spruce and Birch sp.) for the mechanism of wind and snow damage. In the computations, the total turning moment arising from the wind and snow load and from the bending of stem and crown was calculated along with the breaking stress of the stem and root anchorage. Windspeed variation within the crown and the vertical distribution of snow, stem and crown weight were also taken into account.According to computations, the critical combination of snow and wind loading for stem breakage and uprooting of trees was caused mainly by accumulation of snow on tree crowns, rather than by wind, which did, however, increase the risk of damage. The risk of damage increased along with stem taper decrease or tree height increase for all tree species studied. However, Scots pine and Norway spruce were found much more susceptible to snow damage than birch, which (being leafless) had much less crown area for snow attachment and wind loading.The trees most likely to suffer stem breakage were slightly tapering Scots pines and Norway spruces with tapers of 1:120 for varying tree heights of 12–20 m under short-term snow loading of 60 kg m−2, i.e. they would have suffered stem breakage under windspeeds of less than 9 m s−1 above the tree canopy top. Respectively, even Scots pine and Norway spruce with tapers of 1:100 were at risk of stem breakage through sustained snow loading of 60 kg m−2. In addition, even snow loads of 20–40 kg m−2 were found big enough to cause stem breakage of these trees with stem tapers of 1:120 during sustained snow loading. Correspondingly, similar pines and spruces with stem tapers of 1:120 were found to even more liable to be uprooted during conditions of unfrozen soil than of having their stem broken by short-term snow loading of 20–60 kg m−2, i.e. less windspeed was needed to cause uprooting. However, pines and spruces with tapers of 1:80 were not at risk for stem breakage and uprooting. This was because snow would have more probably been dislodged from the tree crowns by windspeeds greater than 9 ms−1 which are needed to worsen the damage. Nor would very slender birch without leaves have suffered stem breakage or uprooting under any circumstances with windspeeds of less than 9 ms−1.  相似文献   

3.
McJannet D  Vertessy R 《Tree physiology》2001,21(12-13):1001-1008
We conducted thinning trials in a 5-year-old Eucalyptus globulus ssp. globulus Labill plantation near Warrenbayne, northeastern Victoria, Australia, where soil salinization and waterlogging are common, and assessed treatment effects on tree growth, water use and survival. Half-hectare plots were thinned from the original density of 1100 stems ha(-1) to densities of 800, 600 and 400 stems ha(-1), and stem diameter increment, leaf area index, transpiration, canopy interception and depth of tree water source monitored for 21 months. Two drought periods occurred during the study, rainfall was 30% below the long-term average and there was severe mortality in all three plots. Analysis of deuterium abundance in soil and xylem water indicated that the trees accessed water only from the top meter of the soil profile. Transpiration rates were higher in the most heavily thinned plot than in the least thinned plot, which underwent a reduction in basal area during the study. The most heavily thinned plot increased in basal area by 10% during the study. Edge trees had significantly greater diameters than trees from the middle of the plots.  相似文献   

4.
Link between diurnal stem radius changes and tree water relations   总被引:1,自引:0,他引:1  
Zweifel R  Item H  Häsler R 《Tree physiology》2001,21(12-13):869-877
Internal water reserves are depleted and replenished daily, not only in succulent plants, but also in trees. The significance of these changes in tissue water storage for tree water relations was investigated by monitoring diurnal fluctuations in stem radius. In 6-year-old potted Norway spruce (Picea abies (L.) Karst.) trees, whole-tree transpiration rate (T), sap flow at the stem base and fluctuations in stem radius were measured at 10-min intervals over eight successive weeks. The dynamics of diurnal water storage in relation to the daily course of water movement was simulated and the contribution of stored water to T quantified. The finding that, in P. abies, the course of bark water content is linearly coupled to stem radius fluctuations provided the basis for linking stem radius changes to a functional flow and storage model for tree water relations. This model, which consists of physical functions only and is driven by a single input variable (T), accurately simulates the diurnal course of changes in stem radius and water storage of the tree crown and stem. It was concluded that fluctuations were mainly determined by the course of transpiration. The availability of soil water and the degree to which storage tissues were saturated were also factors affecting the diurnal course of stem radius changes. Internally stored water contributed to daily transpiration even in well-watered trees, indicating that stored water plays an important role not only during periods of drought, but whenever water transport occurs within the tree. Needle and bark water reserves were most heavily depleted during transpiration. Together they supplied approximately 10% of daily T on sunny days, and up to 65% on cloudy days. On a daily basis, the crown (mainly needles) contributed approximately eight times more water to T than the stem (mainly bark). The depletion of the two storage pools and the water movements observed in the trees always occurred in the same sequence. In the morning, T first caused a depletion of the water stored in the crown. It then caused depletion of bark storage tissues at ever increasing distances from the needles. Up to 75% of the transpired water could be withdrawn from storage tissues when the increase in T reached a maximum.  相似文献   

5.
Cacao trees under different shade tree shelter: effects on water use   总被引:1,自引:1,他引:0  
We asked how shade tree admixture affects cacao water use in agroforests. In Central Sulawesi, Indonesia, cacao and shade tree sap flux was monitored in a monoculture, in a stand with admixed Gliricidia trees and in a mixture with a multi-species tree assemblage, with both mixtures having similar canopy openness. A Jarvis type sap flux model suggested a distinct difference in sap flux response to changes in vapor pressure deficit and radiation among cacao trees in the individual cultivation systems. We argue that differences originate from stomatal control of transpiration in the monoculture and altered radiation conditions and a different degree of uncoupling of the VPD from the bulk atmosphere inside shaded stands. Probably due to high sap flux variability among trees, these differences however did not result in significantly altered average daily cacao water use rates which were 16 L day?1 in the multi-species assemblage and 22 L day?1 in the other plots. In shaded stands, water use of single cacao trees increased with decreasing canopy gap fraction in the overstory since shading enhanced vegetative growth of cacao fostering transpiration per unit ground area. Estimated transpiration rates of the cacao tree layer were further controlled by stem density and amounted to 1.2 mm day?1 in the monoculture, 2.2 mm day?1 for cacao in the cacao/Gliricidia stand, and 1.1 mm day?1 in the cacao/multi-species stand. The additional transpiration by the shade trees is estimated at 0.5 mm day?1 for the Gliricidia and 1 mm day?1 for the mixed-species cultivation system.  相似文献   

6.
The influence of a continuous feathermoss layer (dominated by Pleurozium schreberi) on soil temperature, soil water potential and tree growth was assessed in a 5-year study. The feathermoss layer was manually removed from 900 m2 plots in lodgepole pine (Pinus contorta) stands of northwestern Alberta. The interception and retention of nutrients by moss was estimated in N fertilization treatments with and without moss removal. As well, the potential for intraspecific competition to affect nutrient dynamics was assessed through a thinning treatment. Removal of the moss layer increased soil temperatures in summer and increased the period when soil was frost free, but the plots without moss had soil temperature as low as −13 °C in one winter period with little snow cover. Moss removal did not significantly affect N concentrations of the tree foliage but did reduce needle weight. Thinning had little effect on the rate of diameter growth after the first 3 years, but produced a significant increase in growth by year 4. Fertilization had a consistently positive effect on radial stem increments and N content of foliage, regardless of the presence of moss on the plot. Overall, the intraspecific competition between trees was apparently greater than interspecific competition between moss and trees.  相似文献   

7.
De Luis  M.  Raventós  J.  Cortina  J.  Moro  M.J.  Bellot  J. 《New Forests》1998,15(3):223-242
The relationship between tree growth and competition may depend on some subjective choices that are commonly left to the researcher. Among these are the neighborhood radius, the number of years of growth that are integrated, and tree age. We have evaluated the importance of these factors when relating growth and competition in a forest stand with contrasted densities of the dominant tree species (Pinus nigra) and understory shrub species (Adenocarpus decorticans). Previous to this evaluation we performed a randomization test to assess the relationship between tree growth and neighbors. By using Daniels index of competition we found that the use of a fixed neighborhood radius underestimated the importance of tree competition. The coefficient of determination (r2) of the relationship between tree growth and Daniels index increased asymptotically with the number of years considered. Five years of growth gave high r2 independently of the density of trees and shrubs. The intensity of competition was weakly affected by the characteristics of the plot (tree and shrub densities), and did not change with time. In contrast, the potential growth at equal competition – as represented by constant a in the allometric model – changed with time suggesting a gradual decrease in potential tree growth in the plots with higher tree density, and a gradual increase in those plots with high density of shrubs. These results may reflect tree canopy closure and the senescence of Adenocarpus decorticans. A method is suggested to select optimum neighborhood radius and growing period for the calculation of competition indices. By applying this method we were able to explain as much as 79–84% of the variability in tree growth of this stand.  相似文献   

8.
The aim of this study was to develop prediction models using laser scanning for estimation of forest variables at plot level, validate the estimations at stand level (area 0.64 ha) and test the effect of different laser measurement densities on the estimation errors. The predictions were validated using 29 forest stands (80×80 m2), each containing 16 field plots with a 10 m radius. For the best tested case, mean tree height, basal area and stem volume were predicted with a root mean square error of 0.59 m (3% of average value), 2.7 m2 ha?1 (10% of average value) and 31 m3 ha?1 (11% of average value), respectively, at stand level. There were small differences in terms of prediction errors for different measuring densities. The results indicate that mean tree height, basal area and stem volume can be estimated in small stands with low laser measurement densities producing accuracies similar to traditional field inventories.  相似文献   

9.
Internal water reserves in bark and foliage of trees contribute to transpiration (T) and play an essential role in optimizing water transport by buffering extreme peaks of water consumption. We examined patterns of stem shrinkage and their relationship to tree water dynamics. We measured fluctuations in root radius and stem radius at different stem heights, T of twigs at the top of the crown and sap flow velocities in stem sections of mature subalpine Norway spruce (Picea abies (L.) Karst.) trees over 2 years. The output of each sensor was coupled by physical functions to a mechanistic flow and storage model of tree water relations. The data verified the model-predicted lag in water storage depletion in response to the onset of transpiration and the lag increased with increasing distance from the crown periphery. Between the crown and stem base, the delay ranged from a few minutes to several hours, depending on microclimatic conditions and tree water status. Stem volume changes were proportional to the amount of water exchanged between the elastic tissues of the bark and the rigid xylem, indicating that the "peristaltic" wave of stem contraction along the flow path represented depletion of water stored in bark. On a daily basis, stems lost between 0.2 and 0.5% of their volume as a result of bark dehydration, corresponding to about 2 to 5 l of water. This water contributed directly to T. According to the model based on hydraulic principles, there are three main components underlying the dynamics of water storage depletion: flow resistance, storage capacities of needles and bark, and T of each tree section. The resistances and capacities were proportional to the response delay, whereas T in the lower parts of the tree was inversely proportional. The pattern of T within the crown depended on water intercepted by the branches. Because of these weather-dependent factors, there was no time constant for the response delay along the flow path. Nevertheless, the upper crown and the root section tended to have longer response delays per meter of flow path than the stem. The diurnal course of stem radius fluctuations represents the sum of all external and internal conditions affecting tree water relations; stem radius fluctuations, therefore, provide a sensitive measure of tree water status.  相似文献   

10.
Hydrology-oriented silviculture might adapt Mediterranean forests to climatic changes, although its implementation demands a better understanding and quantification on the water fluxes. The influence of thinning intensity (high, medium, low and a control) and its effect on the mid-term (thinned plots in 1998 and 2008) on the water cycle (transpiration, soil water and interception) and growth [basal area increment (BAI)] were investigated in 55-year-old Aleppo pine trees. Thinning enhanced a lower dependence of growth on climate fluctuations. The high-intensity treatment showed significant increases in the mean annual BAI (from 4.1 to 17.3 cm2) that was maintained in the mid-term. Thinning intensity progressively increased the sap flow velocity (v s) in all cases with respect to the control. In the mid-term, an increased functionality of the inner sapwood was also observed. Mean daily tree water use ranged from 5 (control) to 18 (high intensity) l tree?1. However, when expressed on an area basis, daily transpiration ranged from 0.18 (medium) to 0.30 mm (control), meaning that in spite of the higher transpiration rates in the remaining trees, stand transpiration was reduced with thinning. Deep infiltration of water was also enhanced with thinning (about 30 % of rainfall) and did not compete with transpiration, as both presented opposite seasonal patterns. The changes in the stand water relationships after 10 years were well explained by the forest cover metric. The blue to green water ratio changed from 0.15 in the control to 0.72 in the high-intensity treatment, with the remaining treatments in the 0.34–0.48 range.  相似文献   

11.
An investigation was carried out to compare the water balance of Scots pine in Flanders growing on soils with contrasted water availability. Based on sap flow measurements transpiration of Scots pine was determined for two small plots on cover sands resting on a clayey substratum of varying depths (shallow and deep). Soil water content (SWC) was relatively low (0.12–0.21 m3 m−3) in the upper topsoil (0–0.75 m) in both plots. However, it was always higher in the shallow plot (by 3–27%) than in the deep plot. The difference between SWC in both plots was more pronounced in the deeper soil layers (0.75–1.5 m). Sap flow was measured in seven sample pine trees on each plot from May to October 2000 using the heat field deformation (HFD) method. Transpiration of the individual trees in the deep plot was 22% lower than in trees in the shallow plot. The difference decreased to 15% after scaling up to the stand level due to a higher density of trees growing in the deep plot. It was hypothesized that higher water uptake in the shallow plot was possibly caused by structural differences between the root systems of trees growing in plots with variable soil texture. The sapwood in shallow-plot trees was 1 cm less deep than in trees growing in the deep plot (as measured by biometric and sap flow pattern methods). Sap flow radial patterns suggested a higher involvement of sinker roots for water uptake in the deep clayey substratum plot. This was in agreement with higher activity of the inner xylem in trees on the deep plot under higher evaporative demands. However, the fraction of the inner xylem to the whole-tree water supply was nearly three-fold lower than the outer xylem, which appeared to provide water presumably from the superficial roots. The fraction of these roots, estimated according to sap flow radial patterns, was around 10% higher in trees on the shallow plot. This caused 30% higher sap flow in the stem outer xylem there. Transpiration of the pine stands was limited under high evaporative demands in both plots by the low availability of soil water. The limitation was greater in the deep plot and persisted throughout the whole growing season.  相似文献   

12.
Tree ring analysis investigates growth processes at time horizons of several weeks to millennia, but lacks the detail of short-term fluctuation in cambial activity. This study used electronic high-precision dendrometry for analyzing the environmental factors controlling stem diameter variation and radial growth in daily resolution in five co-existing temperate broad-leaved tree species (genera Fraxinus, Acer, Carpinus, Tilia and Fagus) with different growth and survival strategies. Daily stem radius change (SRC(d)) was primarily influenced by the atmospheric demand for water vapor (expressed either as vapor pressure deficit (D) or relative air humidity (RH)) while rainfall, soil matrix potential, temperature and radiation were only secondary factors. SRC(d) increased linearly with increasing RH and decreasing D in all species. The positive effect of a low atmospheric water vapor demand on SRC(d) was largest in June during the period of maximal radial growth rate and persisted when observation windows of 7 or 21 days instead of 1 day were used. We found a high synchronicity in the day-to-day growth rate fluctuation among the species with increment peaks corresponding to air humidity maxima, even though the mean daily radial growth rate differed fivefold among the species. The five -species also differed in the positive slope of the growth/RH relationship with the steepest increase found in Fraxinus and the?lowest in Fagus. We explain the strong positive effect of high RH and low D on radial stem increment by lowered transpiration which reduces negative pressure in the conducting system and increases turgor in the stem cambium cells, thereby favoring cell division and expansion. The results suggest that mechanistic models of tree growth need to consider the atmospheric water status in addition to the known controlling environmental factors: temperature, soil moisture and precipitation. The results further have implications for sensitivity analyses of tree growth to climatic changes.  相似文献   

13.
Traditionally, poplars (Populus) have been planted to control erosion on New Zealand's hill-slopes, because of their capacity to dry out and bind together the soil, by reducing effective rainfall and increasing evapotranspiration and soil strength. However, the effect of widely spaced poplars on the partitioning of soil water and rainfall has not been reported. This study determined rainfall partitioning for 18 mid-spring days in a mature P. deltoides (Bart. ex Marsh, Clone I78)-pasture association (37 stems per hectare, unevenly spaced at 16.4 +/- 0.4 m) and compared it with a traditional open pasture system in grazed areas of a hill environment. Tree transpiration was measured by the heat pulse technique. A time-driven mathematical model was used to set a zero offset, adjust anomalous values and describe simultaneous sap velocity time courses of trees. The model showed that daylight sap flow velocities can be represented with a nonlinear Beta function (R(2) > 0.98), and differences in the parameters representing the initiation, duration and conformation of the sap velocity can be tested statistically to discern tree transpiration differences during the day. Evapotranspiration was greater for the poplar-pasture association than for the open pasture (2.7-3.0 versus 2.2 mm day(-1)). The tree canopy alone contributed 0.92 mm day(-1) as transpiration and 1.37 mm day(-1) as interception, whereas evapotranspiration of the pasture understory was only 0.4-0.6 mm day(-1). Despite the higher water use of the poplar-pasture association, soil water in the 0-300 mm soil stratum was higher than, or similar to, that of the open pasture. Tree shading decreased evapotranspiration and pasture accumulation under the trees.  相似文献   

14.
Tamarix chinensis Lour., which is common throughout the southwestern USA, is a phreatophytic riparian tree capable of high water use. We investigated temporal congruence between daily total evapotranspiration (E) estimated from stem sap flux (J(s)) measurements (E(sf)) and eddy covariance (E(cv)), both seasonally and immediately following rain events, and used measurements of leaf-level gas exchange, stem water content and diurnal changes in leaf water potential to track drivers of transpiration. In one study, conducted near the end of the growing season in a pure T. chinensis stand adjacent to the Rio Grande River in central New Mexico, nighttime E(sf) as a proportion of daily E(sf) increased with water availability to a peak of 36.6%. High nighttime E(sf) was associated with underestimates of nighttime E(cv). A second study, conducted in west Texas, beside the Pecos River, investigated the relationships between nighttime J(s) and stem tissue rehydration, on the one hand, and nighttime E, on the other hand. Leaf gas exchange measurements and stomatal impressions suggested that nighttime J(s) was primarily attributed to concurrent transpiration, although there were small overnight changes in stem water content. Both vapor pressure deficit and soil water availability were positively related to nighttime J(s), especially following rainfall events. Thus, both studies indicate that T. chinensis can transpire large amounts at night, a fact that must be considered when attempting to quantify E either by eddy covariance or sap flux methods.  相似文献   

15.
分析了5个试验地尾叶桉纸浆材的主要化学成分含量和pH值在树干高度上的差异和变化趋势.结果表明,在5个试验地中,尾叶桉材的化学成分含量及pH值在树干高度上的变异情况大致相同.在不同的树干高度上,木材热水抽提物含量、纤维素含量和木素含量的差异达1%显著性水平;质量分数为1%NaOH抽提物含量和戊聚糖含量的差异达5%显著性水平;冷水抽提物含量和pH值无统计上的显著性差异.由树基向上,冷水抽提物、热水抽提物和木素的含量呈渐低趋势;戊聚糖含量和木材pH值呈渐高趋势;1%NaOH抽提物含量树干中部较低,两端较高;纤维素含量树干中部稍高,两端稍低.  相似文献   

16.
Average population growth in the African Sudanian belt is 3 % per year. This leads to a significant increase in cultivated areas at the expense of fallows and forests. For centuries, rural populations have been practicing agroforestry dominated by Vitellaria paradoxa parklands. We wanted to know whether agroforestry can improve local rainfall recycling as well as forest. We compared transpiration and its seasonal variations between Vitellaria paradoxa, the dominant species in fallows, and Isoberlinia doka, the dominant species in dry forests in the Sudanian belt. The fallow and dry forest we studied are located in northwestern Benin, where average annual rainfall is 1200 mm. Sap flow density (SFD) was measured by transient thermal dissipation, from which tree transpiration was deduced. Transpiration of five trees per species was estimated by taking into account the radial profile of SFD. The effect of the species and of the season on transpiration was tested with a generalized linear mixed model. Over the three-year study period, daily transpiration of the agroforestry trees, V. paradoxa (diameters 8–38 cm) ranged between 4.4 and 26.8 L day?1 while that of the forest trees, I. doka, (diameters 20–38 cm) ranged from 9.8 to 92.6 L day?1. Daily transpiration of V. paradoxa was significantly lower (15 %) in the dry season than in the rainy season, whereas daily transpiration by I. doka was significantly higher (13 %) in the dry season than in the rainy season. Our results indicate that the woody cover of agroforestry systems is less efficient in recycling local rainfall than forest cover, not only due to lower tree density but also to species composition.  相似文献   

17.
The effects of management practices on energy, water and carbon exchanges were investigated in a young pine plantation in south-west France. In 2009-10, carbon dioxide (CO(2)), H(2)O and heat fluxes were monitored using the eddy covariance and sap flow techniques in a control plot (C) with a developed gorse layer, and an adjacent plot that was mechanically weeded and thinned (W). Despite large differences in the total leaf area index and canopy structure, the annual net radiation absorbed was only 4% lower in plot W. We showed that higher albedo in this plot was offset by lower emitted long-wave radiation. Annual evapotranspiration (ET) from plot W was 15% lower, due to lower rainfall interception and transpiration by the tree canopy, partly counterbalanced by the larger evaporation from both soil and regrowing weedy vegetation. The drainage belowground from plot W was larger by 113 mm annually. The seasonal variability of ET was driven by the dynamics of the soil and weed layers, which was more severely affected by drought in plot C. Conversely, the temporal changes in pine transpiration and stem diameter growth were synchronous between sites despite higher soil water content in the weeded plot. At the annual scale, both plots were carbon sinks, but thinning and weeding reduced the carbon uptake by 73%: annual carbon uptake was 243 and 65 g C m(-2) on plots C and W, respectively. Summer drought dramatically impacted the net ecosystem exchange: plot C became a carbon source as the gross primary production (GPP) severely decreased. However, plot W remained a carbon sink during drought, as a result of decreases in both GPP and ecosystem respiration (R(E)). In winter, both plots were carbon sources, plots C and W emitting 67.5 and 32.4 g C m(-2), respectively. Overall, this study highlighted the significant contribution of the gorse layer to mass and energy exchange in young pine plantations.  相似文献   

18.
In this research the relative importance of leaf area and microclimatic factors in determining water use of tree lines was examined in sub-humid Western Kenya. Measurements of tree water-use by a heat-balance technique, leaf area, bulk air saturation deficit, daily radiation, and soil water content were done in an experiment with tree lines within crop fields. The tree species were Eucalyptus grandis W. Hill ex Maiden, Grevillea robusta A. Cunn. and Cedrella serrata Royle, grown to produce poles on a phosphorus-fixing Oxisol/Ferralsol with (+P) or without (−P) phosphorus application. Doubling the leaf area of Cedrella and Grevillea doubled water use in a leaf area (LA) range of 1–11 m2 per tree. The response of Eucalyptus water use (W) to increases in leaf area was slightly less marked, with W = LAn, n<1. Transpiration rate per unit leaf area (Tr) was the other important determinant of water use, being affected by both tree species and phosphorus fertilization. A doubling of the saturation deficit (SD) halved the water use of all trees except for Cedrella +P, in which water use increased. A direct effect of soil water content on water use was only found in Grevillea -P, with a small increase (60%) as available water increased from 1.4 to 8.9% above wilting point (32%). This low direct response to soil water content is probably due to the extensive tree-root systems and the deep clayey soils supplying sufficient water to meet the evaporative demand. Indirect responses to soil water content via decreases in leaf area occurred in the dry season. The results showed that water use of tree lines was more determined by leaf area and transpiration rate per unit leaf area than by micro meteorological factors. The linear response of tree water use to leaf area, over a wide range leaf areas, is a specific characteristic of tree line configurations and distinguished them from forest stands. In tree lines light interception and canopy conductance increase with leaf area much more than a similar leaf area increase would have caused in a closed forest canopy.  相似文献   

19.
A dynamic model for simulating water flow in a Scots pine (Pinus sylvestris L.) tree was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration, together with the elasticity of wood tissue, causes variations in the diameter of a tree stem and branches. The change in xylem diameter can be linked to water tension in accordance with Hookea s law. The model was tested against field measurements of the diurnal xylem diameter change at different heights in a 37-year-old Scots pine at Hyyti?l?, southern Finland (61 degrees 51' N, 24 degrees 17' E, 181 m a.s.l.). Shoot transpiration and soil water potential were input data for the model. The biomechanical and hydraulic properties of wood and fine root hydraulic conductance were estimated from simulated and measured stem diameter changes during the course of 1 day. The estimated parameters attained values similar to literature values. The ratios of estimated parameters to literature values ranged from 0.5 to 0.9. The model predictions (stem diameters at several heights) were in close agreement with the measurements for a period of 6 days. The time lag between changes in transpiration rate and in sap flow rate at the base of the tree was about half an hour. The analysis showed that 40% of the resistance between the soil and the top of the tree was located in the rhizosphere. Modeling the water tension gradient and consequent woody diameter changes offer a convenient means of studying the link between wood hydraulic conductivity and control of transpiration.  相似文献   

20.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号