首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present study was conducted to examine the supplemented effect of cumulus cell masses (CCMs) derived from middle follicle (MF; 3–6 mm diameter) on the morphology and the meiotic or developmental competence of oocytes from small follicles (SF; 1–2 mm diameter). The number of cumulus cells surrounding oocytes just after collection was also lower in cumulus–oocyte complexes (COCs) from SF than MF. The ooplasmic diameter of oocytes was significantly smaller in SF‐derived oocytes than MF‐derived ones before and after in vitro maturation (IVM), whereas the diameter significantly increased during the culture. Co‐culture of SF‐derived COCs with MF‐derived CCMs during IVM significantly improved the meiotic competence of the oocytes to the metaphase‐II stage. Furthermore, the ooplasmic diameter of SF‐derived COCs during IVM was increased to the similar size of MF‐derived those in the presence of MF‐derived CCMs. The abilities of oocytes to be penetrated, to form male pronuclear formation and to cleave or develop to the blastocyst stage were not affected by the co‐culture with CCMs. Electrophoretic analysis of CCM secretions clearly showed the presence of more protein(s) approximately 27.6 kDa in the conditioned medium when supplemented with MF‐derived CCMs. In conclusion, we demonstrate that supplementation with MF‐derived CCMs improves the ooplasmic diameter and meiotic competence of SF‐derived oocytes.  相似文献   

2.
This work was designed to evaluate the ovarian follicular development, oocytes morphology, methods of oocytes reterival, and the effect of different in vitro maturation (IVM) media on cumulus cell expansion and nuclear maturation of Jennies oocytes. Experiment 1, the number of small (<6 mm), medium (6 to 9 mm) and large size (>10 mm) ovarian follicles was recorded. Cumulus-oocyte-complexes (COCs) were reterived and classified into 4 Grades based on their cumulus-cells investment and the homogenous of the ooplasm. In Experiment 2, COCs were recovered by using 18-G, 20-G needle or slicing and scraping of ovarian follicles to determine the number and morphology of the recovered COCs. In Experiment 3, Grade A and B COCs were IVM in DMEM-HG, DMEM-LG, DMEM-F12, TCM199, TCM199-F12 or CR1aa media supplemented with 10 % FCS?+?10 μg FSH/mL?+?10 IU hCG/mL?+?50 μg/mL gentamicin. Maturation was performed for 36 h at 38.5 °C under 5 % CO2 in humidified air. After IVM, cumulus cell expansion and oocytes nuclear canfiguration were determined. An average of 6.40?±?0.26 follicles was recorded per Jenny ovary, representing 3.37?±?0.46, 1.89?±?0.14 and 1.14?±?0.16, for the small, medium and large size follicles, respectively. Oocyte recovery was higher (P?P?P?P?P?P?P?P?Conclusion: Slicing and scraping or aspiration of follicles using 18-G needle increased the number and percentage of Grade A Jennies oocytes. TCM199-F12, CR1aa and TCM199 medi are more suitable for IVM of Jenny oocytes by promoting cumulus cells expansion and nuclear maturation to M II stage.  相似文献   

3.
The morphological and morphometric characteristics of the ovary are fundamental properties for in vitro oocyte maturation. Nuclear maturation, including first polar body (1PB) extrusion, cytoplasmic maturation and cumulus cell (CC) expansion are the criteria for in vitro maturation (IVM) of oocyte. This study was designed to determine the effect of morphological and morphometric features of the ovary on CC expansion and 1PB extrusion during IVM of oocyte in the adult female dromedary camel. The weight, volume and three dimensions of ovaries from slaughtered dromedary camels and oocytes inside zona diameter and zona pellucida thickness were measured. The follicles were classified in regard to the size and oocytes according to their ooplasm appearance and CC compactness. Aspirated cumulus oocyte complexes (COCs) were incubated for 48 hr (with a 6‐hr interval) in Hams‐F10, and CC expansion and 1PB extrusion were assessed. Significant differences were seen in the shape, weight, volume and three dimensions of the ovaries between ≤4‐year‐old and >4‐year‐old dromedary camel (p < .5). Approximately, 95.82% of follicles were 2–4 mm in diameter. The mean (±SD) of inside zona diameter of the oocyte and zona pellucida thickness was 132.22 ± 13.8 and 14.64 ± 2.24 μm, respectively, in >4‐year‐old dromedary camel. The CC expansion and 1PB extrusion were seen in 86% and 21.88% of COCs, respectively. Age and sexual conditions of dromedary camel influence the morphological and morphometric characteristics of the ovary. Most COCs retrieved from 2–6 mm follicles are cultivable. The most slaughterhouse‐derived COCs retrieved from 2–6 mm follicles of non‐pregnant dromedary camels are excellent and good and yielding a most favourable diameter to achieve the developmental competence for IVM in an optimal time of 24–30 hr; the optimal time for CC expansion is 24–30 hr in this species. However, the CC expansion is a prerequisite process, but not sufficient for IVM.  相似文献   

4.
5.
Manganese (Mn) is a trace element present in forages and cereals, and its concentration depends on soil status. Manganese deficiency in cattle, goats and ewes not only impairs oestrous cycle but reduces calf birth weight. The achievement of the first oestrus is delayed, and more attempts are necessary to obtain a successful conception. This study was conducted to investigate the effect of the availability of supplemental Mn during IVM on DNA damage of cumulus cells and total glutathione (GSH) content in oocytes and cumulus cells. The effect of supplementary Mn during IVM on subsequent embryo development was also studied. The results reported here indicate (i) DNA damage in cumulus cells decreased with 0, 2, 5 and 6 ng/ml Mn supplementation during IVM (p < 0.05). (ii) Intracellular GSH‐GSSG content increased (p < 0.01) with different Mn concentrations in oocytes and cumulus cells. Also, cumulus cell number per cumulus oocyte‐complexes (COC) did not differ either before or after IVM. (iii) Addition of Mn to maturation medium resulted in similar cleavage rates (p > 0.05) at 0, 2, 5 and 6 ng/ml Mn. However, subsequent embryo development to blastocyst stage was significantly higher (p < 0.01) in oocytes matured with 5 and 6 ng/ml Mn. (iv) There was also an increase (p < 0.05) in mean cell number per blastocyst obtained from oocytes matured with 5 and 6 ng/ml respect to zero Mn (IVM alone) and 2 ng/ml Mn. This study provides evidence that optimal embryo development to the blastocyst stage was partially dependent on the presence of Mn during IVM. Moreover, the availability of Mn during oocyte maturation ensures ‘normal’ intracellular GSH content in COCs and protects DNA integrity of cumulus cells.  相似文献   

6.
Glycolytic and pentose phosphate pathway (PPP) activities were modulated in porcine cumulus–oocyte complexes (COCs) during in vitro maturation (IVM) by the addition of inhibitors or stimulators of key enzymes of the pathways to elucidate their relative participation in oocyte maturation. The activities of glycolysis and PPP were evaluated by lactate production per COC and by the brilliant cresyl blue test, respectively. Glucose uptake per COC and the oocyte maturation rate were also evaluated. Lactate production, glucose uptake and the percentage of oocytes reaching metaphase II decreased in a dose‐dependent manner in the presence of the pharmacological (NaF) or the physiological (ATP) inhibitors of glycolysis (p < 0.05). The addition of the physiological stimulator of glycolysis (AMP) caused no effect on lactate production, glucose uptake or the meiotic maturation rate. The pharmacological (6‐AN) and the physiological (NADPH) inhibitors of PPP induced a dose‐dependent decrease in the percentage of oocytes with high PPP activity and in the nuclear maturation rate (p < 0.05). The physiological stimulator of PPP (NADP) caused no effect on the percentage of oocytes with high PPP activity. The glycolytic and PPP activities of porcine COCs and maturational competence of oocytes seem to be closely related events. This study shows for the first time the regulatory effect of ATP and NADPH as physiological inhibitors of glycolysis and PPP in porcine COCs, respectively. Besides, these pathways seem to reach their maximum activities in porcine COCs during IVM because no further increases were achieved by the presence of AMP or NADP.  相似文献   

7.
The aim of this study was to investigate the influence of zinc (Zn) on the health of cumulus–oocyte complex (COC) during in vitro maturation (IVM). Experiments were designed to evaluate the effect of Zn added to IVM medium on: DNA integrity, apoptosis, cumulus expansion and superoxide dismutase (SOD) activity of cumulus cells (CC). Also, role of CC on Zn transport during IVM was evaluated on oocyte developmental capacity. DNA damage and early apoptosis were higher in CC matured with 0 μg/ml Zn compared with 0.7, 1.1 and 1.5 μg/ml Zn (p < 0.05). Cumulus expansion did not show differences in COC matured with or without Zn supplementation (p > 0.05). Superoxide dismutase activity was higher in COC matured with 1.5 μg/ml Zn than with 0 μg/ml Zn (p < 0.05). Cleavage and blastocyst rates were recorded after IVM in three maturation systems: intact COCs, denuded oocytes with cumulus cells monolayer (DO + CC) and denuded oocytes (DO). Cleavage rates were similar when COC, DO + CC or DO were matured with 1.5 μg/ml Zn compared with control group (p > 0.05). Blastocyst rates were significantly higher in COC than in DO + CC and DO with the addition of 1.5 μg/ml Zn during IVM (p < 0.01). Blastocyst quality was enhanced in COC and DO + CC compared with DO when Zn was added to IVM medium (p < 0.001). The results of this study indicate that Zn supplementation to IVM medium (i) decreased DNA damage and apoptosis in CC; (ii) increased SOD activity in CC; (iii) did not modify cumulus expansion and cleavage rates after in vitro fertilization; (iv) improved subsequent embryo development up to blastocyst stage; and (v) enhanced blastocyst quality when CC were present either in intact COC or in coculture during IVM.  相似文献   

8.
The main objective of the present study is to investigate the molecular mechanism underlying the delay in progression of nuclear maturation in oocytes derived from cows with damaged livers (DL cows), which was previously reported. In present study, delayed progression of nuclear maturation of oocytes derived from DL cows relative to oocytes derived from cows with healthy livers (HL cows) was accompanied by low maturation promoting factor (MPF) activity (0.43 fold, p < 0.05). When cumulus cells were removed from cumulus‐oocyte complexes and the denuded oocytes were cultured, there was no difference in the progression of nuclear maturation between the two liver conditions. In addition, gap junctional communication (GJC) between the oocyte and cumulus cells was higher in DL cows than in HL cows at 3 and 7 h of in vitro maturation (IVM) (p < 0.05). Supplementation of IVM medium with epidermal growth factor (EGF) increased the ratio of germinal vesicle breakdown (GVBD) of oocytes derived from DL cows to the level seen in oocytes derived from HL cows. Additionally, the level of p38MAPK phosphorylation at 0 h of IVM was significantly lower in cumulus cells derived from DL cows than in cumulus cells derived from HL cows (HL cows, 53.5%; DL cows, 28.9%; p < 0.05). Thus, a low level of p38MAPK phosphorylation in cumulus cells induced slow GJC closure between oocyte and cumulus cells, which resulted in slow meiotic maturation of oocytes derived from DL cows.  相似文献   

9.
The aim of this study was to test the effect of insulin–transferrin–selenium (ITS) and L‐ascorbic acid (AA) supplementation and the hormonal level during in vitro maturation (IVM) of small oocytes from pre‐pubertal goat on the blastocyst yield and quality. Concretely, we used four maturation media: conventional IVM medium (CM), growth medium (GM: CM+ITS+AA and low level of hormones), modified CM (mCM: CM with low level of hormones) and modified GM (mGM: CM+ITS+AA and normal level of hormones). Cumulus–oocyte complexes (COCs) were classified into two categories according to oocyte diameter: <125 μm and ≥125 μm. Large oocytes were matured 24 h in CM (Treatment A). Small oocytes were matured randomly in six experimental groups: Treatment B: 24 h in CM; Treatment C: 12 h in GM and 12 h in CM; Treatment D: 24 h in mGM; Treatment E: 12 h in mGM and 12 h in CM; Treatment F: 12 h in mCM and 12 h in CM; and Treatment G: 12 h in GM and 12 h in mGM. After IVM, oocytes were fertilized and cultured for 8 days. The blastocyst quality was assessed by the survival following vitrification/warming and the mean cell number. When different maturation media were combined, the blastocyst rate did not improve. The large oocytes produced the highest blastocysts yield. However, the culture of small oocytes in GM (53.3%) enhanced the post‐warming survival of blastocysts compared to large oocytes matured in CM (35.7%). In conclusion, IVM of pre‐pubertal goat small oocytes in GM would be useful to improve the quality of in vitro‐produced blastocysts.  相似文献   

10.
The variation in the kidding size of Black Bengal and Sirohi breed of goats makes them an interesting genetic material to study the underlying genetic mechanism of prolificacy. Accordingly, we studied the comparative ovarian morphometry including disparity in numbers of antral follicles of different sizes between these two breeds. Further, we evaluated the differential expression of the important candidate genes (viz., BMP15, GDF9 and BMPR1B) known to influence the ovulation rates and the prolificacy. The ovaries of Black Bengal (n = 20) goat were lighter (p < 0.01) in weight and smaller (p < 0.01) in diameter than those of Sirohi (n = 19) goats but possessed more numbers (p < 0.05) of corpus luteum (CL), large and small antral follicles. Quantitative real‐time PCR (RT‐qPCR) analysis revealed differential expression of mRNAs encoding for the BMP15 and GDF9. Small antral follicles of Black Bengal goats expressed 2.78‐fold more (p < 0.05) of BMP 15 than those of Sirohi goat. Expression of BMP15 (p < 0.01) and GDF9 (p < 0.05) mRNAs was more abundant in the small than the large antral follicles of Black Bengal goat. The more numbers of antral follicles per unit of ovarian mass and differential expression of BMP15 and GDF9 may serve as an important clue for higher prolificacy.  相似文献   

11.
Spontaneous nuclear maturation of mammalian oocytes can occur when physically removed from the ovarian follicle during in vitro oocyte maturation (IVM), largely because of a decrease in cyclic adenosine monophosphate (cAMP) concentration. Modulation of oocyte cAMP during IVM by using phosphodiesterase inhibitors has been shown to maintain elevated oocyte cAMP concentrations and control meiotic resumption of bovine and ovine oocytes. This study determined the effect of inclusion of isobutyl-1-methylxanthine (IBMX) during collection and the first 12 hours of incubation of equine oocytes on cAMP concentration and glucose metabolism of cumulus–oocyte complexes (COCs). Abattoir-derived COCs were collected in aspiration medium with (Asp-IBMX) or without (Asp) IBMX. Cumulus–oocyte complexes were then incubated for 12 hours in IVM medium with (Mat-IBMX) or without (Mat) IBMX, followed by additional 24 hours in Mat medium. The cAMP concentration, glucose consumption, lactate production, and metaphase II rates of the COCs were assessed. Cumulus–oocyte complexes aspirated into Asp-IBMX (62.2 ± 2.6 fmol per COC) medium had higher cAMP concentration than Asp (31.8 ± 2.8 fmol per COC) control group (P < .05). Likewise, at 12 hours of IVM, Mat-IBMX group (33.2 ± 2.1 fmol per COC) had higher cAMP concentration than the Mat group (7.68 ± 0.5 fmol per COC; P < .05). Glucose consumption and lactate production were lower during the first 12 hours of incubation in COCs cultured in Mat-IBMX (P < .05). Isobutyl-1-methylxanthine prevented the rapid drop in cAMP concentration and altered metabolism of glucose by the COC. Preventing the sudden drop in cAMP prevents the premature nuclear maturation of in vitro–matured oocytes causing poor developmental competence.  相似文献   

12.
Embryo production in donkeys is inefficient compared with that in other livestock. Obtaining a sufficient number of MII oocytes is the first step to solving this problem. In this study, the number, morphology and maturation rates of cumulus-oocyte complexes (COCs) obtained from abattoir-derived ovaries or live jennies were compared. The diameter of follicles from abattoir-derived ovaries was measured and divided into group 1 (2–6 mm), group 2 (6–10 mm), group 3 (10–20 mm), group 4 (20–28 mm) and group 5 (>28 mm). The results showed that the number of follicles per ovary in group 2 (3.6 ± 0.28) and 3 (4.2 ± 0.90) was higher than that in the other groups (p < .05). The recovery rate in group 3 was higher than group 1 (48.8% vs. 26.8%, p = .00), but lower than group 5 (48.8% vs. 76.5%, p = .025). The percentage of grade A COCs in group 3 was higher than group 2 (59.3% vs. 39.5%, p = .00) and group 1 (59.3% vs. 26.7%, p = .00). Moreover, the percentage of grade A COCs in group 4 (55.0%, p = .710) and group 5 (46.2%, p = .351) was reduced compared with that in group 3. From the above results, the developing follicles (group ovum pick-up [OPU], 10–20 mm) and preovulation follicles (group OPU-Preov, >35 mm) were aspirated from live jennies using OPU. Although there was no difference in the recovery rates of COCs between group 3 and OPU (48.8% vs. 43.0%, p = .184), the percentage of grades A COCs in group OPU was higher than group 3 (72.5% vs. 59.3%, p = .036). There was no difference in the maturation rate between group 3 and OPU (60.3% vs. 69.3%, p = .171) after the COCs matured in vitro. The rates of recovery (72.2%) and maturation (92.3%) in group OPU-Preov were higher than those in other groups (p < .05). Moreover, the effects of maturation time and serum type on maturation rates were evaluated in groups B44 (44 h, FBS), B36 (36 h, FBS) and D44 (44 h, foetal donkey serum, FDS). These results indicated that the maturation rate in group B36 was lower than group B44 (13.1% vs. 47.0%, p = .00) and group D44 (13.1% vs. 53.3%, p = .00). In conclusion, the quality of donkey COCs from OPU was higher than that from abattoir-derived ovaries, the suitable time of donkey in vitro maturation (IVM) was 44 h, and FBS could be replaced with FDS in donkey IVM medium.  相似文献   

13.
This study aimed to examine the effects of sericin supplementation during in vitro oocyte maturation on the nuclear maturation, fertilization and development of porcine oocytes. Cumulus‐oocyte complexes (COCs) were cultured in maturation medium supplemented with 0 (control), 0.1, 0.5, 1.0, 2.5 or 5.0% sericin and were then subjected to in vitro fertilization and embryo culture. More COCs matured with 1.0% sericin underwent germinal vesicle breakdown and reached metaphase II compared with the control COCs matured without sericin (p < 0.01). The proportions of oocytes with DNA‐fragmented nuclei did not differ between the groups, regardless of the sericin level. The total fertilization rate of oocytes matured with 1.0% sericin was higher (p < 0.05) than that of oocytes matured with 0.1%, 2.5% and 5.0% sericin. Supplementation with more than 1.0% sericin decreased the DNA fragmentation index of the blastocysts compared with the control group (p < 0.05). However, the supplementation of the maturation medium with sericin had no beneficial effects on the cleavage, development to the blastocyst stage and the total cell number of the embryos. Our findings indicate that supplementation with 1.0% sericin during maturation culture may improve the nuclear maturation and the quality of the embryos but does not affect blastocyst formation.  相似文献   

14.
The availability of cow ovaries from the slaughterhouse has been very limited in Taiwan. To maximize the use of cow ovaries for research purposes, whole ovary dissection was performed and the developmental competence of the oocytes derived from different sizes of follicles was assessed by the rates of in vitro maturation (IVM) and parthenogenetic activation of the oocytes in Experiment 1 (Exp 1). Cumulus-oocyte complexes (COCs) derived from small (1-2 mm) and large (3-8 mm) follicles were subjected to standard IVM culture for 24 h. Mature oocytes were selected and then parthenogenetically activated using A23187 (5 microm, 5 min) or thimerosal (200 microm, 10 min) alone or combined with 6-dimethylaminopurine (2.5 mm and 3.5 h, respectively). Activation rates of the oocytes, neither from the large nor small follicles, were affected by different activation treatments (single or combined stimuli). Whereas maturation rates for the oocytes from large follicles were superior to those from small follicles in both the single (59% vs 45%) and combined treatments (76% vs 40%; p < 0.05). To understand how prolonged heat shock (HS) influences cytoskeletal configurations of mature bovine oocytes, in Experiment 2 (Exp 2), matured oocytes derived from large follicles were randomly allocated to different durations of HS treatments at 41.5 degrees C for 0 (C0h, control, n = 12), 1 (HS1h, n = 28), 2 (HS2h, n = 31), and 4 h (HS4h, n = 30). An additional control group was cultured for 4 h without HS (38.5 degrees C, 4 h, n = 35). Alterations in nuclear structures, microtubules (MTs), and microfilaments (MFs) of the oocytes were examined. Abnormalities in the chromosomes, spindle MTs and the percentages of oocytes with cytoplasmic MTs increased with time of HS treatment. The intensity of the MF distribution in the HS oocytes was also altered. Significant changes in the cytoskeleton after HS may be associated with the reduced development under hyperthermia and, perhaps, with the low pregnancy rates of the animals during hot seasons.  相似文献   

15.
We investigated whether high‐quality in vitro matured (IVM) oocytes can be distinguished from poor ones based on the morphological changes after treatment with hyperosmotic medium containing 0.2 mol/L sucrose in pigs. We hypothesize that IVM oocytes maintaining round shape have higher quality than mis‐shapened oocytes following dehydration. Oocyte quality was verified by determining embryonic developmental competence using in vitro fertilization, nuclear transfer and parthenogenetic activation. In all cases, the round oocytes had greater (p < .05) developmental competence than that of mis‐shapened oocytes in terms of blastocyst rate and total cell number in blastocysts obtained after 6 days of in vitro culture. We also confirm that round aged oocytes are higher in quality than mis‐shapened aged oocytes. In an attempt to find out why high‐quality oocytes maintain a round shape whereas poorer oocytes become mis‐shapened following sucrose treatment, we examined the arrangement of actin microfilaments and microtubules. Abnormal organization of these cytoskeletal components was higher (< .05) in mis‐shapened oocytes compared to round oocytes after 52 hr of IVM. In conclusion, sucrose treatment helps selection of high‐quality oocytes, including aged oocytes, in pigs. Abnormal cytoskeleton arrangements partly explain for low developmental competence of mis‐shapened oocytes.  相似文献   

16.
Collection efficacy and in vitro embryo developmental ability of oocytes obtained from Duroc‐breed ovary donors at different stages of the estrous cycle (days 6, 12 and 16 after estrus) were performed. The numbers of collected oocytes did not differ significantly among the different estrous cycle groups (total 72–90 oocytes per gilt). However, the blastocyst rates of oocytes collected on days 12 and 16 (9.2% and 19.4%, respectively) were significantly higher than those on day 6 (1.1%). More oocytes were obtained on day 16 from small follicles (<2 mm in diameter; 85.3 oocytes per gilt) than from medium‐sized (≥2–<6 mm) and large (≥6 mm) follicles (17.5 and 12.8 oocytes, respectively). The blastocyst rates in both the medium‐sized and large follicle groups (20.0% and 19.2%, respectively) were significantly higher than that in the small follicle group (6.3%). The blastocyst cell numbers in both the medium‐sized and large follicle groups (39.4 and 43.3 cells, respectively) were significantly higher than that in the small follicle group (30.6 cells). The results suggest that oocyte collection from cycling Duroc pigs can be carried out efficiently from the late luteal to follicular stage. Those oocytes collected from medium‐sized and large follicles show better embryo development.  相似文献   

17.
The aim of the present study was to evaluate the effects of different medium replacement intervals on the viability, antral cavity formation, growth and in vitro maturation (IVM) of oocytes from caprine and ovine pre‐antral follicles. Pre‐antral ovarian follicles (≥150 μm) were isolated from the ovarian cortex of goats and sheep and were individually cultured for 24 days using two different medium replacement intervals [2 days (T1) or 6 days (T2)]. Follicle development was evaluated on the basis of antral cavity formation, increases in follicular diameter and the presence of healthy cumulus oocyte complexes and fully grown oocytes. For caprine species, results showed a higher percentage (p < 0.05) of viable follicles in T1 than T2 from day 6 until the end of the culture. In addition, when comparing both treatments after the same culture duration, the rate of antrum formation was significantly higher in T1 than in T2 from day 12 onwards. Yet, in ovines, when both treatments were compared on day 24 of the culture, there were more viable follicles in T2 than in T1 (p < 0.05). In the caprine species, percentages of fully grown oocytes (≥110 μm) acceptable for IVM after 24 days of culture were significantly higher in normal follicles cultured in T1 (30.0%) than in T2 (6.7%; p < 0.05). On the other hand, in ovines, at the end of the culture, the percentage of oocytes destined for IVM was higher in T2 than in T1 (23.5% vs 2.9%; p < 0.05). In conclusion, under the same conditions, the frequency of medium replacement significantly affected the in vitro development of caprine and ovine pre‐antral follicles. To improve the efficiency of the culture system, the medium must be replaced every 2 and 6 days for goat and sheep pre‐antral follicles, respectively.  相似文献   

18.
The objective of this study was to examine the effects of canthaxanthin (Cx) treatment during in vitro maturation (IVM) of porcine oocytes on embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), on intracellular glutathione (GSH) and reactive oxygen species (ROS) levels in mature oocytes, and on gene expression in both PA‐ and SCNT‐derived blastocysts. To determine the optimal effective concentration of Cx, porcine oocytes were cultured in IVM medium supplemented with various concentrations (0, 20, 40 and 80 μM) of Cx for 22 hr. Compared to other groups, supplementation with 40 μM Cx significantly improved blastocyst formation rates after PA (< .05), but no significant differences were observed among groups in total blastocyst cell numbers. Subsequently, oocytes were cultured in IVM medium supplemented with or without 40 μM Cx. Oocytes treated with 40 μM Cx showed significantly increased cleavage and blastocyst formation rates after SCNT compared to the control group (< .05). Moreover, significantly increased intracellular GSH and reduced ROS levels were observed in the Cx‐treated group (< .05). In addition, both PA‐ and SCNT‐derived blastocysts from the 40 μM Cx‐treated group showed significantly increased mRNA expression of Bcl2 and Oct4 and decreased Caspase3 expression level (< .05), when compared with the control group. PA‐derived blastocysts from the 40 μM Cx‐treated group also exhibited significantly decreased expression of Bax (< .05). Our results demonstrated that treatment with 40 μM Cx during IVM improves the developmental competence of PA and SCNT embryos. Improvement of embryo development by Cx is most likely due to increased intracellular GSH synthesis, which reduces ROS levels in oocytes, and it may also positively regulate apoptosis‐ and development‐related genes.  相似文献   

19.
Studies were conducted to investigate the effect of supplementation of fluid from different sized class [small (SFF, < 3 mm), medium (MFF, 3-8 mm) and large (LFF, > 8 mm)] of normal and cystic (CFF) ovarian follicles in oocyte culture media on oocyte maturation rate and embryo development in vitro and to test the efficacy of follicular fluid (FF) from different size classes as a whole oocyte maturation medium. Results suggested that FF were capable of developing buffalo oocytes to embryonic stage in vitro although its efficacy was lower than that of serum. Regardless of high maturation rates after in vitro maturation (IVM) in media containing FF or IVM in whole FF, low blastocyst rates were obtained after in vitro fertilization (IVF) and culture of embryos. Follicular fluid from small follicles had significantly (p < 0.05) higher potential of developing buffalo oocytes to embryonic stage in vitro than that from medium and large follicles. Cystic FF was not capable of supporting development of buffalo oocytes in vitro.  相似文献   

20.
Interest in indicus–taurus cattle has been increasing, as these animals are likely to present the best characteristics of Zebu and European bovine breeds. The aim of this study was to compare the embryo production of indicus–taurus donors with high vs low antral follicle counts obtained by ovum pickup/in vitro production (OPU/IVP) and superovulation (SOV)/embryo collection. Braford females at weaning age (3/8 Nelore × 5/8 Hereford, n = 137, 9 ± 1 month old) were subjected to six serial ovarian ultrasonographs and were assigned to two groups according to the number of antral follicles ≥3 mm as follows: G‐High antral follicular count (AFC, n = 20, mean ≥40 follicles) and G‐Low AFC (n = 20, mean ≤10 follicles). When the females (n = 40) reached 24 months of age, they were subjected to both OPU/IVP and SOV/embryo collection. The average number of follicles remained highly stable throughout all of the ultrasound evaluations (range 0.90–0.92). The mean number of COCs recovered (36.90 ± 13.68 vs 5.80 ± 3.40) was higher (p < 0.05) for females with high AFC, resulting in higher (p < 0.05) numbers of total embryos among females with high vs low AFC (6.10 ± 4.51 vs 0.55 ± 0.83). The mean number of embryos per collection was also higher (p < 0.05) for G‐High vs G‐Low (6.95 ± 5.34 vs 1.9 ± 2.13). We conclude that a single ultrasound performed at pre‐pubertal ages to count antral follicles can be used as a predictor of embryo production following IVP and SOV/embryo collection in indicus–taurus females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号