首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A preliminary survey using 20 conventionally farmed fields in which fumigants have been applied every year showed that the root-lesion nematode Pratylenchus penetrans was distributed both in the upper (0–30?cm) and lower (30–60?cm) soil layers. In six of the 20 fields, P.?penetrans was detected in the lower layers exclusively, suggesting that the most appropriate depth to sample soil is 0–60?cm to estimate the relationship between the density of P.?penetrans and its damage to radish. There was a highly significant correlation (r?=?0.923) between the density of P.?penetrans in the 0–60?cm depth and the number of spots on a radish. No damage to radish was observed in soils with <2.5 individuals of P.?penetrans per 20?g soil before cultivation. However, in cases in which the density of P.?penetrans was 3.4–6.2 individuals per 20?g soil, the number of spots on a radish showed more variation (0–131.5 per radish) and there was no significant correlation between them. The nematode community structure of soils with 3.4–8 individuals of P.?penetrans per 20?g soil, evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis, was significantly different (anova, PC2, P?<?0.05) between soils with low (0–42) and high (more than 80) damage levels, suggesting that radish damage might be predicted on the basis of the prevailing soil nematode community structure.  相似文献   

2.
The present study described the relationship between growth and soil physico-chemical properties in Eucalyptus camaldulensis (Myrtaceae) and Pinus caribaea (Pinaceae), two important species in Nigerian forest recovery programs. The study sites were located in a 17-year-old plantation in a Northern Nigeria forest reserve. The soils at the study sites were nutrient poor compared with other plantations. Growth of E. camaldulensis was positively correlated with exchangeable K content in soils 0–20 cm deep, and negatively correlated with total N and exchangeable Na in soils 20–150 cm deep. Growth of P. caribaea was positively correlated with available P in soils 0–20 cm deep, and volumetric water content in soils 20–150 cm deep. Soils in the top layers were very hard and plinthite layers were well developed at shallow soil depths at most sites. E. camaldulensis exhibited a comparatively high survival rate, and its growth was comparable to that in other plantations. However, the survival rates of P. caribaea were low and its growth was lower than that in other plantations. The survival rate of E. camaldulensis was lower at sites where plinthite layers were found within 50.8 cm of the surface. These results indicated that E. camaldulensis is suitable for afforestation in Northern Nigeria. However, it is not recommended for sites where the plinthite layer occurs at shallow soil depths.  相似文献   

3.
To determine the effect of agricultural management on the dynamics and functional diversity of soil nematode communities in a carrot field at Kibbutz Ramat Hakovesh, Israel, soil samples from 0--10 cm and 10--20 cm depths were collected during the growing season of carrot. Indices were used to compare and assess the response of soil free-living nematode communities to agricultural management. Eighteen nematode families and 20 genera were observed during the growing period, with Cephalobus, Rhabditidae, Aphelenchus, Tylenchus, and Dorylaimus being the dominant genera/families. During the planting, mid-season and post-harvest periods the total number of nematodes at both depths was significantly lower (P < 0.01) in the carrot treatment than in the control plots, while during the harvest period at both depths total nematodes and bacterivores were significantly higher in the treatment plots (P < 0.01). The values of the maturity index (MI) at both depths were found to be significantly lower in the treatment plots than in the control plots during the pre-planting period (P < 0.05). Overall, WI, MI and PPI were found to be more sensitive indicators than other ecological indices for assessing the response of nematode communities to agricultural management in a Mediterranean agroecosystem.  相似文献   

4.
Nematode density and biodiversity in maize field soil treated with compost, chemical fertilizer and with no amendments were investigated in a multi-year field experiment at the Qu-Zhou experimental station, China Agricultural University. The soils were collected from the upper (0–20 cm) soil layer during the maize growing stages in 2004. The results demonstrated that significant differences for the total nematode density, bacterivores, fungivores, plant parasites and omnivores-predators density were found between treatments and between dates. The total nematode density and bacterivores density were greater in compost-treated soil than in chemical fertilizer-treated soil, and were greater in chemical fertilizer-treated soil than in control soil during all sampling periods. The total nematodes density ranged from 106 to 657 individuals per 100 g dry soil in the present study. Total 40 nematode genera were found in all treatments and sampling periods, and 12 genera were bacterivores, 4 genera were fungivores, 16 genera were plant parasites and 8 genera were omnivores-predators. Cephalobus, Rhabditis, Tylenchorhynchus, Pratylenchus, Helicotylenchus and Rotylenchus were dominant genera in present study. The plant parasites and bacterivores were dominant trophic groups. The ratio of bacterivores plus fungivores to plant parasites was higher in compost-treated soil compared to chemical fertilizer-treated soil except October. Maturity index and combined maturity index were lower in compost-treated soil compared to chemical fertilizer-treated and control soil except July. The plant parasite index was higher in compost-treated soil compared to chemical fertilizer-treated soil except July. The multi-year application of compost and chemical fertilizer had effected on soil nematode population density and community structure.  相似文献   

5.
科尔沁沙地流动沙丘土壤线虫群落组成与多样性研究   总被引:2,自引:1,他引:1  
本文对科尔沁沙地流动沙丘不同坡位(丘间地、过渡带、迎风坡中部、坡顶、背风坡上部和下部)和不同土层深度(0 ~ 20、20 ~ 40和40 ~ 60 cm)的土壤线虫群落组成与多样性进行了比较研究.研究结果表明,流动沙丘土壤线虫具有显著的坡位效应,而垂直分布特征不显著.丘间地和背风坡下部具有较高数量和较多种类的土壤线虫,而过渡带和迎风坡中部土壤线虫数量较低、种类也较少.不同坡位土壤线虫总数、食细菌线虫、食真菌线虫和植物寄生线虫数量存在显著差异.除食细菌线虫外,不同土层土壤线虫总数及其各营养类群均无显著差异.土壤含水量和电导率是影响土壤线虫群落空间分布格局的主要因素.土壤线虫群落分布格局的变化反映了流动沙丘土壤微环境的变化,对土壤质量具有一定的指示作用.  相似文献   

6.
Abstract. The influence of trampling on the soils of the St James Walkway was studied during 1985 by comparing 'on'- and off-track sites. Trampling increased the average soil bulk density by 0.3 g/cm3 at 0–5 cm depth and by 0.1 g/cm3 at 10–15 cm depth. Trampling increased the average soil shear strength by 11 kPa at 0–5 cm depth and by 6 kPa at 5–10 cm depth. All mineral soils were compacted to some extent by trampling. The podzolized high country yellow-brown earths (Dystrochrepts) were the most affected because their organic topsoil was truncated. Their exposed subsoil was however more resistant to further damage than their topsoil. Organic soils (Medihemists) were not compacted but their very low shear strength and high moisture content make them unsuitable for tracks. Untrampled soil bulk density and soil stone content were negatively correlated with the change in bulk density by trampling, and could be used to predict the risk of soil compaction by trampling.  相似文献   

7.
Soil degradation and subsequent yield decline are the main factors limiting further development of agriculture on the farming–pastoral transition zone of China. A 10-year field experiment was conducted in Inner Mongolia to compare the long-term effects of no-tillage with straw cover (NT), subsoiling with straw cover (ST), rototilling with straw cover (RT) and traditional tillage (TT) using ploughs on soil properties and productivity in a spring wheat–oat cropping system. Long-term conservation tillage increased soil organic matter in the top 20 cm by 21.4%, total N by 31.8% and Olsen's P by 34.5% in the 0–5 cm layer compared to traditional tillage. Mean percentage of macro-aggregates (>0.25 mm, +20%) and macroporosity (>60 μm, +52.1%) also improved significantly in the 0–30 cm soil layer ( P  <   0.05). The largest yield improvements coupled with greatest water use efficiency (WUE) were achieved by no-tillage with straw cover. Ten-year mean crop yields increased by 14.0% and WUE improved by 13.5% compared to traditional tillage due to greater soil moisture and improved soil physical and chemical status. These improvements in soil properties and productivity are of considerable importance for the seriously degraded soils in semiarid Inner Mongolia, as well as for food security, sustainable agriculture and carbon storage in the farming–pasture transition regions of China.  相似文献   

8.
Comparisons of agricultural and natural ecosystems reveal the magnitude of the effects of agricultural practices on the diversity and abundance of soil nematodes. Consequently, there is the need for testing ecological hypotheses, specifically with regard to nematode ecology, in natural and agricultural soils to seek strategies for biological control and environmental monitoring. We studied soil nematode assemblages and soil physical attributes of five soil layers (0–10, 10–20, 20–30, 30–40 and 40–50 cm) from sugarcane plantations and forest remnants in the sugarcane zone of Pernambuco State, Brazil. Structure and composition of the nematode assemblage and soil properties differed between forest and sugarcane soils, even in the same locality. The soil bulk density and the abundance of all nematodes and the diversity of plant‐parasitic nematodes were greater whereas soil porosity, soil respiration and abundance of predator nematodes were smaller in sugarcane than in forest areas. We suggest that sugarcane management practices result in changes in the soil properties and concomitantly alter the composition and structure of the nematode assemblages. Co‐inertia analysis indicated that others environmental factors also might be affecting the nematofauna.  相似文献   

9.
  【目的】  利用天津市西青区基地日光温室蔬菜不同施肥模式定位试验,研究有机肥/秸秆替代化肥模式对设施蔬菜土壤线虫总数、群落结构和生态指数的影响,为构建健康的土壤动物区系提供科学依据。  【方法】  定位试验共设6个处理,分别为:1) 全部施用化肥氮 (4/4CN);2) 3/4化肥氮 + 1/4猪粪氮 (3/4CN + 1/4MN);3) 2/4化肥氮 + 2/4猪粪氮 (2/4CN + 2/4MN);4) 1/4化肥氮 + 3/4猪粪氮 (1/4CN + 3/4MN);5) 2/4化肥氮 + 1/4猪粪氮 + 1/4秸秆氮 (2/4CN + 1/4MN + 1/4SN);6) 2/4化肥氮 + 2/4秸秆氮 (2/4CN + 2/4SN),各处理为等氮磷钾设计。第16茬 (土壤消毒后) 和第18茬 (土壤消毒1年后) 蔬菜 (春茬番茄) 拉秧后,分别采集0—5、5—10和10—20 cm土层土壤样品,测定土壤线虫相关指标。  【结果】  1) 有机肥/秸秆替代化肥模式0—5、5—10和10—20 cm土层土壤线虫总数均高于单施化肥模式,平均分别增加16.8%、31.8%和11.2%;配施高量有机肥模式 (1/4CN + 3/4MN) 和配施秸秆模式 (2/4CN + 1/4MN + 1/4SN、2/4CN + 2/4SN) 各土层线虫总数相对较高,较单施化肥模式分别提高12.1%~26.4%、34.3%~42.8%、13.2%~18.3%。2) 与单施化肥模式相比,有机肥/秸秆替代化肥模式,尤其是配施高量有机肥模式和配施秸秆模式可提高0—5和5—10 cm土层土壤有益线虫 (食细菌、食真菌和捕食/杂食性线虫) 营养类群个体数量,其中0—5 cm土层上述线虫营养类群个体数量平均分别增加13.0%、7.4%和26.7%,5—10 cm土层平均分别增加35.5%、20.2%和56.5%。有机肥/秸秆替代化肥模式0—5和5—10 cm土层土壤有害植食性线虫数量虽均高于单施化肥模式,但其相对丰度均低于单施化肥模式,平均分别降低6.3%和13.1%。3) 有机肥/秸秆替代化肥模式,尤其是配施高量有机肥模式和配施秸秆模式,MI值、WI值、EI值和SI值均高于单施化肥模式,0—5 cm土层平均分别增加3.9%、11.5%、6.2%和130.4%,5—10 cm土层平均分别增加1.8%、19.1%、2.4%和138.7%。  【结论】  在N、P2O5和K2O投入量不变的情况下,有机肥/秸秆替代化肥模式可促进土壤有益线虫 (食细菌线虫、食真菌线虫和捕食/杂食性线虫) 生长繁殖,还可降低土壤有害植食性线虫相对丰度,对土壤有害植食性线虫起到一定的抑制作用。综合来看,有机肥/秸秆替代化肥模式,尤其是配施高量有机肥模式和配施秸秆模式,可优化土壤线虫群落结构,降低土壤环境的受干扰程度,改善土壤的质量,使设施蔬菜土壤生态系统向稳定健康的方向发展。结合本试验9年产量数据 (2/4CN + 1/4MN + 1/4SN模式产量最高)、土壤线虫群落相关研究结果以及实际可操作性,化肥与有机肥、秸秆配施模式(2/4CN + 1/4MN + 1/4SN)可实现设施蔬菜持续高产。  相似文献   

10.
A variety of soil properties can directly or indirectly affect nematode community structure. The effects of subsurface clay content (at 20–40 cm depth) on nematodes in the surface layer (0–20 cm depth) of a sandy soil were examined in field experiments in Florida, USA. Plots were established in a site with a relatively uniform sandy upper soil layer (88–91% sand and 5–7% clay at 0–20 cm depth) but with varying levels of clay in the subsurface layer (3–35% clay at 20–40 cm depth). Nematode numbers in the surface soil layer were affected by the amount of clay in the subsurface layer. Population densities of a number of different nematode genera were greater in the surface layer of plots with 35% subsurface clay than in plots with 3% subsurface clay. Indices of nematode community structure were largely unaffected, since effects of subsurface clay were observed across all nematode groups. Most nematodes (70–80% of total numbers) occurred at 0–20 cm depth, although Teratocephalus was more common at 20–40 than at 0–20 cm. Subsurface clay content indirectly affected soil moisture and other environmental factors in the upper soil layer in which most nematodes reside.  相似文献   

11.
藏北高寒草甸植物群落对土壤线虫群落的影响   总被引:3,自引:0,他引:3  
薛会英  胡锋  罗大庆 《土壤学报》2013,50(3):507-516
2011年5月—11月,对西藏北部高寒草甸3种典型植物群落下0~30 cm范围内不同深度土层的土壤线虫群落进行调查,浅盆法收集土壤线虫,应用个体密度、多样性指数等特征值来分析高寒环境下土壤线虫群落的组成、分布特征与多样性。调查共分离得到33 038条土壤线虫,隶属于2纲6目51科93属;线虫个体密度平均为847条100 g-1干土;表聚性明显。研究结果表明,不同植物群落间的土壤线虫群落组成存在一定差异,土壤线虫数量的大小顺序为委陵菜植物群落<藏北嵩草植物群落<高山嵩草植物群落,土壤线虫数量差异显著(p<0.05);土壤线虫数量随生长季变化发生明显波动,返青期最多,盛长期次之,枯草期最低;不同植物群落的优势属种类不同。生物多样性为委陵菜植物群落>高山嵩草植物群落>藏北嵩草植物群落,这可能是放牧干扰强度不同,以及植物群落影响下的土壤性质分异所导致的结果。总之,不同植物群落下土壤线虫群落特征的分异初步显示出线虫指示环境因子影响土壤生态系统的潜力。  相似文献   

12.
We manipulated Collembola Folsomia candida Willem density and observed the density effect on carbon and nitrogen mineralization and on nematodes in microcosms filled with mineral soil. Collembolan densities were 0 (control), 25 (low), 100 (medium), and 400 (high) individuals per microcosm. The Collembola enhanced soil respiration and nitrogen mineralization rate in a density-dependent manner (P < 0.05). The correlation between collembolan density and the metabolic quotient of microbes, qCO2, was weakly positive (r = 0.44, P < 0.05). Collembola did not affect microbial biomass. These results suggested that enhanced carbon and nitrogen mineralization was an indirect effect of Collembola mediated by increased microbial activity. Collembola changed the Cnema/Cmic ratio, but only when present at the low density. Thus, Collembola had both positive and negative effects on the nematode population. The positive impact probably depends on the enhancement of microbial activity due to Collembola grazing behavior, while the negative effect appears to result from predation of nematodes.  相似文献   

13.
Phosphorus (P) speciation in 21 basaltic and four non-basaltic Irish grassland soils was determined by NaOH–EDTA extraction and 31P NMR spectroscopy. Organic P in basaltic soils ranged between 30 and 697 mg P kg−1 and consisted of phosphate monoesters (84–100%), DNA (0–16%) and phosphonates (0–5%). Inorganic P was mainly phosphate (83–100%) with small concentrations of pyrophosphate (0–17%). Phosphate monoesters were more important as a proportion of extracted P in basaltic soils, probably because of their greater oxalate-extractable Fe and Al contents. Phosphate monoesters appeared to be strongly associated with non-crystalline Al and increased with total soil P concentration, indicating that they do accumulate in grassland soils. In non-basaltic soils myo -inositol hexakisphosphate constituted between 20 and 52% of organic P, while scyllo -inositol hexakisphosphate constituted between 12 and 17%. These compounds were not quantified separately in basaltic soils because of poor NMR resolution in the phosphate monoester region, but appeared to represent a considerable proportion of the organic P in most samples. DNA concentrations were greater in basaltic soils compared with non-basaltic soils and were associated with acidic pH and large total C contents. The inability of the Olsen P test to assess effectively the P status of basaltic soils may result from strong phosphate sorption to Fe and Al oxides, inducing plant utilization of soil organic P. Phosphorus nutrient management should account for this to avoid over-application of P and associated financial and environmental costs.  相似文献   

14.
东北黑土农业生态系统线虫多样性研究   总被引:1,自引:0,他引:1  
The diversity and distribution patterns of soil nematode communities in phaeozem agroecosystems of Northeast China were assessed to evaluate nematode taxonomic diversity and functional diversity in relation to climatic condition and soil characteristics in human modified landscape.Along the latitudinal gradient,soil samples were collected from north (Hailun) to south (Gongzhuling) down to a depth of 100 cm with intervals of 0-20,20-40,40-60,60-80,and 80-100 cm.The nematode abundance and taxonomic diversity (generic richness) were lower at Hailun than at other sites,and higher values of evenness were observed at Hailun and Harbin than at Dehui and Gongzhuling.Nematode faunal analysis revealed that soil food web at Hailun was successionally more mature or structured,and the environment little disturbed,while at Harbin and Gongzhuling,the soil food web was degraded with stressed environment.The environmental variables relevant in explaining the patterns of nematode distribution and diversity in phaeozem agroecosystems,using canonical correspondence analysis (CCA),were the mean annual temperature,total nitrogen,electrical conductivity,mean annual precipitation,and other soil properties.Among these variables,the mean annual temperature was a relatively important factor,which could explain 29.05% of the variations in nematode composition.  相似文献   

15.
Since the amount, intensity, and frequency of rainfall in desert regions vary strongly over space and time, the response by soil biota to this variability is of great importance. We conducted a study in the Negev desert in order to examine the immediate response by the soil nematode populations and the microbial biomass to varying amounts of water applied in a single pulse. Soil samples from the 0–10-cm depth were collected from areas undergoing four different wetting treatments, comprising 5, 10, 15, and 20 mm of water, and from a non-irrigated control soil. There was a correlation between diurnal variations in nematode populations and the diurnal fluctuations in soil moisture. The greatest abundance of nematodes was found in the soil treated with 20 mm water (970 individuals 100 g-1 dry soil) which was 2, 4, 5, and 14 times larger than that found in the soil treated with 15, 10, 5, and 0 mm of water, respectively. Bacterialfeeding and fungal-feeding nematodes accounted for approximately 95% of the total nematode population found in all treatments. The microbial biomass examined in the current study exhibited an immediate response to the wetting which was greater in soil treated with, 10, 15, and 20 mm of water compared with 0 and 5 mm. However, after 4 days (96 hours) the microbial biomass stabilized again at the basic level of the 0-mm control. However, our results indicated that the major trigger for changes in the nematode populations, and in the microbial biomass, was diurnal fluctuations in soil moisture, since peaks in nematode populations and in the microbial biomass were observed at various times of the day.  相似文献   

16.
The increased limiting effects of soil compaction on Central Anatolian soils in the recent years demonstrate the need for a detailed analysis of tillage system impacts. This study was undertaken to ascertain the effects of seven different tillage systems and subsequent wheel traffic on the physical and mechanical properties of typical Central Anatolian medium textured clay loam soil (Cambisol), south of Ankara, Turkey. Both tillage and field traffic influenced soil bulk density, porosity, air voids and strength significantly except the insignificant effect of traffic on moisture content. Traffic affected the soil properties mostly down to 20 cm. However, no excessive compaction was detected in 0–20 cm soil depth. The increases of bulk density following wheel traffic varied between 10–20% at 0–5 cm and 6–12% at 10–15 cm depth. In additions, traffic increased the penetration resistance by 30–74% at 0–10 cm and 7–33% at 10–20 cm. Less wheel traffic-induced effects were found on chisel tilled plots, compared to ploughed plots. Soil stress during wheel passage was highly correlated with soil strength. Also, both tillage and traffic-induced differences were observed in mean soil aggregate sizes, especially for mouldboard ploughed plots. The obtained data imply that chisel+cultivator-tooth harrow combination provides more desirable soil conditions for resisting further soil compaction.  相似文献   

17.
Despite the widespread recognition that silvicultural treatments (prescribed harvest residue burning, site preparation and replanting) applied following clearcutting may cause soil erosion and nutrient loss in Chinese fir ( Cunninghamia Lanceolata (Lamb.) Hook) plantations, it is unclear which specific treatment leads to nutrient loss and whether an appropriate implementation of the treatments during the dry season could avert nutrient loss altogether. To address these two questions, nutrient changes in Alliti-Udic Ferrosols soils within a Chinese fir plantation located in Huitong County, Hunan Province, were investigated through the analysis of soil samples sequentially collected at depths of 0–15 cm and 15–30 cm before and after harvest with the residue material kept in place, a prescribed residue burning operation, site preparation and tree replanting initiative took place. Individual treatments significantly affected the soil pH value, organic matter and C and available N at depths of 0–15 cm, but did not significantly influence soil bulk density, total N and P contents and available P contents. The soil pH value decreased with successive application of the treatments. Soil organic C increased by way of the remaining residue after clearcutting, but declined after prescribed residue burning and ultimately returned to pre-harvest values after site preparation as a result of soil displacement and burning ash. Available N contents decreased significantly after clearcutting and residue burning, but the reduction was more or less offset after site preparation took place. Results after all silvicultural treatments were applied showed that no significant reduction in soil organic matter, C and N and P occurred to date in the Chinese fir plantation studied, suggesting that nutrient loss could be averted if the treatments were implemented during the dry season.  相似文献   

18.
Soil organic matter (SOM) and its different pools have key importance in optimizing crop production, minimizing negative environmental impacts, and thus improving soil quality. The objective of this study was to evaluate the soil C and N contents in bulk soil and in different SOM pools (light and heavy fractions) of a clayey Rhodic Ferralsol after 13 years of different tillage and crop rotations in Passo Fundo, State of Rio Grande do Sul, Brazil. Soil samples were collected from no-tillage (no soil disturbance except for sowing; NT) and conventional tillage (disc plough followed by light disc harrowings; CT) applied to wheat/soybean (W/S) and wheat/soybean–vetch/maize (W/S–V/M) rotations. As reference, soil was sampled from a non-cultivated area adjacent to the field experiment. The greatest soil C and N contents were found in non-cultivated soils in the 0–5 cm depth (45 g C kg−1 soil and 3.6 g N kg−1 soil). Crop cultivation led to a decrease in SOM content which was higher for CT soils (approx. 60% decrease in C and N contents) than NT soils (approx. 43% decrease in C and N contents) at 0–5 cm. Tillage had the greatest impact on soil C and N storage. Soils under NT did not contain higher C and N storage than CT soils below 5 cm depth. Significantly, higher amounts of organic carbon of FLF in CT (0.5–0.7 g C kg−1 soil) than in NT soils (0.2 g C kg−1 soil) at 10–20 cm depth were also observed and the differences in C and N storage between CT and NT soils in the 0–30 cm layer were not significant. Silt and clay fractions contained the largest amount of organic carbon (60–95% of total organic carbon), and free light fraction was the most sensitive pool of organic carbon to detect changes in SOM due to soil tillage and crop rotations.  相似文献   

19.
Crop residue management systems are yet needed in the northern Corn Belt of the USA that hasten sowing and early establishment of crops in the spring. This study was conducted to investigate the effect of corn stubble height and residue placement on the soil microclimate and associated development of wheat in early spring. Treatments were established after corn harvest in the autumn of 1993–1995 and included 60 cm stubble, 30 cm stubble, 30 cm stubble with adjacent interrows devoid of and covered with prostrate residue (30 cm stubble with banded residue), 0 cm stubble, and 0 cm stubble without prostrate residue. Five rows of wheat were sown by hand into one corn interrow on 12 April 1994, 3 April 1995, and 24 April 1996. Leaf development on the main stem was assessed twice weekly until late May. Net and reflected global radiation, soil temperature, and soil water content were measured in each treatment throughout the spring. Vegetative development of wheat was hastened in soils with little residue cover (0 cm stubble without residue treatment and the bare interrow of the 30 cm with banded residue treatment). Averaged across years, the phyllochron ranged from 75 °C day per leaf for treatments with little residue cover to 92 °C day per leaf for the residue interrow of the 30 cm stubble with banded residue treatment. Vegetative development in treatments with little residue cover was hastened by soil temperatures that were at least 1 °C higher throughout spring than those of the residue interrow of the 30 cm stubble with banded residue treatment. The 0 cm stubble without residue treatment was warmer because of a smaller albedo (at least 0.03) and greater net radiation (at least 0.5 MJ m−2 per day) compared with all other treatments. Little difference in soil water content was found among treatments, although treatments with little residue cover were wetter in two of the three springs. Based on the results of this study, one can conclude that soils with little residue cover or that have taller stubble on the surface will absorb more radiation and thereby enhance soil warming and early development of plants in the northern Corn Belt of the USA.  相似文献   

20.
Ageing of pastures is likely to affect the degree of potential water repellency in the long term, whereas seasonal variation on a shorter term affects the actual repellency of soils. A 1-year study on two pastures of different ages was conducted on a sandy soil to assess changes in the degree of potential and actual water repellency in relation to different levels of applied nitrogen (N). Sampling was carried out on four dates (April, June, August and October) to determine soil moisture content and both potential and actual water repellency at three depths (0–25, 25–50 and 50–75 cm). The relative number of potentially wettable samples for the young pasture (5 years) ranged from 64% (0–25 cm) to 96% (25–50 cm) to 100% (50–75 cm). For the old pasture (38 years) this ranged from 29 to 66 to 94%. The transition zone in which topsoil samples could be either wettable or water repellent ranged from 18 to 23% (v/v) for the young pasture compared with a range from 29 to 32% (v/v) for the old pasture. Thus, ageing pastures may result in both moving as well as decreasing transition zones over time. A positive relationship between increased inputs of fertilizer N, higher DM yields, lower soil water contents and higher degrees of water repellency was found for the old pasture for the August series. This suggests that seasonal variation in water repellency can be further re-enforced through nutrient management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号