首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用热扩散式边材液流探针(TDP)对山杨树干液流的研究   总被引:11,自引:0,他引:11  
利用热扩散式边材液流探针和Watch dog 小气候观测仪对延庆县上辛庄水土保持站山杨(Populusdavidiana)边材液流速率及其与环境因子的关系进行了观测研究。结果表明,山杨树干边材液流曲线呈宽峰状,表现出明显的昼夜变化和季节变化规律,日出后7:00-8:00时液流开始上升,并于13:00-16:00 时达到峰值,然后迅速下降,19:00时速度变慢,至次日日出之前液流微弱,时断时续;7 月份进入雨季,液流速率提高,8 月份由于持续干旱,有所下降,进入9月份,地形雨增加,含水量湿度提高,液流速率又重新上升,10 月份山杨生长变慢,液流速率明显下降。同时,分析了液流速率的波动规律与主要气象因素波动的相关性。  相似文献   

2.
油松树干边材液流空间变化规律   总被引:2,自引:0,他引:2  
利用热扩散探针配合自动气象站,于2005年在北京林业大学妙峰山试验林场对油松树干边材液流指标空间变化规律进行了研究。结果表明:油松树干不同高度边材液流速率随树干高度的升高而增加,而且,高层液流峰值的出现时间比低层早,高层液流曲线窄、斜率大,低层液流曲线变化平缓、斜率小。树干不同高度的平均液流速率峰值为:6.6m处为0.0013cm·s-1,4.6m处为0.0010cm·s-1,2.6m处为0.0006cm·s-1,0.6m处为0.0003cm·s-1。在树木生长正常的情况下,无论是液流速率还是连日耗水量,不同直径的单株树干液流都随直径的增加而增加(树干直径和边材面积与日平均液流速率和平均耗水量相关分析表明,除油松直径与液流速率的相关系数为0.867之外,其它相关性都在0.9以上,差异性极其显著),但其变化并不是线性的,在一定范围内,相差一个径阶,液流速率并无明显的变化。土壤的含水量极大地限制着树木的耗水能力,日平均液流通量与土壤含水量呈现良好的指数关系:y=0.597e25.154x(决定系数R2=0.8999),其中,20~40cm土层的这种关系更为密切。不同气象因子对树干的液流影响方式不同:太阳辐射、大气温度、风速与液流指标呈正相关,并且属于第一主分量,对液流的影响较为直接;空气相对湿度和土壤温度与液流指标呈负相关,属于第二主分量,对液流的影响较为缓慢。多元线性回归分析表明:各气象因子和液流相关性都比较高,通过气象因子可以预测树干液流。  相似文献   

3.
树木边材液流传输研究述评   总被引:6,自引:0,他引:6  
结合作者的研究工作进展,对当前国内外有关树边材木水分传输机理的研究概况进行了述评,分析了树木水分传输驱动力的构成要素及内聚力学说对树木边材水分传输连续体合理解释,探讨了稳态流模型和非稳态模型在描述树木水分传输方面的效果,介绍了树木组织水容的概念及其在调控树木水分传输过程中的作用和意义,介绍了当前国内外导管空穴化和木质部栓塞研究概况、树木边材导管空穴化的发生机制及检测方法、树木输导组织栓塞对水分传输的影响及栓塞脆弱性评价等。  相似文献   

4.
油松边材液流时空变化及其影响因子研究   总被引:48,自引:8,他引:48  
2000~2001年,利用热扩散式边材液流探针及微型自动气象站对北京林业大学西山实习林场低山阴坡45年生人工油松林单木边材液流速率进行了连续观测.持续的春季干旱导致油松边材液流速率时空变化特征发生很大变化.油松边材液流速率日变化呈现"早晨启动并迅速上升-中午前后出现峰值-峰值后缓慢下降-夜间进入低谷"典型的液流波形特征.树干上位液流波峰值明显大于下位,且峰值和低谷出现时间较早,但二者周期相同.随着时间推移和春季干旱胁迫的加剧,边材液流启动和峰值出现时间提前至17:50和6:00, 峰值进一步减小.灌水后树干液流启动时间和峰值出现时间明显提前,树干边材液流速率显著提高,连续两日树干上位液流峰平均值较灌水前提高40.1%,树干下位液流速率提高95.1%.油松边材液流速率与林内太阳辐射、空气温湿度、土壤温度、风速等环境因子密切相关,其多元线性回归模型达到极显著水平.  相似文献   

5.
生长季节对白蜡(Fraxinus chinensis)、早柳(Salix matsudana)、山桃(Amygdalus davidiana)、山杏(Armeniaca mandshurica)、大叶扶芳藤(Euonymus fortunei)、I-107杨(Populus tremula L.)6种木本植物.采用冲洗法和压力室法分别测定了一年生小枝的导水率、水势和水容,采用曲线回归方法拟合各树种栓塞脆弱性曲线和水势-水容关系曲线。结果表明:①树种之间一年生枝条木质部栓塞脆弱性差异明显,其中I-107杨、早柳、山杏属于栓塞脆弱树种。大叶扶芳藤抗栓塞能力最强,山桃、白蜡栓塞脆弱性中等;②树种之间组织水容的调节作用也有很大差异,大叶扶芳藤的组织水容调节能力最大,其次为山杏、I-107杨、山桃,然后是旱柳、白蜡;③被测树种的栓塞脆弱性和水容拟合曲线均为倒数形式,拟合方程极为显著;④枝条木质部水容与导水性之间关系密切,对导水损失率进行倒数转换,并与水容进行相关分析,结果表明相关性极显著。  相似文献   

6.
运用热技术检测树干边材液流研究进展   总被引:5,自引:0,他引:5  
介绍了各种热技术测定树干边材液流的基本原理和方法,并对热技术在树干水分运输格局、影响和调节树干边材液流的内外因素、基于树干液流测定值推算林分冠层导度和尺度放大以及夜间树干液流等方面研究中的具体应用进行了综述.目前,在运用各种热技术对林木树干液流的研究中,树干水分运输格局还需借助其他手段和方法进一步准确测定和佐证;影响树木边材液流内外因素的协同和补偿作用还需系统研究;基于热技术测定的树干液流值进行耗水时空尺度的扩大将成为该领域的研究热点之一.  相似文献   

7.
应用TDP技术研究油松树干液流流速   总被引:19,自引:0,他引:19  
应用TDP(ThermalDissipationProbe)技术对油松树干液流及其影响因素进行了初步研究,经过野外近1a的实地定位观测,研究结果显示该研究区油松在研究年份中除4、6、7、8月份外,土壤含水量低于10%,土壤水势小于-15MPa.油松树干液流速率与土壤容积含水量和土壤水势呈明显线性相关关系.油松在全生长期受水分胁迫影响.油松树干液流速率在7、8月份明显受气象因素影响,在5、6月份则主要受土壤水分影响,在9、10月份不同时间段分别以土壤水分或气象因素为主要影响因素.在7、8月份油松树干液流速率与太阳总辐射、大气水势、空气相对湿度、绝对温度呈明显的线性相关关系.从油松树干液流速率及影响因素的变化可以看出,油松在该研究区大部分时间受到干旱胁迫的影响,通过抚育间伐降低密度,割灌、除草降低其他植物的耗水竞争,均可能是有利于油松良好生长的营林措施.  相似文献   

8.
树木的边材是木质部内具有生理功能的组织,心材虽无生理功能,但对木材的利用却有非常重要的影响。树木心材形成机制是木材科学中几个尚未完全了解的问题之一。本文总结了有关边材生理机能与心材形成机理研究的重点成果,据此来讨论特异性带色心材的形成及调控机制。鉴于含水率对边材薄壁细胞生理机能的重要性,通过揭示木射线组织如何在心边材中间区调控水分导致心材形成的机理,为心材的人工调控提供一定的理论基础。   相似文献   

9.
辽西樟子松树干液流运动规律   总被引:4,自引:0,他引:4  
为深入研究辽西防风固沙林主要造林树种樟子松的耗水特性,应用热脉冲技术,于2007年8月份观测与分析了辽西章古台地区樟子松在不同天气、不同方位和不同木质部深度的树干液流的变化,结果表明:樟子松树干液流日进程随天气而变化,晴天变化曲线呈双峰型,两次高峰出现在10:00和14:00左右,液流速率分别为19.550、18.118cm·h-1,日累计液流量为41.08L,晴-多云天气次之,雨天最小;樟子松不同方位上液流速率日变化趋势基本一致,但各时段、各方向液流量占该时段液流总量的比例呈不同的变化趋势;樟子松木质部不同部位输水能力差异较大,液流速率最大的位点位于15mm处,10mm次之,20mm及5mm处依次降低,且外层受环境影响较大。  相似文献   

10.
绦柳树干液流变化及其影响因子研究   总被引:1,自引:1,他引:1  
该文于2006年4—11月利用Granier热扩散探针观测了绦柳的树干液流速率在生长季节的动态变化,并利用全自动气象站同步监测了环境因子。观测结果显示,在土壤水分充足的8月份,绦柳树干平均液流速率为0.004 1 cm/s,液流峰值为0.014 6 cm/s;而在相对干旱的5月份平均液流速率为0.000 503 cm/s,液流峰值为0.003 47 cm/s;土壤水分充足时期液流速率明显高于相对干旱期。在整个生长季节,绦柳液流速率日变化均为明显的单峰曲线,5—11月份各月的峰值分别为0.002 8、0.002 4、0.004 8、0.008 6、0.006 1、0.005 8、0.004 2 cm/s,启动时间和达到峰值时间具有明显的规律性;以太阳辐射强度、气温、空气湿度、风速、不同层次土温等环境因子作为自变量,以边材液流速率作为因变量,经过逐步回归,建立了绦柳液流速率与环境因子的多元线性模型,回归方程极显著,其主要影响因子为空气温度、空气相对湿度和太阳辐射强度。   相似文献   

11.
园林植被的蒸腾作用对城市生态系统的水量平衡至关重要,并且能够调节小气候环境。本研究通过热扩散探针法(TDP),对校园绿地中29 a和24 a的银杏树干液流速率进行动态监测,量化不同时间尺度城市园林绿地中银杏的蒸腾变化规律,并分析其与环境因子的关系。结果表明,同一时期,29 a银杏的树干液流速率和液流通量均大于24 a银杏,且在生长季旺盛期差异显著(P<0.05)。29 a和24 a银杏蒸腾耗水季节性变动趋势相同,均为夏季>春季>秋季>冬季。除自身生理调节以外,银杏树干液流速率变化受多种因子影响,土壤因子中,树干液流速率对表层土壤温度的变化最为敏感;气象因子中,对太阳辐射的变化最为敏感。不同季节影响银杏树干液流速率的主要环境因子不同,从不同季节出发建立回归模型,能够更好地解释对环境因子的响应。树龄与环境因子的改变,都会影响城市园林植被的蒸腾耗水量,是园林绿化配置与管理应考虑的重要因素。  相似文献   

12.
树干液流研究进展与展望   总被引:6,自引:0,他引:6  
树干液流是土壤-植物-大气连续体水流路径中一个关键的链接,承接了庞大的地下根系所吸收、汇集的土壤水,并决定着整个树冠的蒸腾量,因此成为分析树木耗水特性、研究树木水分传输机理的重要指标。结果表明,1)常见的测定树干液流的5种方法,对比分析各种方法的原理以及优点和缺点,热比率法是目前研究树干液流最可靠的方法。2)分析树干液流的日季变化、方位变化和高度变化,发现大多树干液流日变化呈单峰型,季节变化总体上呈现夏季液流速率最高,春秋次之,冬季最小的变化趋势。3)分析不同树种树干液流与环境因子的滞后效应及与环境因子的关系,发现树木液流与太阳辐射、水汽压亏缺等呈正相关,与空气相对湿度呈负相关。针对目前研究中存在的问题提出了有待进一步解决的问题,旨在为进一步研究树木耗水及生态需水提供理论依据。  相似文献   

13.
旨在揭示幼龄桉树茎流速率变化特征及其与环境因子关系,为桉树人工林可持续经营与管理提供依据。于2014年6-9月利用Dynagage包裹式茎流传感器和DL2e环境因子测量系统对海南西部儋州林场幼龄桉树树液茎流及主要环境因子进行连续监测。结果表明,1)雨季幼龄桉树茎流速率具有“昼高夜低”的节律性,夜晚茎流速率都很小,约为日均值的0.10%~7.27%。2)晴天、阴天、雨天树液茎流速率差异明显,晴天的树液茎流速率峰值、日均值分别为13.861 mL·cm-2·h-1和2.349 mL·cm-2·h-1,是阴天的2.27倍和1.50倍,雨天的10.52倍和4.90倍。3)雨季幼龄桉树茎流速率与太阳辐射、空气湿度、空气温度等气象因子均具极显著的相关关系,而受土壤水分影响较小;晴天太阳辐射对茎流速率影响最大,阴天和雨天空气温度对茎流速率影响最大。液流速率与环境因子逐步回归分析结果表明,3种天气条件下的影响液流速率变化的主导因子不同。  相似文献   

14.
赵梦炯    吴文俊    马超  戚建莉    姜成英    陈炜青   《西北林学院学报》2020,35(5):104-109
在初步掌握油橄榄树干液流的变化规律基础上,探索土壤水分、气象因子与树干液流的关系。结果表明,油橄榄树茎流量随太阳辐射强度增大而呈现迅速降低的趋势,随空气相对湿度的增加逐渐减小,与空气温度呈正相关关系,由于高温抑制作用,空气温度>29.78℃时,茎流量有小幅下降的趋势,土壤温度在12.51℃~25.06℃时,油橄榄树茎流量随土壤温度升高而缓慢增大,但当土壤温度>30.86℃时,油橄榄树茎流量也会逐渐下降。通过分析油橄榄茎流速率与气象因子之间的关系,构建了多元线性回归模型,生产上可根据此模型推导出油橄榄树的潜在茎流量,以此为依据提出合理的节水补灌制度。  相似文献   

15.
以滨海盐碱地31 a衰退刺槐为研究对象,采用TDP树干液流测定系统测定树干边材液流变化规律,同时进行全自动微型气象站全天候检测林分气象和土壤生态环境因子。结果表明:衰退树木同方位同高度液流速率降低,高度愈大下降愈快,树木衰退与液流速率呈显著相关。正常树体液流速率日变化呈宽峰曲线,随着衰退程度的增加逐渐变为窄峰,树体液流启动时间晚,开始迅速,下降时间早;正常树体1.5 m处液流启动时间在每天7:00左右,12:30左右出现峰值,19:00左右开始迅速下降,中等衰退树体在7:30左右启动,13:30左右出现峰值,18:30左右迅速下降,严重衰退树体在9:30左右启动,12:00左右出现峰值,17:30左右迅速下降,随高度增加,启动时间、峰值出现时间和下降时间提前。北侧液流速率显著高于南侧,随着衰退程度增加,南北侧液流速率相差减小。健康木不同高度液流速率6 m>4 m>1.5 m,随着衰退程度增加,6 m和4 m液流速率减小,不同高度速率差异变小。南北方位液流速率相差显著,北侧显著大于南侧。  相似文献   

16.
不同胸径日本柳杉树干液流及其蒸腾耗水差异   总被引:1,自引:0,他引:1  
利用热扩散式探针法对庐山自然保护区内不同胸径大小的日本柳杉在2016年7月树干液流情况进行连续监测,并同期监测样地区域的气象因子(降雨、气温、湿度、太阳辐射等),揭示不同胸径日本柳杉的液流变化规律和蒸腾耗水特征以及对主要气象因子改变的响应情况。结果表明:液流呈现明显昼夜变化规律,其日变化呈多峰曲线型,平均每日峰的次数晴天约3.5次,雾天3次;在典型晴天,液流每日平均起始时间为6:45,总持续时间15 h,首次峰值出现时间约为11:45,峰值总持续时间4.25 h,雾天,液流每日平均起始时间为7:30,总持续时间11.5 h,首次峰值出现时间约为10:45,峰值总持续时间4.5 h,且液流峰值出现时间、下降时间、结束时间、最大峰值出现时间雾天均要早于晴天;不同胸径树干液流的日变化规律有差异,总体来看,随着树干胸径的增加,液流日波动次数增加,各样树的液流首次到达峰值和峰值结束的时间分布不同,液流最大峰值随着胸径的增加而增大;晴天液流日均值与胸径的大小存在良好线性正相关关系,而雾天的线性相关拟合一般,太阳辐射和大气水汽压亏缺(VPD)是树干液流的主要影响因素,树干液流对太阳辐射和VPD均以幂函数形式呈正相关关系,液流变化对于太阳辐射变化存在45~135 min的时滞效应,但是其峰值持续时间比太阳辐射峰值持续时间少1 h;在典型晴天,胸径越大树木日总蒸腾量越大,蒸腾量与胸径以幂函数的形式呈现正相关关系,在雾天,蒸腾量与胸径之间的正相关性不如晴天。  相似文献   

17.
确定不同时间尺度树干液流的主要影响因子,对理解液流密度响应环境的驱动机制提供理论基础。以宁夏黄土丘陵区的山杏为对象,在生长季同步监测树干液流密度、气象要素、土壤环境等指标,分析时、日和月尺度树干液流对环境因子的响应关系。结果表明:1)日尺度上,树干液流与太阳辐射(Rs)、饱和水汽压差(VPD)、气温(Ta)、相对湿度(RH)、风速(Wa)、降雨量(Pre)、土壤水分(VSM)、土壤温度(Ts)8个环境因子相关性极显著;时尺度上,树干液流与除Wa外的其他7个环境因子呈极显著相关;月尺度上,树干液流仅与VSM、Ta呈极显著相关。2)从时尺度到日尺度,树干液流对VPD和Ts的响应程度逐渐增强;从日尺度到月尺度,树干液流对Rs、VPD、Ts的响应程...  相似文献   

18.
为揭示库姆塔格沙漠东南部柽柳的水分传输过程,探究柽柳的耗水特性,本研究利用PS-TDP8树木茎流监测系统对柽柳的树干液流速率进行测定,分析土壤因子与液流速率在不同季节的差异。结果表明,夏季树干液流的启动时间最早,为7:20,峰值最大(6.93 cm·h-1),春季启动时间为7:40,峰值为6.46 cm·h-1,秋季启动时间最晚,为8:40,峰值最小(4.22 cm·h-1)。在日尺度上,春、夏、秋季柽柳树干液流速率与土壤含水量及土壤温度呈正相关,土壤温度分别单独能解释61.1%、65.6%、64.0%的树干液流变化,土壤含水量与土壤温度分别共同能解释73.4%、74.1%、76.9%的树干液流变化。在小时尺度上,春、夏、秋季树干液流与20、50 cm层土壤含水量及土壤温度呈显著负相关,50 cm层土壤温度是影响树干液流的主导因子。本研究建立了不同季节柽柳液流速率与土壤因子之间的回归方程,能够较好地解释不同季节树干液流速率变化,为柽柳树干液流速率预测与耗水量估算提供了很好的途径,明确了在不同季节通过土壤因子估算柽柳树干液流速率的可行性,可为制定水分管理措施提供参考。  相似文献   

19.
在掌握开花时期油橄榄树干茎流动态变化特征的基础上,探索气象因子与树干茎流的关系。结果表明,开花时期油橄榄晴天树干茎流日变化呈单峰形趋势,峰值出现在12:00-15:00,雨天树干茎流日变化呈双峰形趋势,晴天树干茎流量比雨天提高了15.8%。油橄榄开花时期树茎流量随太阳辐射强度的增大而呈降低的趋势,当太阳辐射最高值出现在12:00-15:00,与茎流出现峰值相同,太阳辐射与树茎流量间关系呈极显著相关关系,而茎流值会随空气相对湿度的增加逐渐减低,当空气相对湿度>20.9%时树干茎流呈下降趋势,空气相对湿度与油橄榄树茎流量两者间呈负相关,而空气温度和风速与树茎流量呈正相关关系,虽然空气温度与茎流量与相关性较低,但当空气温度>25.7 ℃时树干茎流会小幅度下降。通过分析气象因子与油橄榄茎流速率的关系,构建多元线性回归模型,在小时尺度上,太阳总辐射对油橄榄树干茎流速率的影响最大R2=0.655,对开花时期油橄榄树茎流速率的影响气象因子为太阳辐射>风速>空气湿度(负相关)>空气温度。在油橄榄开花时期可根据此模型推导出油橄榄树的潜在茎流量,以此为油橄榄开花时提出合理的节水补灌时间,对后期增加挂果量和提高产量有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号