共查询到13条相似文献,搜索用时 46 毫秒
1.
基于双目立体视觉技术的成熟番茄识别与定位 总被引:2,自引:10,他引:2
研究了基于双目立体视觉技术的成熟番茄的识别与定位方法,获取了成熟番茄的位置信息,用于指导温室内成熟番茄的自动化采摘作业.该方法利用成熟番茄与背景之间颜色特征的差异进行图像分割来识别成熟番茄;根据图像分割的结果,用形心匹配方法获取番茄中心的位置;然后根据相邻区域像素点灰度的相关性,利用区域匹配方法计算番茄表面各点的深度信息.使用限制候选区域和两次阈值分割的方法减少计算量,提高了计算精度.实验结果表明,工作距离小于550 mm时,番茄深度值的误差约为±15 mm.利用该测量方法可以实现成熟番茄位置信息的获取,测量精度较高. 相似文献
2.
为了解决自动化机械手移栽过程中穴盘放置偏斜和底部局部"凸起"而引起的移栽效果不理想的问题,为机械手提供穴盘精准坐标,对穴盘准确定位方法进行研究。首先,根据机械手移栽特点提出穴盘定位总体方法及图像获取手段。其次,利用单目相机获取的图像采用像素标记法和Radon变换法计算穴盘中心坐标和角度,完成穴盘平面定位。再次,对双目相机获取的图像采用SIFT(scale invariant feature transform)特征匹配的算法获得匹配点对坐标,并提出区域整合匹配点的方法。最后,利用整合的区域双目匹配点坐标配合相机标定结果重建匹配点的三维世界坐标,并且与穴盘平面定位结果相结合完成穴盘空间位置重构。试验结果表明,提出的穴盘定位方法能够真实地恢复穴盘空间姿态,中心像素横纵坐标相对误差分别在(-7,+7)和(-6,+7)像素内,角度检测值与实测值相对误差值在(-0.51°,+0.53°)内,利用SIFT特征匹配算法匹配双目图像,在2×4区域内对8对整合匹配点进行三维世界坐标重建,其中7个坐标的三个维度与测量值相对误差在2 mm内,1个坐标与测量值相对误差为4.6 mm内。该方法所应用的算法成熟,可以满足机械手移栽实际应用处理要求。 相似文献
3.
为了给采棉机器人提供运动参数,设计了一套双目视觉测距装置以定位棉株。对获取的左右棉株图像进行经背景分割等预处理。求取其在8个尺度下的高斯图,通过尺度不变特征转换SIFT(scale-invariant feature transform)算法在相邻高斯差分图中提取出SIFT关键点;计算每个高斯图中关键点邻域内4×4个种子点的梯度模值,得到128维特征向量。分割右图关键点构成的128维空间,得到二叉树;利用最优节点优先BBF(best bin first)算法在二叉树中寻找到172个与左图对应的粗匹配点。由随机采样一致性RANSAC(random sample consensus)算法求出基础矩阵F,恢复极线约束,剔除误匹配,得到分布在11朵棉花上的151对精匹配。结合通过标定和F得到的相机内外参数,最终重建出棉花点云的三维坐标。结果表明,Z轴重建结果比较接近人工测量,平均误差为0.039 3 m,能够反映棉花间的相对位置。 相似文献
4.
无损收获是采摘机器人的研究难点之一,葡萄采摘过程中容易因机械碰撞而损伤果实,为便于机器人规划出免碰撞路径,提出一种基于双目立体视觉的葡萄包围体求解与定位方法。首先通过图像分割获得葡萄图像质心及其外接矩形,确定果梗感兴趣区域并在该区域内进行霍夫直线检测,通过寻找与质心距离最小的直线来定位果梗上的采摘点,运用圆检测法获取外接矩形区域内果粒的圆心和半径。然后运用归一化互相关的立体匹配法求解采摘点和果粒圆心的视差,利用三角测量原理求出各点的空间坐标。最后以采摘点的空间坐标为原点构建葡萄空间坐标系,求解葡萄最大截面,再将该截面绕中心轴旋转360°得到葡萄空间包围体。试验结果表明:当深度距离在1 000 mm以内时,葡萄空间包围体定位误差小于5 mm,高度误差小于4.95%,最大直径误差小于5.64%,算法时间消耗小于0.69 s。该研究为葡萄采摘机器人的防损采摘提供一种自动定位方法。 相似文献
5.
针对鲜食番茄自动化采收实际需要,为了实现对樱桃番茄果串自动识别定位,基于激光测距和视觉伺服技术设计了果串自动对靶测量视觉系统。通过分析成熟番茄果串图像色彩特征,采用R-G色差模型凸显目标与背景差异,并根据色差灰度逐列统计锁定果串图像区域;基于Cognex Vision Pro图像处理类库Cog PMAlign Tool模板匹配工具,对果串区域内果粒进行分割;根据对边缘果粒空间坐标估算,同时对采摘机械臂进行视觉伺服控制,实现对边缘果粒对靶定位测量,并根据其空间坐标测算果串长宽特征,为采摘执行部件提供作业依据。试验结果表明,视觉系统对果串内果粒的平均识别率为83.5%,对果粒视觉对靶的平均偏差为8.38像素,果串长度测量平均误差为8.25 mm,果串宽度测量平均误差为5.25 mm。该研究结果为串形果实自动采收目标识别定位提供参考。 相似文献
6.
植物叶片的生长与光照度密切相关,尤其在温室大棚内,对光照度的控制要求更高。为同时获取叶片的三维形态与光照分布,该文提出了一种基于双目视觉的纹理植物叶片三维形态与光照度同步测量方法。利用双目视觉原理结合数字图像相关技术,实现叶片三维形态测量;通过植物叶片光照度与图像灰度关系推导,实现三维光照分布测量。该文以网纹草为例,对上述方法进行验证。试验表明:参考子区半径为57 pixels、计算间隔7 pixels时三维形态测量效果最佳;对叶片实施均匀光照,照度仪测量值与图像测量平均值相对误差在6%以内;对叶片实施非均匀光照,测量的光照分布真实反映了叶片光照分布。该方法具有非接触、方便、快捷等优点,为植物叶片的三维形态与光照度测量提供了一种方法,为温室大棚的智能光控提供了数据支撑。 相似文献
7.
针对农机导航系统的传统田间试验方式受作物生长状态的约束性较强,错过适当的作物生长时期将直接导致开发周期延长、成本增加等问题,该文提出了一种基于虚拟现实技术的拖拉机双目视觉导航试验方法。该方法以拖拉机为作业机械,苗期棉花为目标作物,在虚拟现实环境下建立田间作物行场景的三维几何模型,用于模拟田间试验场景;建立虚拟现实环境下的拖拉机物理引擎,根据实车参数及试验场景信息快速、准确地解算拖拉机的动力学参数,并且根据解算所得的状态参数在虚拟试验场景中实时渲染拖拉机的位姿状态;设计路径跟踪控制器,以经过双目视觉方法识别的田间路径为目标路径,根据拖拉机当前行驶路径与目标路径的相对位置关系解算并控制拖拉机前轮转向角度。以某型拖拉机参数为实车参数,采用大小行距方式布置5行曲线形态的苗期棉花作物行场景开展虚拟导航试验。拖拉机以不大于2 m/s的车速跟踪作物行时,平均位置偏差的绝对值不大于0.072 m、位置偏差的标准差不大于0.141 m;平均航向偏差的绝对值不大于2.622°、航向偏差的标准差不大于4.462°。结果表明:该文设计的拖拉机虚拟试验系统能够在虚拟现实环境下,模拟田间作物行环境开展基于双目视觉的导航试验,可为导航控制系统的测试及改进提供理论依据和试验数据。 相似文献
8.
基于双目立体视觉技术的玉米叶片三维重建 总被引:3,自引:3,他引:3
玉米叶片的三维形态特征是衡量叶片生物学特性的重要指标,为了能够简捷、快速、准确的获得叶片的三维形态,该研究以两个位置相对固定的摄像机组成双目立体视觉系统,采用平面模板法标定摄像机内外参数,照射结构光测量玉米叶片边缘与叶脉点的三维坐标,对稀疏离散点进行Cardinal样条插值,三角面片化插值点重建出部分叶片三维曲面,旋转平移各部分三维曲面拼接成完整的叶片。试验结果表明该文所提出的方法不仅能够准确的重建玉米叶片三维结构,同时具有无损、非接触、自动化程度高等优势。 相似文献
9.
基于机器视觉的番茄多目标提取与匹配 总被引:5,自引:10,他引:5
果实的提取和匹配是番茄采摘机器人进行番茄定位和采摘的基础。为解决获取图像中多个成熟番茄粘连或被遮挡的情况下果实的提取和匹配问题,该文提出了使用局部极大值法和随机圆环变换检测圆算法结合进行目标提取,再使用SURF算法进行目标匹配的算法。该方法首先基于颜色对番茄进行分割提取,然后使用局部极大值法对番茄个数进行估计,结合番茄区域面积进行半径估计,之后通过随机圆环变换算法检测番茄中心和半径进行目标定位,再使用SURF算法进行双目目标匹配的算法。该方法在一定程度上解决了复杂自然环境下,多个番茄的提取和图像特征匹配的问题,并通过试验验证了其有效性和准确性,可为采摘机器人目标识别技术的研究提供参考。 相似文献
10.
针对基于双目视觉技术的作物行识别算法在复杂农田环境下,立体匹配精度低、图像处理速度慢等问题,该文提出了一种基于Census变换的作物行识别算法。该方法运用改进的超绿-超红方法灰度化图像,以提取绿色作物行特征;采用最小核值相似算子检测作物行特征角点,以准确描述作物行轮廓信息;运用基于Census变换的立体匹配方法计算角点对应的最优视差,并根据平行双目视觉定位原理计算角点的空间坐标;根据作物行生长高度及种植规律,通过高程及宽度阈值提取有效的作物行特征点并检测作物行数量;运用主成分分析法拟合作物行中心线。采用无干扰、阴影、杂草及地头环境下的棉田视频对算法进行对比试验。试验结果表明,对于该文算法,在非地头环境下,作物行中心线的正确识别率不小于92.58%,平均偏差角度的绝对值不大于1.166°、偏差角度的标准差不大于2.628°;图像处理时间的平均值不大于0.293 s、标准差不大于0.025 s,能够满足田间导航作业的定位精度及实时性要求。 相似文献
11.
在番茄自然生长条件下利用计算机双目视觉获取的二维图像其处理必然会涉及到特征匹配不确定问题。该文利用近红外光谱和可见光谱各自有效的生物信息,在双目匹配搜索中,提取多源视觉融合图像的番茄有效形心点,采用极线约束和唯一性约束进行区域相关双向匹配。试验结果表明,基于此匹配方法可以实现果实的唯一匹配,准确率较高。 相似文献
12.
13.
摘要:视觉系统是菠萝采摘机械的关键部件之一,可为采摘终端提供待采果实的位置导航信息。考虑到菠萝果形较大,易于识别,以及系统应用于农业领域,需尽可能降低成本。该研究选取双目视觉技术,采用低成本的CMOS视觉传感器,辅以三脚架、双目云台,以及计算机、软件系统,搭建低成本双目视觉标定平台;研究了标定模型及流程,并基于C++和OpenCV v1.1环境以及Matlab标定工具箱的软件环境平台,采用张正友标定算法,分别对视觉传感器进行标定试验,选取了适合本平台的标定方法。基于此平台和开发的菠萝果实识别算法,在湛江菠萝田间进行果实深度测量试验发现,果实测试距离小于1 m时,深度误差在6~8 cm范围内,经软件算法校正后,误差控制在2~3 cm范围内,该平台试验结果良好,表明低成本试验平台具有可行性。该研究可为菠萝采摘机器人视觉系统的开发提供参考。 相似文献