共查询到18条相似文献,搜索用时 78 毫秒
1.
为实现参考作物蒸散量(reference crop evapotranspiration,ET0)在资料缺失情况下的准确计算,对ET0简化算法在四川省不同区域的适用性进行科学评价,将四川省划分为4个区域(I东部盆地区、II盆周山地区、III川西南地区和IV川西高原区),采用46个气象站点1954-2013年逐日气象资料,以1998 FAO-56 Penman-Monteith(PM)法的计算结果为标准,对具有代表性的6种简易算法48 Penman(48PM)法、Hargreaves-Samani(HS)法、Pristley-Taylor(PT)法、Irmark-Allen(IA)法、Makkink(MAK)法和Penman-Van Bavel(PVB)法的计算精度进行对比,结果表明:6种方法在四川省不同区域计算精度差异明显,HS法、PT法和PVB法较为精准,48PM法、IA法和MAK法误差较大,其中I区表现最好的为HS法,II、III和IV区表现最好的方法均为PT法;同时,除PT法和PVB法外,其余方法空间变异性较大(HS法在海拔较低的I、II区较为精准,在海拔较高的III和IV区结果远小于PM法,48PM法在四川东南地区的计算误差为11.1%~37.5%,在浅山丘区和高原区计算误差多大于50%)。因此,计算四川省的参考作物蒸散量时,推荐在东部盆地区使用HS法,盆周山地区、川西南地区与川西高原区使用PT法。 相似文献
2.
黄土高原地区近50年参考作物蒸散量变化特征 总被引:16,自引:4,他引:16
为了探求黄土高原地区深层土壤干燥化过程及成因和该地区植被耗水的变化情况,该文根据黄土高原5站点近50 a的日气象资料,利用Penman-Monteith公式计算了同参考作物蒸散量,并分析了Eto的日均值、月均值和年值的变化特征,同时分析了平均温度、最高温度、最低温度、日照时数、风速和相对湿度与Eto的相关性.结果表明:黄土高原地区Eto日值和月均值与大气温度、日照时数均达到了极显著的相关性,其Eto日值和层Eto月均值曲线均呈单峰型,存在明显的季节变化特征,峰值均出现在6月.除了西安和西宁Eto年值显著降低外,其他3站点的年际间变化趋势不显著,同时除西宁站外其他各站点在20世纪80年代后Eto均有上升的趋势. 相似文献
3.
4.
气象要素时间分辨率对参考作物蒸散估算的影响 总被引:2,自引:1,他引:2
参考作物蒸散(reference evapotranspiration,ET0)的准确估算是农业水资源合理利用的重要环节。为了明确气象要素不同时间分辨率对参考作物蒸散估算的影响,该文基于寿县国家气候观象台2007-2013年观测资料,将1min时间分辨率数据平均值作为真实值,分析了10、20、30、40、60 min、4次/d(02:00、08:00、14:00、20:00)和3次/d(08:00、14:00、20:00)这7种不同时间分辨率对逐日气温、风速、太阳辐射、相对湿度和日、月及年参考作物蒸散(ET0)估算的误差情况。结果表明:ET0和气象要素的误差整体上随时间分辨率降低而增大。4个气象因子中,日平均风速估算受时间分辨率变化的影响最显著,误差最大;其次是太阳辐射。逐日ET0估算在7种时间分辨率的平均绝对相对误差(mean absolute relative error,MAPE)依次为0.53%、1.01%、1.38%、1.72%、2.46%、4.72%和6.14%,表明10至60min时间分辨率的估算效果相较3次/d和4次/d有明显改善。10至40 min的绝对误差超过95%都在-0.20~0.20 mm/d区间内,误差较小且集中度高;太阳辐射时间分辨率变化对ET0估算误差贡献最大,其次是风速,这主要是由于两个要素本身对分辨率较敏感且分别是ET0辐射项和动力项的主要组成因子。时间分辨率的变化对累计后长时间尺度ET0的影响较小,月和年ET0的误差明显小于逐日ET0,月ET0在7种时间分辨率的MAPE值依次为0.13%、0.21%、0.27%、0.40%、0.50%、1.18%和1.48%;各年ET0相对误差(relative error,PE)的绝对值多数均小于0.50%。 相似文献
5.
西北地区小型蒸发皿资料估算参考作物蒸散 总被引:1,自引:3,他引:1
参考作物蒸散是水文循环的重要参量,它的准确估算对于农业水资源的合理规划和利用尤为关键。本文利用西北干旱半干旱地区123个气象台站1971-2000年的逐日气象观测资料,以FAO推荐的Penman-Monteith公式确定的参考作物蒸散为标准,建立了基于相对湿度与10m高度处风速的由20cm小型蒸发皿换算参考作物蒸散的Kp模型。结果表明:西北地区参考作物蒸散ETref与蒸发皿蒸发Epan的相关系数达到0.967,两者之间存在明显的线性相关关系。与单站模型和全区模型相比,分区域Kp模型的精度介于两者之间,同时具有一定的推广价值,建议使用。 相似文献
6.
参考作物蒸散量的计算公式大多存在地域性限制,分析其应用情况能够反映这些公式在中国部分地区的应用前景.该文根据1996~2000年陕西省榆林、延安与西安三站的逐日气象资料,以FAO推荐的Penman-Monteith方法为标准, 对计算参考作物蒸散量的10种方法进行比较.线性回归,平方根误差与平均偏差方法检验的结果显示:Penman系列方法之间关系密切,Kimberly PM-72方法最好.不同方法之间在夏季的差异较大,春秋季较小.在需要数据较少的方法中Privstley-Taylor方法接近penman-Monteith方法.FAO-Rad、FAO-BC、Hargreaves与Makkink4种方法与其差异明显,而且存在地域差异.在本区应用这些方法时需要对其参数进行适当调整,以适应当地的气象条件. 相似文献
7.
8.
在农田蒸散量日变化规律的基础上,导出了一个由瞬时遥感蒸散量估算农田蒸散日总量的计算模式。并用吴忠春小麦和民勤棉花的田间试验资料对导出的公式进行了验证。结果表明,利用真太阳时9:00~15:00之间一日一次的瞬时遥感蒸散量由该模式可以较地的估算农田蒸散日总 量。 相似文献
9.
为实现气象资料缺乏情况下参考作物蒸散量(reference crop evapotranspiration, ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56 Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extreme learning machine, ELM)的ET0预测模型。选取川中丘陵区7个气象站点1963-2012年逐日气象资料进行模型训练与测试,并将模拟结果同Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等4种常用模型进行对比。结果表明:ELM模型能很好地反映气象因子同ET0间复杂的非线性关系,且模拟精度较高;基于最高和最低温度的ELM模型模拟精度(均方根误差和模型效率系数分别为0.504 mm/d和0.827)高于Hargreaves模型(均方根误差和模型有效系数分别为0.692 mm/d和0.741);基于最高、最低温度和辐射的ELM模型模拟精度(均方根误差和模型有效系数分别为0.291 mm/d和0.938)明显高于Priestley-Taylor(均方根误差和模型有效系数分别为0.467 mm/d和0.823)、Makkink(均方根误差和模型有效系数分别为0.540 mm/d和0.800)和Irmark-Allen模型(均方根误差和模型有效系数分别为0.880 mm/d和0.623)。因此基于最高、最低温度和辐射的ELM模型可以作为气象资料缺乏情况下川中丘陵区ET0计算的推荐模型。该研究可为川中丘陵区气象资料缺乏情境下ET0精确计算提供科学依据。 相似文献
10.
改进Hargreaves模型估算川中丘陵区参考作物蒸散量 总被引:3,自引:2,他引:3
为提高Hargreaves-Samani(HS)模型参考作物蒸散量(ET0)计算精度,该文基于贝叶斯原理利用川中丘陵区1954-2002年逐日资料对其温度指数、温度系数和温度常数进行改进,并使用2003-2013年资料以Penman-Monteith(PM)模型为标准评价HS改进模型计算精度与适应性。结果表明:HS改进模型参数在川中丘陵区各区均小于联合国粮农组织推荐值,并呈现出随纬度上升而增大的趋势;与PM模型计算结果相比,HS改进模型计算的ET0相对误差在川中丘陵区北部从14.2%~60.9%降至-1.1%~33.4%、中部从40.6%~92.6%降至16.9%~61.1%、南部从31.3%~96.0%降至8.5%~64.4%、整个川中丘陵区从32.1%~82.7%降至9.5%~52.6%;相关性分析表明,HS改进模型和PM模型计算的ET0回归曲线的斜率更接近于1(北部1.16、中部1.02、南部0.99、全区1.13),决定系数均达到0.85(P0.01)以上;趋势分析表明,HS改进模型和PM模型计算的ET0变化一致,年内均呈开口向下的抛物线状,年际均呈微小上升趋势。因此,基于贝叶斯原理改进的HS模型在川中丘陵区不同区域变异性较小,适应性较强,具有较高的计算精度,可作为川中丘陵区参考作物蒸散量简化计算的推荐模型。 相似文献
11.
基于反距离权重法的长江流域参考作物蒸散量算法适用性评价 总被引:1,自引:0,他引:1
为实现大区域尺度参考作物蒸散量(reference crop evapotranspiration,ET0)资料缺失情况下的准确计算,该文将长江流域划分为上、中、下游3个子区域,基于反距离权重法的新型空间展布方法得到3个虚拟站点分别代表每个子区域,利用长江流域102个站点1964-2013年近50a的逐日气象数据,根据FAO-56 Penman-Monteith(P-M)法、Hargreaves-Samani(HS)法、Irmark-Allen(I-A)法、Priestley-Taylor(P-T)法、Makkink(M-K)法、Penman-Van Bavel(PVB)法、1948年Penman(48-PM)法分别计算每个站点逐日ET0,并以P-M法为标准,利用Nash-Sutcliffe系数(CD)、逐日相对均方根误差(RMSE)、Kendall一致性系数(K)对其适用性进行评价,结果表明:在3个子区域6种ET0计算方法的日值与P-M法拟合方程确定系数R2均通过了极显著水平检验(α=0.01),长江上游P-T法ET0日值计算精度最高(ET0日值拟合方程斜率为1.030,RMSE=0.341 mm/d,CD=0.886,K=0.829),H-S法、I-A计算精度较低(ET0日值拟合方程斜率分别为1.427、1.308,RMSE=0.909、0.829 mm/d,CD=0.581、0.523,K=0.792、0.742),长江中、下游PVB法计算精度最高,P-T法计算精度次之,H-S法与I-A法计算精度较低;长江上游6种算法ET0月值的计算精度由高到低依次为P-T法、PVB法、M-K法、48-PM法、H-S法、I-A法,与P-M法的平均误差分别为0.27、0.35、0.51、0.48、0.74、0.78 mm/d;长江中、下游6种算法计算精度由高到低为PVB法、P-T法、M-K法、48-PM法、H-S法、I-A法;整个长江流域P-T法、PVB法与P-M法ET0计算结果相对误差均在35%以下,H-S法、I-A法计算精度较低,其相对误差基本高于40%;因此,PVB法与P-T法在整个长江流域的计算精度较高,可作为长江流域ET0简化计算推荐方法。 相似文献
12.
两种Penman-Monteith公式计算草坪草参考腾发量的适用性 总被引:2,自引:0,他引:2
为了揭示ASCE和FAO56两种Penman-Monteith公式在计算小时参考作物腾发量(ET0)时的差异,开展了充分供水草坪草腾发量观测试验。基于自动气象站的小时气象数据和蒸渗仪试验结果,在对比两公式计算结果差异基础上,以实测的日草坪腾发量为标准评价了2种计算公式小时ET0的日累积结果及以日的计算结果。结果表明:2种Penman-Monteith公式计算的小时ET0结果存在一定差异,ET0较高的时段差异也比较大。白天FAO56 Penman-Monteith公式的计算结果低于ASCE Penman-Monteith公式的计算结果,夜晚则正好相反,原因在于Cd取值的差异。与实测日ET0结果相比2种公式小时时段的ET0结果的累积值误差均比较大,ASCE的改进并没有使Penman-Monteith在计算结果上取得实质性的改进,相比之下以日为时段的Penman- Monteith公式(ASCE同FAO56)取得了与实测结果最为一致的效果。进一步根据实测的小时ET0数据以及更长序列的日ET0实测结果,评价FAO56 Penman-Monteith和ASCE Penman-Monteith结果的地区适用性将是今后研究内容之一。 相似文献
13.
为提高Hargreaves-Samani(H-S)模型对参考作物蒸散量(reference crop evapotranspiration,ET0)的计算精度,利用川中丘陵区13个代表站点1954~2013年近60 a逐日数据,依据贝叶斯原理并考虑辐射的影响对H-S模型进行改进,并以Penman-Monteith(P-M)模型为标准,对其在川中丘陵区的适用性进行评价。结果表明:1)H-S改进模型与P-M模型ET0计算结果变化趋势基本一致;2)与H-S模型相比,在3个区域H-S改进模型计算的ET0旬值平均绝对误差分别由0.93、0.95、0.93 mm/d下降到0.15、0.19、0.28 mm/d,且3个区域ET0旬值拟合方程斜率分别由1.45、1.39、1.45变为0.89、0.94、0.90,Kendall一致系数由0.70、0.80、0.82提高到0.88、0.92、0.94,拟合效果与计算精度均明显提高;3)在3~10月的作物主要生长期,3个区域ET0月值平均绝对误差分别由0.89、1.14、1.28 mm/d下降到0.46、0.29、0.21 mm/d,ET0月值回归拟合方程斜率及一致性均明显提高;4)H-S改进模型随海拔升高计算精度有所降低,H-S改进模型全年内计算精度最大可提高47%,尤其在作物主要生长期,精度最大提高了48%。因此,H-S改进模型可显著提高ET0计算精度,在海拔较低的区域尤为明显,可作为川中丘陵区ET0计算的简化推荐模型。 相似文献
14.
湛江地区适宜参考作物蒸发蒸腾量计算模型分析 总被引:6,自引:4,他引:6
用湛江市日平均、旬平均、月平均气象资料,以6种方法计算参考作物蒸发蒸腾量,并以FAO56 Penman-Monteith公式计算结果为标准,评价其他方法在湛江的适用性.结果表明:Hargreaves-Samani方法的年平均参考作物蒸发蒸腾量与FAO56 Penman-Monteith没有显著差异;月平均参考作物蒸发蒸腾量,除个别月份外,其他5种方法与FAO56 Penman-Monteith方法都有显著差异;不同方法计算结果与FAO56 Penman-Monteith法的均方偏差不同的时间尺度表现不同,日值计算,1948 Penman方法最小,Irmark-Allen次之;旬值计算,1948 Penman方法最小,Hargreaves-Samani、Irmark-Allen次之;月值计算Hargreaves-Samani最小,1948 Penman次之.1948 Penman、FAO24 Penman与FAO56 Penman-Monteith法的相关系数较大,Priestley-Taylor、Irmark-Allen次之,Hargreaves-Samani法的较小. 相似文献
15.
为进一步检验水蚀预报模型WEPP在黄土高原的适用性,并提供必要的数据准备,根据安塞水土保持综合试验站1986—2003年的日序列的降雨量、最高温度、最低温度和平均风速的实测值及全美范围内选择参照站得到的其他气象因子,对随机气候生成器在黄土高原的适用性进行了检验。结果表明:随机气候生成器能够较好地模拟单个气象因子,并未考虑各个气象因子之间的相互关系;同时,能准确地模拟年降水及其月分布,日最高温度、日最低温度的月分布,而风速模拟值的月均值、标准差普遍高于实测值的月均值、标准差。为此,选择参考站点时应综合考虑各个气象因子。按月计算的降水降水的概率和不降水降水的概率的模拟月均值比实测值偏低。 相似文献
16.
黄土高原不同降雨年型乔、灌木蒸散特征与影响因素 总被引:1,自引:0,他引:1
以黄土高原地区17个乔木和15个灌木测定点生长季观测数据为基础,结合气象资料,综合分析了降水量、土壤前期储水量、潜在蒸散量与乔、灌木实际蒸散量的关系,研究了不同降雨年型乔、灌木生长季实际蒸散的差异及其影响因素。结果表明,无论是丰水年还是干旱年,乔木生长季实际蒸散量均高于灌木。不同降雨年型影响乔灌木实际蒸散的主要因素不同,丰水年影响乔灌木生长季实际蒸散的主要因素为降水,其次为潜在蒸散量而干旱年影响乔灌木生长季实际蒸散的主要因素为前期土壤储水量,其次为降水因素。 相似文献
17.
参考作物蒸发蒸腾量(ET0)的计算公式很多,各公式所需参数各异,为寻找一种所需资料少而又精度较高的替代方法,选用1998年FAO-56分册推荐的Penman-Monteith(PM)、Hargreaves、Irmark-Allen等6种方法分别计算海河流域10个典型气象站30 a的参考作物蒸发蒸腾量,并以PM公式为标准,对其他方法进行评价。结果表明,10个站点中除了五台山地区,Hargreaves与FAO-24 Radiation 这2种方法更接近于PM方法的计算结果,其误差较小,在海河流域缺少辐射和风速 相似文献
18.
黄土高原径流林业技术研究 总被引:7,自引:0,他引:7
以降水资源环境容量为基础控制林分密度,试验了不同集水技术对林地土壤水环境的改善作用,对林木生长的影响及集水技术的适用性.10年试验研究和大面积示范结果表明,在年降水量410mm左右地区造林,林地坡面经过不同的防渗处理,当每株树具有8m~2的集水面时,可使2m~2的植树带内收集到570~1270mm降水,造林成活率最高达到98%,林木生长量可提高40%~80%. 相似文献