首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Forty crossbred beef steers (243 +/- 2 kg of BW) with ruminal and abomasal infusion catheters were used to test 2 hypotheses: 1) visceral mass is responsive to energy input and site of carbohydrate (CHO) infusion and 2) rate and site of adipose accretion are dependent on site of CHO infusion and complexity. Treatments included a pelleted, forage-based, basal diet fed at 161 (LI) or 214 (HI) kcal of ME/(kg of BW(0.75) x d), LI plus ruminal (R-SH) or abomasal (A-SH) infusion of a partial starch hydrolysate (SH), and LI plus abomasal infusion of glucose (A-G). The basal diet was fed in 12 equal portions daily at 2-h intervals, with starch and glucose infused over a 22-h period at rates of 12.6 and 14.4 g/(kg of BW(0.75) x d). After 35 d of infusion, steers were slaughtered; and visceral organ and adipose mass, subcutaneous adipose thickness over the 5th and 12th rib, and LM intramuscular fat concentration were determined. Total intake energy (IE) increased (P = 0.0001) with ME intake. Dietary IE was similar between LI and CHO treatments, but total IE increased (P < 0.001) with CHO infusion. Greater dietary ME intake and CHO infusion increased or tended (P < or = 0.09) to increase final BW and HCW. As a percentage of empty BW, total stomach complex, rumen, omasum, liver, pancreas, and kidney weights were greater (P < or = 0.05) for HI vs. LI. Stomach complex, rumen, pancreas, and kidney weights as a percentage of empty BW were greater (P < or = 0.05) for R-SH vs. A-SH. Compared with ASH, A-G increased (P < or = 0.02) total and mucosal weights from the 10-cm sections of the ileum. Increases in rumen mass were associated with no change or an increase in rumen total and mucosal DNA concentrations. Greater dietary ME tended (P = 0.06) to increase subcutaneous fat thickness at the 5th rib but did not affect alimentary adipose accretion on an empty BW basis. Omental and total alimentary adipose weights were increased (P < or = 0.04) by A-G compared with A-SH. Although SH infusion did not alter adiposity, there was a consistent numerical pattern in total alimentary and subcutaneous fat depots with CHO infusion (A-G > ASH > R-SH). Our findings demonstrate that increasing ruminal CHO supply results in a disproportionate increase in rumen mass, whereas increasing small intestinal CHO supply does not alter gastrointestinal organ mass. Small intestinal energy in the form of glucose resulted in greater adipose accretion, particularly the omental depot.  相似文献   

2.
Twelve crossbred steers (351 +/- 24 kg initial BW) were used to determine effects of high-Se wheat on visceral tissue mass, intestinal cell growth, and intestinal cellularity and vascularity. Steers were allotted randomly by BW to one of two treatments consisting of 75% concentrate diets that supplied 1) adequate Se concentration (7 to 12 microg x kg x BW(-1) x d(-1)) or 2) high-Se concentration (60 to 70 microg x kg x BW(-1) x d(-1)). Diets were similar in composition, including 25% grass hay, 25% wheat, 39% corn, 5% desugared molasses, and 6% wheat middlings supplement on a DM basis. In the Se treatment, high-Se wheat (10 ppm Se, DM basis) was replaced with low-Se wheat (0.35 ppm Se, DM basis). Diets were formulated to be similar in CP and energy (14.0% CP, 2.12 Mcal of NEm/kg, and 1.26 Mcal NEg/kg of DM) and were offered daily (1500) to individual steers in an electronic feeding system. Diets were fed at 2.38% BW. After 126 d, steers were slaughtered, and individual visceral tissue weights determined. Concentrations of DNA, RNA, and protein of duodenum, ileum, and total small intestine were not affected (P > or = 0.33) by treatment. Similarly, RNA:DNA and protein:DNA ratios in duodenum, jejunum, ileum, and whole small intestine were not (P > or = 0.33) affected by feeding high-Se wheat. Conversely, jejunal weight was greater (P < 0.002) in steers fed high-Se wheat than in controls (916 vs. 1,427 +/- 84 g). Jejunal DNA was increased (P < 0.04) in steers fed high-Se wheat (2.95 vs. 3.56 +/- 0.19 mg/g), suggesting increased cell number. Concentrations of jejunal RNA and protein were not altered by treatment; however, because the jejunal weight increased in high-Se steers, DNA, RNA, and protein contents (grams) were greater than in control steers (P < 0.05). Vascularity of jejunal tissue decreased (P < 0.10) with high-Se wheat; however, because jejunal mass was greater for the high-Se wheat treatment, total microvascular volume was not affected by treatment. Percentage of jejunal crypt cell proliferation was not affected (P = 0.48) by treatment; however, total number of cells proliferating within the jejunum was increased in steers fed high-Se wheat. Data indicate that the lower jejunal vascularity in the diet high in Se (provided from wheat) may have resulted in increased jejunal mass to meet physiological nutrient demand. Therefore, negative effects of Se level used in this study on productive performance of feedlot steers are not expected.  相似文献   

3.
Thirty‐six Angus and Angus × Simmental cross steers (initial BW 269.5 ± 22.3 kg) were used to determine the effects of dietary boron (B) on performance and immune function. Steers were fed on one of the three dietary treatments: (i) control (no supplemental B; 7.2 mg B/kg DM), (ii) 5 mg supplemental B/kg DM and (iii) 50 mg supplemental B/kg DM, from sodium borate for 78 days. Supplementation of dietary B had no effect on body weight (BW) gain, feed intake or gain:feed during the study. Jugular blood samples were collected prior to feeding on days 28, 63 and 77 for plasma‐B analysis. Supplementation of dietary B increased (p < 0.001) plasma B‐concentration in a dose‐responsive manner. Furthermore, plasma B‐concentration was correlated (p < 0.001; R2 = 0. 95) to daily B‐intake (mg B/day). Jugular blood was also collected, from an equal number of steers from each treatment, on day 42 or 44 for determination of in vitro production of interferon‐γ and tumour necrosis factor‐α from isolated monocytes and assessment of lymphocyte proliferation. Dietary B did not affect T‐ or B‐lymphocyte proliferation or in vitro cytokine production from monocytes. On day 49 of the study, the humoral immune response was assessed by i.m. injection of a 25% pig red blood cell (PRBC) solution for determination of anti‐PRBC IgG and IgM titre responses. Boron‐supplemented steers had greater (p = 0.035) anti‐PRBC IgG titres than controls on day 7 but not on day 14 or 21 post‐injection. Anti‐PRBC IgM titres did not differ throughout the sampling period. Results from this study indicate that supplemental B had minimal effects on immune function and did not affect performance of growing steers.  相似文献   

4.
The effect of feed intake level (.6, 1.0, and 1.6 x maintenance energy and protein requirements, M) on splanchnic (portal-drained viscera [PDV] plus liver) metabolism was evaluated in six multicatheterized beef steers (398 +/- 27 kg), using a double 3 x 3 Latin square design. On the last day of each 21-d experimental period, six hourly blood samples were collected from arterial, portal, and hepatic vessels. Due to catheter patency, PDV fluxes were measured on five steers, and liver and splanchnic fluxes on four steers. Increasing intake elevated (P < .01) splanchnic release of total (T) amino acids (AA), through increases (P < .01) in PDV release of both essential (E) and nonessential (NE) AA, in spite of a tendency (P < .20) for increased liver removal of NEAA. The PDV release of AA N represented 27 and 51% of digested N for 1.0 and 1.6 x M, respectively. At 1.0 and 1.6 x M, the liver removed 34% of total AA released by the PDV. For individual AA, portal flux of most EAA increased (P < .05) with feed intake, and the increase (P < .10) in splanchnic flux was accompanied by increased arterial concentration for all EAA except histidine, lysine, and methionine. This suggests that these might be limiting AA for this diet. On a net basis, most individual NEAA were released by the PDV except glutamate and glutamine, which were removed by the digestive tract. There was a net removal of NEAA by the liver, except for aspartate and especially glutamate, which were released. Ammonia release by the PDV tended (P < .20) to increase with intake and represented 69, 53, and 45% of digested N at .6, 1.0, and 1.6 x M, respectively. Urea removed by the PDV, unaffected by intake, represented 32, 33, and 21% of the digested N. Arterial glucose concentration increased linearly (P < .01) with greater intake, whereas net liver and splanchnic glucose release increased in a quadratic (P < .05) manner. Net PDV glucose release represented 26% of net glucose hepatic release at 1.6 x M. Intake elevated (P < .10) both insulin and glucagon arterial concentrations, resulting from a larger increment of portal release (P < .01) than hepatic removal (P < .05). Intake-based variations in IGF-I and NEFA arterial concentrations (P < .05) were not related to changes in splanchnic metabolism. These results clearly show the crucial role of the splanchnic tissues in regulating the profile and quantity of AA and concentrations of glucose and pancreatic hormones reaching peripheral tissues.  相似文献   

5.
Crossbred heifers (initially 24 mo, approximate age and 378 +/- 32.1 kg BW) were used to evaluate the influence of pregnancy and advancing gestation on DMI, BW, carcass weight, ruminal characteristics, and visceral organ mass. Heifers (naturally serviced (n = 22; nonpregnant controls, n = 17), were grouped in common pens. Heifers were provided corn silage and hay-based diets formulated to provide 0.45 kg of ADG. Treatments were pregnancy and nonpregnancy; pregnant and nonpregnant heifers were slaughtered on d 40, 120, 200, and 270. Live weight at slaughter and BW change throughout the trial were not influenced by pregnancy (P > 0.1). Carcass weight per unit of BW was decreased due to pregnancy (P < 0.05) and an interaction was found in eviscerated BW (EvBW; P < 0.1), with the pregnant heifers having greater live weights, carcass weights, and EvBW at the d-200 slaughter period. Ruminal fluid fill and total fill (g/kg BW) declined as slaughter period advanced, resulting in the pregnant heifers having less fill at d 270 (P< 0.07). However, ME intake was not different between pregnant and nonpregnant heifers (P > 0.1) at any of the slaughter periods. Heart mass responded differently when nonpregnant and pregnant were analyzed over time and an interaction was detected as slaughter period advanced (P < 0.1). Liver, duodenum, jejunum, and large intestinal mass were not responsive to pregnancy (P > 0.1). Data indicate that ruminal fill is altered by pregnancy but visceral organ mass is not greatly changed by treatment.  相似文献   

6.
Two experiments were conducted to evaluate the effects of slow-release urea (SRU) versus feed-grade urea on portal-drained visceral (PDV) nutrient flux, nutrient digestibility, and total N balance in beef steers. Multi-catheterized steers were used to determine effects of intraruminal dosing (Exp. 1; n = 4; 319 +/- 5 kg of BW) or feeding (Exp. 2; n = 10; 4 Holstein steers 236 +/- 43 kg of BW and 6 Angus steers 367 +/- 46 kg of BW) SRU or urea on PDV nutrient flux and blood variables for 10 h after dosing. Intraruminal dosing of SRU (Exp. 1) prevented the rapid increase in ruminal ammonia concentrations that occurred with urea dosing (treatment x time P = 0.001). Although apparent total tract digestibilities of DM, OM, NDF, and ADF were not affected by treatment (P > 0.53, Exp. 2), SRU increased fecal N excretion (49.6 vs. 45.6 g/d; P = 0.04) and reduced apparent total tract N digestibility (61.7 vs. 66.0%; P = 0.003). Transfer of urea from the blood to the gastrointestinal tract occurred for both treatments in Exp. 1 and 2 at all time points with the exception for 0.5 h after dosing of urea in Exp. 1, when urea was actually transferred from the gastrointestinal tract to the blood. In both Exp. 1 and 2, both urea and SRU treatments increased arterial urea concentrations from 0.5 to 6 h after feeding, but arterial urea concentrations were consistently less with SRU (treatment x time P < 0.001, Exp. 1; P = 0.007, Exp. 2). Net portal ammonia release remained relatively consistent across the entire sampling period with SRU treatment, whereas urea treatment increased portal ammonia release in Exp. 1 and tended to have a similar effect in Exp. 2 (treatment x time P = 0.003 and P = 0.11, respectively). Urea treatment also increased hepatic ammonia uptake within 0.5 h (treatment x time P = 0.02, Exp. 1); however, increased total splanchnic release of ammonia for the 2 h after urea treatment dosing suggests that PDV ammonia flux may have exceeded hepatic capacity for removal. Slow-release urea reduces the rapidity of ammonia-N release and may reduce shifts in N metabolism associated with disposal of ammonia. However, SRU increased fecal N excretion and increased urea transfer to the gastrointestinal tract, possibly by reduced SRU hydrolysis or effects on digestion patterns. Despite this, the ability of SRU to protect against the negative effects of urea feeding may be efficacious in some feeding applications.  相似文献   

7.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

8.
A digestion and ruminal fermentation trial involving five ruminally cannulated steers assigned to a 5 x 5 Latin square with a 2 x 2 + 1 arrangement of dietary treatments was conducted to evaluate the effects of variety of rapeseed silage (RS) containing either a high (HG) or a low (LG) glucosinolate concentration when fed at 100 or 50% of diet DM. A bromegrass hay-corn-soybean meal mixture, which was expected to be isocaloric and isonitrogenous with the RS, was used as the control (C) treatment and replaced RS in the 50% diets. In situ disappearance of substrate from both RS varieties was measured in ruminal environments created by each diet. No dietary treatment x RS substrate interactions were observed for any in situ variable. Total tract digestibility and extent of in situ disappearance of both DM and NDF were greater (P less than .01) for HG than for LG. In situ DM and NDF disappearance at 8, 16 and 24 h was greater (P less than .01) for RS than for the C diet. Similarly, total tract DM digestibility was greater (P less than .01) for RS (61.0%) vs C (56.0%) diets. Diets with 50% RS had greater (P less than .01) NDF digestibility (50.4%) than 100% RS (43.6%) diets. Variety of RS had no effect on particulate passage rate. In a 77-d growth trial with 60 beef steers, ADG was greater (P less than .01) for HG vs LG (.46 vs .36 kg), 50 vs 100% (.52 vs .31) and C vs RS (.64 vs .41) diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The urinary excretion of N tau-methylhistidine (N tau-MH) was studied quantitatively in growing Hereford steers to measure muscle protein degradation (MPD) at different stages of growth. The amount of MPD and the fractional rate of protein breakdown (FBR) on 28, 42, 56 and 63 d of the experiment were calculated from the 24-h urinary N tau-MH excretion. The steers grew rapidly during the initial phase of the study; the growth rate was higher on d 56 (P less than .01) than on d 42 of the study. On d 63, there was a reduction in the growth rate compared with d 56 (P less than .05). Daily urinary N tau-MH excretion increased gradually as the animals gained weight and on an average, it was 1,957 +/- 88 mumol/d during the entire experimental period. Urinary creatinine excretion was not different at different growth stages, but the urinary N tau-MH: creatinine ratio was higher (P less than .05) on d 56 than on the other days. The amount of MPD per day increased gradually as the animals gained weight and was higher on d 56 than on d 42. Mean MPD and FBR values during the entire experimental period were 557 +/- 25 g/d and 2.44 +/- .09%/d, respectively. Half-life of the myofibrillar proteins decreased as the steers gained weight. These results indicate that the rapid growth in steers is accompanied by a high rate of MPD and demonstrate the usefulness of urinary N tau-MH excretion as a rapid, nondestructive method for measuring muscle protein degradation in large animals.  相似文献   

10.
This paper reports the effects of reduced sensitivity to growth hormone-releasing hormone and thyrotropin-releasing hormone through feeding a subtherapeutic level of chlortetracycline (CTC; 350 mg CTC/d) and two levels of dietary CP (10% and 13% of diet DM) on growth performance and carcass merit characteristics. Thirty-two steers (initial average BW, 286 kg) were adapted to a common 13% CP diet consisting primarily of grass hay, corn, and soybean meal fed to gain 1.25 kg/d. The steers were assigned to four treatments (with or without CTC and 10% or 13% dietary CP in a factorial arrangement) and fed ad libitum amounts of diet for 91 d. Feed intake was determined daily and steers were weighed weekly. Steers were killed at the end of the feeding period for carcass merit determinations. Efficiency of BW gain was greater (P < .05) for steers fed the 13% CP diet than for the 10% CP diet and tended to be less for CTC-steers when the 10% CP diet was fed and greater for the CTC-steers when the 13% CP diet was fed (CTC x dietary CP interaction, P < .10). Feeding CTC increased (P < .01) fat over the longissimus muscle and marbling. This study is interpreted to indicate that the sustained effect of subtherapeutic feeding of CTC to cattle appears to increase fat deposition consistent with a reduced growth hormone and thyroid status reported earlier for these same steers. This would tend to increase energy utilization but may not necessarily produce a measurable increase in BW gain.  相似文献   

11.
Two experiments were conducted to evaluate the effects of dietary CP level on rate, efficiency and composition of gain of growing beef bulls. In Exp. 1, 59 bulls (333 +/- 15.8 kg) were used. Eleven bulls were slaughtered on d 0 to provide an estimate of initial carcass composition (9-10-11 rib section chemical analyses), and remaining bulls were assigned to treatment diets containing 10, 12 or 14% dietary CP. Bulls fed the 10% CP diet grew slower (P less than .05) than bulls fed the 12 or 14% CP diets, although dry matter intake and feed-to-gain ratio did not differ. Bulls fed the 12% CP diet had fatter carcasses (P less than .05) than bulls fed the 10 or 14% CP diets and had greater daily fat accretion than bulls fed the 10% CP diet. In Exp. 2, 60 bulls (318 +/- 9.0 kg) were used. Bulls were assigned to initial slaughter (n = 6) or to one of three dietary treatments, 10, 12 or 14% CP, and were slaughtered after feeding for 66, 136 or 202 d (n = 6 . treatment -1 . slaughter time -1). Bulls fed 10% CP diets had lower (P less than .05) rates of carcass protein accretion during d 0 to 136 and d 0 to 202. Carcass fat gain was similar among treatments over the entire experiment, although bulls fed the 14% CP diet gained more fat during d 0 to 136 than bulls fed the other treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Effects of dietary concentrate level and varying the level of concentrate diurnally on site of digestion and passage rate with high concentrate diets were determined with four mature beef steers. Increasing concentrate level from 65 to 80 and 95% decreased ruminal, duodenal and fecal pH, ruminal dilution rates for fluids and particulates and tended to reduce digestion of acid detergent fiber, especially post-ruminally. Ruminal escape of dietary protein tended to increase with concentrate level although microbial efficiency tended to decrease. Compared with an 80% concentrate diet, feeding 95% concentrate in the morning and 65% concentrate in the evening tended to increase ruminal digestion of acid detergent fiber and starch.  相似文献   

13.
Four experiments were conducted to evaluate three crude protein (CP) sources (urea, U; soybean meal, SBM; corn gluten meal, CGM) in diets based on corn silage (high energy) or grass hay (low energy). In Exp. 1 and 2, growing steers were fed all combinations of energy and protein source at 10.5 or 12% CP. Steers fed high energy diets or 12% CP had improved (P less than .05) daily gains and feed:gain over 84 d. Protein source had no effect (P greater than .05) on performance except that steers fed U consumed more (P less than .05) feed than those fed CGM. Steers were fed experimental diets to a common weight and switched to an 85% concentrate diet for finishing. During finishing, steers fed low energy diets in the growing period consumed more (P less than .05) feed and had increased (P less than .05) feed:gain compared with those fed high energy diets. Growing lambs were fed the same diets as steers. At 10.5% CP, lambs fed high energy diets had higher (P less than .05) digestibilities of dry matter (DM), organic matter (OM), nitrogen (N) and fiber components, and retained more (P less than .05) N. For lambs on 12% CP, high energy diets had higher (P less than .05) DM and OM digestibilities and lower (P less than .05) N digestibilities. At 12% CP, energy level had no effect (P greater than .05) on N retained. Protein source had no effect (P greater than .05) on N retention. There appeared to be no advantage in supplementing with ruminally undegradable proteins, i.e. CGM, in these experiments.  相似文献   

14.
Thirty-six crossbred steers (288 +/- 3.7 kg initial BW) were used to determine the effect of Cr, as chromium-L-methionine, on glucose tolerance and insulin sensitivity in beef calves. Calves were fed a control diet or the diet supplemented with 400 or 800 microg Cr/kg of diet as chromium-L-methionine. Calves were kept in drylots (six calves/pen; two pens/dietary treatment). Steers were caught twice a day in locking headgates and individually fed their respective diets for a period of 22, 23, or 24 d prior to the metabolic challenges. Calves received a totally mixed diet containing 54% corn, 38% cottonseed hulls, and 5% soybean meal. On d 21, 22, and 23, four calves/dietary treatment were fitted with an indwelling jugular catheter. Approximately 24 h after catheterization, an intravenous glucose tolerance test (500 mg glucose/kg of BW), followed 5 h later by an intravenous insulin challenge test (0.1 IU insulin/kg of BW), was conducted. There was no effect (P > 0.10) of dietary treatment on ADG or ADFI. During the intravenous glucose tolerance test, serum insulin concentrations were increased by supplemental chromium-L-methionine (linear effect of Cr, P < 0.05). There was a time x treatment interaction (P < 0.05) on plasma glucose concentrations after the glucose infusion. Plasma glucose concentrations of calves fed 400 microg Cr/kg of diet were lower than those of controls and calves supplemented with 800 microg Cr/kg of diet (quadratic effect of Cr, P < 0.05) 5 and 10 min after the glucose infusion. Supplemental chromium-L-methionine increased the glucose clearance rate from 5 to 10 min after the insulin challenge test (linear effect of Cr, P < 0.05). Glucose half-life from 5 to 10 min after the insulin infusion was also decreased by supplemental chromium-L-methionine (linear effect of Cr, P < 0.10). These data indicate that supplemental Cr, as chromium-L-methionine, increased glucose clearance rate after an insulin infusion and increased the insulin response to an intravenous glucose challenge in growing calves with functioning rumens.  相似文献   

15.
The objective of this study was to determine the effect of a subtherapeutic level of chlortetracycline (CTC) fed to growing beef steers under conditions of limited and adequate dietary protein on plasma concentrations of GH, thyroid-stimulating hormone (TSH), and thyroid hormones before and after an injection of thyrotropin-releasing hormone (TRH) + GHRH. Young beef steers (n = 32; average BW = 285 kg) were assigned to a 2x2 factorial arrangement of treatments of either a 10 or 13% crude protein diet (70% concentrate, 15% wheat straw, and 15% cottonseed hulls) and either a corn meal carrier or carrier + 350 mg of CTC daily top dressed on the diet. Steers were fed ad libitum amounts of diet for 56 d, and a jugular catheter was then placed in each steer in four groups (two steers from each treatment combination per group) during four consecutive days (one group per day). Each steer was injected via the jugular catheter with 1.0 microg/kg BW TRH + .1 microg/kg BW GHRH in 10 mL of saline at 0800. Blood samples were collected at -30, -15, 0, 5, 10, 15, 20, 30, 45, 60, 120, 240, and 360 min after releasing hormone injection. Plasma samples were analyzed for GH, TSH, thyroxine (T4), and triiodothyronine (T3). After 84 d on trial, the steers were slaughtered and the pituitary and samples of liver were collected and analyzed for 5'-deiodinase activity. Feeding CTC attenuated the GH response to releasing hormone challenge by 26% for both area under the response curve (P<.03) and peak response (P<.10). Likewise, CTC attenuated the TSH response to releasing hormone challenge for area under the response curve by 16% (P<.10) and peak response by 33% (P<.02), and attenuated the T4 response for area under the curve by 12% (P<.08) and peak response by 14% (P<.04). Type II deiodinase activity in the pituitary was 36% less (P<.02) in CTC-fed steers than in steers not fed CTC. The results of this study are interpreted to suggest that feeding subtherapeutic levels of CTC to young growing beef cattle attenuates the release of GH and TSH in response to pituitary releasing hormones, suggesting a mechanism by which CTC may influence tissue deposition in cattle.  相似文献   

16.
The effect of level of intake of a high concentrate diet (0.6, 1.0 and 1.6 x maintenance requirements, M) on whole body somatotropin (St) kinetics was evaluated in six growing, multicatheterized beef steers (398+/-27 kg), using a double 3x3 Latin Square design with 21 d-periods. Simultaneously to St kinetics, net hepatic removal of St was measured in 4 of the 6 steers. On the last day of each period, concentrations and net fluxes of St were determined, first in basal conditions for 5 hr, and then, during a primed (0.5 mg of St) infusion of bovine St (1.5 mg/hr) administered for 3 hr. The following results are LSM +/- SEM for 0.6, 1.0, and 1.6 x M, respectively. Increasing feed intake linearly decreased (P<0.01) basal St concentrations (5.6, 4.6, 3.1+/-0.62 ng/ml), mainly through a linear increment (P<0.01) in the metabolic clearance rate (32.7, 37.1, 43.4+/-2.60 l/hr), although secretion rate also tended to decrease (P = 0.09; 189, 185, 135+/-27.2 microg/hr). During the infusion period, net liver removal of immunoreactive ST averaged 60% of the total inflow of St. This confirms the liver is capable of removing large amounts of St, suggesting it has an important role in metabolic clearance of the hormone. Net liver removal of St, however, was not affected by intake. There was a strong correlation between the metabolic clearance rate of St with either whole body protein synthesis (r = 0.75, P<0.01) or protein retention (r = 0.68, P<0.01). Together these results indicate the importance of postsecretory metabolism of St in determining both arterial plasma concentrations of St and whole body protein anabolism.  相似文献   

17.
Sixty steer calves of mixed British breeding averaging 268 kg were randomly assigned to four treatment groups of 15 calves each to determine the influence of pre-fast dietary roughage content on recovery from feed and water deprivation. Three groups were fed diets containing either 84 (HR), 60 (MR) or 35% (LR) roughage at 1.75% of body weight for 3 d. Calves in these three groups were deprived of feed and water for 24 h, limit-refed and watered for 24 h, and deprived of feed and water for 48 h (deprivation). Calves were then fed the MR diet ad libitum for 2 wk. The fourth group of control steers was continuously fed the MR diet throughout the experiment. Realimentation weight gains and feed intakes were not affected by pre-fast diet roughage content. Blood packed cell volume increased (P less than .05) during deprivation. Blood potassium was not affected by deprivation but declined (P less than .05) upon refeeding. Plasma urea-N increased (P less than .05) during deprivation but returned to pre-fast concentrations by d 3 of realimentation. Ruminal volume was not significantly affected by deprivation but increased (P less than .05) by 50 to 100% upon refeeding. Ruminal fluid total volatile fatty acid (VFA) concentrations declined (P less than .05) during deprivation. On d 3 of realimentation, a linear contrast (P less than .05) was observed between total VFA concentrations and the pre-fast diet roughage content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Twenty-four Angus x Hereford crossbred steers (247 kg BW; SE = 2.4 kg) were used in a completely random design to evaluate the effect of energy source and level with or without antibiotic administration on measures of immune function. Steers were fed 1 of 3 dietary treatments: a 70% concentrate diet ad libitum (70AL), a 30% concentrate diet ad libitum (30AL), and a 70% concentrate diet offered in an amount calculated to provide NE(g) intake equal to the 30AL treatment (70RES). Half the steers in each dietary treatment received a s.c. injection of tilmicosin phosphate (ANTI; 1 mL/30 kg of BW); the other half received an equal volume of saline s.c. (SAL). Steers were offered the treatment diets for 28 d before and were administered the ANTI or SAL injections 2 d before indwelling catheters were placed in the jugular vein and 2.0 microg/kg of BW of Escherichia coli lipopolysaccharide (LPS) was administered i.v. Blood serum was collected at 30-min intervals from -2 to 6 h and at 8, 12, 24, 48, and 72 h relative to the LPS challenge. Increased energy intake (70AL) increased (P < or = 0.04) DMI, ADG, and rectal temperature (RT) after the challenge compared with the 70RES treatment. The 30AL treatment increased the maximum concentrations and area under the response curve of the proinflammatory cytokines (PIC) interferon-gamma, tumor necrosis factor-alpha, and IL-6 (P < or = 0.05) compared with the average of the 70AL and 70RES treatments. Decreased energy intake (70RES vs. 70AL) increased IL-6 (P < or = 0.003) but did not significantly increase interferon-gamma and tumor necrosis factor-alpha (P > or = 0.14) after LPS administration. Tilmicosin administration decreased the time to attain maximal RT (P = 0.01) by 1 h without altering the peak RT (P = 0.85), and tilmicosin interacted with energy intake to increase prechallenge PIC in 70RES vs. 70AL (P < or = 0.05). Results indicate that increased PIC response, presumably resulting from a combination of decreased energy intake and from direct effects of roughage, may be a mode of action for the slight decrease in morbidity that often occurs when newly received, stressed calves are fed roughage-based receiving diets. Tilmicosin phosphate might have immunomodulatory capacity beyond its direct effects on pathogenic bacteria, and these effects could interact with dietary energy intake in cattle.  相似文献   

20.
Peanut skins were fed at 15% of steer diets in metabolism and feedlot trials. Elevation of dietary protein using soybean meal or soybean meal plus urea and ammoniation of skins were evaluated as methods of overcoming detrimental performance and digestibility effects of tannins in peanut skins. Digestibility of dry matter, crude protein and energy were not different (P greater than .05) for steers fed a control diet with 11.4% crude protein with no skins compared with high-protein 15% peanut skin diets with soybean meal (15.5% crude protein) or soybean meal plus urea (16% crude protein). Dry matter, crude protein and energy digestibilities of control and of high-protein peanut skin diets were higher (P less than .05) compared with an 11.4% crude protein peanut skin diet and a 12.2% crude protein diet with ammoniated peanut skins. Ether extract digestibility was higher (P less than .05) for all peanut skin diets compared with the control. Nitrogen retention (g/d) was not different (P greater than .05) for control and high-protein peanut skin diets, and nitrogen retention on these diets was higher (P less than .05) compared with the lower protein and ammoniated peanut skin diets. Diets fed in the metabolism trial, except for the ammoniated peanut skin diet, were fed to 96 steers (345 kg initial wt) in a 109-d feedlot trial. Performance was lower (P less than .05) for steers fed the lower-protein peanut skin diet compared with other treatments through d 56; this diet was discontinued as a treatment on d 62.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号