首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper reports results from the analysis of the soil hydrological response to simulated rainfall in a cork oak forest in Los Alcornocales Natural Park (SW Spain). Four different soil/vegetation units were selected for the field experiments: [1] cork oak woodland, [2] heathland, [3] grassland, and [4] cork oak/olive tree mixed forest. Rainfall simulations tests were performed on circular plots of 1256.6 cm2 at an intensity of 56.5 mm h− 1 for 30 min.Marked differences in the hydrological behavior of the studied vegetation types were observed after the rainfall simulations. The soils under woodland showed low runoff rates and coefficients. The highest runoff rates were measured on the heath and grass-covered parts of the hillslope. Water repellency of the soil, measured from water drop penetration tests, reduced infiltration (especially under the heathland), and seems to be the cause of fast ponding and runoff generation during the first stages of rainstorms.The mosaic of different patterns of hydrological response to rainfall, such as runoff generation or infiltration, is governed by the spatial distribution of vegetation and its influence on the soil surface.  相似文献   

2.
The distribution and variation with soil depth of water repellency has been studied in fire-affected sand dunes under three different vegetation types (pine forest, shrubland and sparse herbaceous vegetation) in SW Spain. The persistence and intensity of water repellency at the exposed surface of soil was measured using the water drop penetration time test and the contact angle method, respectively, in surface samples (0–3 cm) collected at burned and unburned areas. The variation of water repellency with depth in burned areas was studied in soil profiles every 5 cm between 0 and 40 cm depth. None or slight soil water repellency was observed at unburned soil sites, whereas burned soil sites showed a high degree of repellency, especially under pines and shrubland. The spatial pattern of fire-induced soil water repellency was found to be associated to vegetation types, although it was modulated by soil acidity and the soil organic carbon content. Soil water repellency was generally higher at the soil surface, and decreased with depth. Dense pine forests and shrublands showed strong and/or severe water repellency in depth, but it was rare and limited to the first five centimeters under sparse herbaceous vegetation. The heterogeneity of moisture patterns under dense pine forests or shrublands showed the existence of wetting and water repellent three-dimensional soil patches.  相似文献   

3.
再生水灌溉对土壤斥水性的影响   总被引:8,自引:4,他引:4  
深入探求再生水灌溉条件下不同土壤中水分和溶质的分布及斥水性变化规律,能为再生水灌溉条件下土壤斥水性产生原因及其影响因素的研究提供一定的参考。选用砂土、砂姜黑土、塿土和盐碱土进行土柱再生水灌溉试验,取样测定不同灌水量条件下剖面土壤的潜在斥水性、含水率、Cl-、有机质(organicmatter,OM)含量及电导率(electrical conductivity,EC)等。结果表明:再生水灌溉后,塿土及盐碱土分别出现0~2,1~3级斥水性,砂土及砂姜黑土为0级斥水性,4种土表层表现出较强的斥水性。土壤斥水性随再生水灌水量和灌溉时间的增加而显著增强,并且灌水量越大,斥水性差异性越显著。4种土有机质含量OM与土壤斥水持续时间变化值TR呈正相关关系,Cl-含量、EC值与土壤斥水持续时间变化值TR呈负相关关系。相比较其他3种土而言,砂土更适合再生水灌溉。  相似文献   

4.
土壤斥水性影响土壤水分运动研究进展   总被引:4,自引:1,他引:3  
土壤斥水性广泛存在于各类土壤,是影响植物生长、土壤水分运动以及土壤侵蚀等水土过程的重要因素。该文阐述了土壤斥水性的基本概念,介绍了几种常用的斥水性强度测定方法及适用范围。在此基础上,论文对土壤斥水性如何影响土壤水力性质以及水分运动特征等研究现状作了全面评述,重点讨论了近年来该领域的研究热点,如土壤斥水性影响下的指流观测和理论模拟以及斥水性土壤蒸发过程等。最后,提出了相关研究中亟待解决的若干关键科学问题,主要包括确定土壤斥水性影响指流现象和蒸发过程的物理机制的揭示;考虑土壤斥水性参数的土壤水分运动数学模型的构建;以及对新模型的求解及对数值解的理论分析。由于土壤斥水性对土壤水分运动有重要的关联效应,相关问题的深入研究对进一步认识土壤水分运动的内在物理机制具有重要理论意义,也将为掌握和有效利用土壤斥水性提供实践指导。  相似文献   

5.
Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on soil water repellency in calcareous soils of western lran. In this study, soil water repellency and its affecting factors were studied using 20 soil series collected from Hamadan Province~ western Iran. The effects of soil properties including organic carbon content (SOC), total nitrogen (TN), C:N ratio, texture, CaCO3 content, and both fungal and bacterial activities on water repellency were investigated using air-dried, oven-dried and heated soil samples. Water repellency index (WRI) was determined using the short-time sorptivity (water/ethanol) method. To distinguish the actual effects of SOC, a set of soil samples were heated at 300 ~C to remove SOC and then WRI was measured on the heated samples. Relative water repellency index (RWRI) was defined as the change of WRI due to heating relative to the oven-dry WRI value. Results of the WRI values showed that the soils were sub-critically water-repellent. Pasture soils had higher WRI values compared to tilled soils, resulting from high SOC and TN, and high activities of bacteria and fungi. It was observed that SOC, TN, fungal activity, and SOC:clay ratio had significant positive impacts on WRI. Strong positive correlations of RWRI with SOC, TN and fungal activity were also observed. Pedotransfer functions derived for predicting WRI showed that the WRI values had an increasing trend with the increases in fungal activity, salinity, alkalinity and fine clay content, but showed a decreasing trend with increasing bacterial activity.  相似文献   

6.
The heat generated during wildfires often leads to increases in soil water repellency. Above a critical heating threshold, however, its destruction occurs. Although the temperature thresholds for repellency destruction are relatively well established, little is known about the specific changes in the soil organic matter that are responsible for repellency destruction. Here we report on the analysis of initially water repellent surface soil samples (Dystric Cambisol, 0–5 cm depth) by transmission Fourier Transform Infrared (FTIR) spectroscopy analysis before and after destruction of its water repellency by heating to 225 °C in order to investigate heating-induced changes in soil organic matter (SOM) composition. Although assignment of absorption bands is made difficult by overlapping of some bands, it was possible to distinguish bands relevant for hydrophobicity of SOM in the soil before heat treatment. The most significant decrease in absorbance following water repellency destruction took place in the frequency area corresponding to stretching vibrations of aliphatic structures within SOM. The results suggest that besides a general decrease of SOM content during heating, the loss of soil water repellence is primarily caused by the selective degradation of aliphatic structures.  相似文献   

7.
Abstract. The effect of land use on the water retention capacity of Umbric Andosols in south Ecuador was studied. The objective was to acquire a better insight into the hydrological processes of the ecosystem and the role of the soil, in order to assess the impact of changing soil properties due to land use change on the hydrology of the high Andes region. Field data on the water retention capacity at wilting point of Umbric Andosols were collected for both cultivated field conditions and original bush vegetation. The pH in water and in NaF, texture, organic matter content and dry bulk density were measured to show which physicochemical soil characteristics are responsible for the water retention of the Umbric Andosols and for the irreversible loss in water retention due to air drying. Organic matter content appears to be very important and certainly more important than allophane clay content. Water retention of the organic litter layer was calculated to be 16 mm, this would be lost when vegetation was cleared and the land cultivated.  相似文献   

8.
It is established that soil hydrophobicity reduces soil infiltration rates, and enhances runoff flow and soil erosion. Water repellency has been studied with special interest in coniferous and eucalyptus forests, particularly after burning, but the number of studies concerning Mediterranean heathlands is still very low. In this paper, we study the occurrence and persistence of water repellency in soil samples collected under different plant species susceptible to induce soil hydrophobicity (Erica arborea, Erica australis, Calluna vulgaris, Quercus lusitanica and Rhododendron ponticum) in a natural protected area in southern Spain. Great attention has been paid to the relationships between soil water repellency and environmental factors as organic matter content and soil acidity. The largest hydrophobicity was measured in soil samples collected under E. australis, E. arborea and C. vulgaris. For these species, the organic matter content and pH showed positive and negative correlations with the persistence of water repellency, respectively. The hydrophobicity originated by humic substances in the soil seems to be the only explanation for slight soil water repellency under Q. lusitanica or R. ponticum. The patchy patterns of occurrence and persistence of soil water repellency is governed by the spatial distribution of the studied species and modulated by other factors. Soil surface water repellent layers reduce the infiltration rates and limit the water storage capacity. However, the macropore flow can be enhanced on non-repellent layers, cracks or roots such us the wetting's front shown. The vegetation effects on soil hydrology should be considered for afforestation works and flooding control.  相似文献   

9.
A connection between fungal hydrophobins and soil water repellency?   总被引:1,自引:0,他引:1  
  相似文献   

10.
Knowledge of soil water repellency distribution, of factors affecting its occurrence and of its hydrological effects stems primarily from regions with a distinct dry season, whereas comparatively little is known about its occurrence in humid temperate regions such as typified by the UK. To address this research gap, we have examined: (i) water repellency persistence (determined by the water drop penetration time method, WDPT) and degree (determined by the critical surface tension method, CST) for soil samples (0–5, 10–15 and 20–25 cm depth) taken from 41 common soil and land‐use types in the humid temperate climate of the UK; (ii) the supposed relationship of soil moisture, textural composition and organic matter content with sample repellency; and (iii) the bulk wetting behaviour of undisturbed surface core samples (0–5 cm depth) over a period of up to 1 week. Repellency was found in surface samples of all major soil textural types amongst most permanently vegetated sites, whereas tilled sites were virtually unaffected. Repellency levels reached those of the most severely affected areas elsewhere in the world, decreased in persistence and degree with depth and showed no consistent relationship with soil textural characteristics, organic matter or soil moisture contents, except that above a water content of c. 28% by volume, repellency was absent. Wetting rate assessments of 100 cm3 intact soil cores using continuous water contact (–20 mm pressure head) over a period of up to 7 days showed that across the whole sample range and irrespective of texture, severe to extreme repellency persistence consistently reduced the maximum water content at any given time to well below that of wettable soils. For slightly to moderately repellent soils the results were more variable and thus hydrological effects of such repellency levels are more difficult to predict. The results imply that: (i) repellency is common for many land‐use types with permanent vegetation cover in humid temperate climates irrespective of soil texture; (ii) supposedly influential parameters (texture, organic matter, specific water content) are poor general predictors of water repellency, whereas land use and the moisture content below which repellency can occur seem more reliable; and (iii) infiltration and water storage capacity of very repellent soils are considerably less than for comparable wettable soils.  相似文献   

11.
The aim of this study is to improve our knowledge of the temporal and spatial variations of soil water repellency following wildfire, in particular for the eucalypt stands that now dominate the landscape of north-central Portugal.  相似文献   

12.
Prediction of soil changes that occurs as a result of agronomic management practices is very useful, particularly when restoration of degraded soils wants to be implemented. The aim of this work was to study the short-term effect (4 years) of different agricultural practices on biochemical and microbial indicators related to soil organic matter (SOM) and to validate the sensibility of a set of biological indicators expressing C dynamic in a representative Mexican volcanic soil. Four soil management systems (2002–2005): traditional (Tt), improved (Ti), organic (To), and fallow (Tf) were assayed in experimental plots (Acrisol) located at the Mexican Trans-volcanic Belt. An uncultivated soil under grass cover (Sg) was used as reference. The Acrisol came from weathered volcanic materials and had severe problems of erosion. Soil samples (0–10 cm depth) were analyzed for soil organic C (SOC), total N (Nt), water-soluble C (WSC), and humic C (Hm-C); and for microbial biomass (MB), soil respiration (SRv), net N mineralization (Nm), dehydrogenase activity (DHa), arginine ammonification (ARa), and extra-cellular enzyme activities (urease, protease, β-glucosidase, and acid phosphatase). Higher values of SOC, Nt, WSC, Hm-C, MB, SRv, Nm, DHa and ARa were found under To and Ti as compared to Tt and Tf managements. A similar response pattern was observed in the case of extra-cellular enzyme activities. These results suggested an interaction between the available energy-rich compounds and the biochemical energy preserved in humus–enzyme complexes. Higher levels of the biological parameters measured in To and Ti treatments were associated to a higher SOC content. These two treatments contributed to the regeneration of these degraded Acrisols, while no soil quality improvements were registered under Tt and Tf managements in the short-term. The selected biological indicators were useful to evaluate the soil quality changes of degraded Mexican cultivated Acrisols.  相似文献   

13.
Chaparral watersheds associated with Mediterranean-type climate are distributed over five regions of the world. Because brushland soils are often shallow with low water holding capacities, and are on slopes prone to erosion, disturbances such as fire can adversely affect their physical properties. Fire can also increase the spatial coverage of soil water repellency, reducing infiltration, and, in turn, increasing overland flow and subsequent erosion. We studied the impacts of fire on soil properties by collecting data before and after a prescribed burn conducted during Spring 2001 on the San Dimas Experimental Forest, southern California. The fire removed the litter layer and destroyed the weak surface soil structure; leaving a thin band of ash and char on top of, and mixed in with, an unstable, granular soil of loose consistency. Median litter thickness and clay content were significantly decreased after fire while soil bulk density increased. At 7 d post-fire, soil surface repellency in the watershed was significantly higher than prior to the burn. At 76 d post-fire, surface soil water repellency was returning to near pre-fire values. At the 2 and 4 cm depths, 7 d post-fire soil repellency was also significantly higher than pre-fire, however, conditions at 76 d post-fire were similar to pre-fire values. Variability in soil water repellency between replicates within a given 15 × 15 cm site was as large as the variability seen between sites over the 1.28 ha watershed. The increase in post-fire persistence of water repellency was largest beneath ceanothus (Ceanothus crassifolius) as compared to a small increase beneath chamise (Adenostoma fasciculatum). However, pre-fire persistence was higher under chamise than for ceanothus. Post-fire changes to soil properties may increase the watershed hydrologic response, however the mosaic distribution of water repellency may lead to a less severe increase in hydrologic response than might be expected for a spatially more homogenous increase in repellency.  相似文献   

14.
Soils with very slowly permeable fragipans and fragipan-like argillic horizons are extensive throughout the Palouse Region of northern Idaho and eastern Washington, USA. These soils develop seasonal perched water tables (PWTs) under the xeric moisture regime of the region. The objective of this study was to utilize a hydropedology approach to examine the linkages between fragipans, PWTs, and catchment-scale hydrological processes such as soil water storage, runoff, and lateral throughflow. A 1.7-ha catchment dominated by Fragixeralfs (Fragic Luvisols) was instrumented with 135 automated shallow wells to monitor PWTs. Soil water content was measured with water content reflectometry probes, and catchment outflow was measured with a flume. A 35 m × 18 m plot was isolated hydrologically from the surrounding hillslope using tile drains and plastic sheeting to measure perched water outflow. Results show that during the wet winter and spring months, the transition from unsaturated to saturated conditions is accompanied by changes in volumetric water storage of only 4–5%. PWT levels are at the surface of ∼ 26–45% of the catchment soils during periods of high rainfall and snowmelt, thereby generating saturation-excess surface runoff from hillslopes. Observed solute movement via subsurface flow is very rapid and ranges between 2.9 and 18.7 m d− 1 when PWTs are maintained in more-permeable Ap and Bw horizons. Subsurface lateral flow accounts for as much as 90% of the incident precipitation and snowmelt during early spring. Data indicate that the relatively shallow depth to the fragipans and high Ksat in surface soil layers combine to create a very flashy hydrological system characterized by considerable temporal and spatial variation in patterns of saturation-excess runoff.  相似文献   

15.
沂蒙山区桃园棕壤斥水性对理化性质的空间响应   总被引:1,自引:0,他引:1  
以沂蒙山区典型土地利用桃园棕壤为例,在分析降雨前后桃园棕壤斥水性与理化性质空间变异的基础上,探讨了棕壤斥水性对土壤含水量、有机质含量和土壤质地的空间响应特征。按照1 m×1 m网格等间距测定降雨前后土壤实际斥水性与含水量,同时采集表层0~3 cm土壤样品,分析其有机质含量与砂粒、粉粒、黏粒含量,并借助经典统计学、地统计学与空间自相关理论对土壤斥水性及理化性质进行空间格局与空间相关性分析。结果表明:沂蒙山区桃园棕壤的斥水程度强烈,雨后斥水性显著降低;降雨前后棕壤斥水性均具有中等变异水平和较强的空间自相关性,且呈指数模型分布,各向异性显著。受结构变异和随机变异作用,斥水性空间格局沿耕作方向呈条带状分布,在其垂直方向上最小变程为1.4 m。土壤质地是影响棕壤斥水性空间变异的主要因素,斥水性与粉粒含量呈空间正相关,与砂粒和黏粒含量呈空间负相关,相关程度粉粒砂粒黏粒;棕壤斥水性与含水量呈空间负相关,相关度雨前较弱,雨后显著。  相似文献   

16.
This paper analyses the differences in soil moisture, runoff and sediment concentration resulting from land levelling works carried out before new vineyard establishment in a reference wine region of NE Spain. In low disturbed soils, low differences in soil moisture were observed, while in high disturbed soils, soil moisture and water infiltration of the surface were always lower than in the low disturbed ones, while soil sealing was higher in high disturbed than in the low disturbed soils. Differences in runoff and sediment concentrations were also observed. The most disturbed plot showed a higher sediment concentration in runoff, which together with higher runoff volumes gave higher erosion rates and soil losses than the low disturbed one. The differences within the most disturbed soils were high after high intensity rainfall events, while no significant variations were observed in the least disturbed ones.  相似文献   

17.
盐渍化农田土壤斥水性与理化性质的空间变异性   总被引:3,自引:0,他引:3  
郭丽俊  李毅  李敏  任鑫  朱德兰 《土壤学报》2011,48(2):275-285
通过对新疆玛纳斯县盐渍化土壤三个不同尺度(间距分别为50 m、5 m及0.5 m)的284个样点取样分析测定,采用经典统计学、空间自相关、地统计学和分形理论对土壤斥水性与理化性质进行空间格局分析。结果表明:1)土壤斥水性和pH符合正态分布,其余土壤属性符合对数正态分布。三尺度下土壤各属性绝大多数表现为中等变异水平。2)三尺度下土壤各属性的Moran s I系数变化具有相似性,在-0.8~0.6范围内波动。3)三尺度下土壤各属性的半方差函数理论模型大多数能用球状模型来拟合。4)在一定范围内,土壤各属性具有一定的分形特征,分形维数变化幅度为1.75~1.96。分析表明不同尺度下土壤斥水性与理化性质具有一定的差异。  相似文献   

18.
Previous studies have shown that long-term irrigation with wastewater can lead to the development of soil water repellency. Little is known about the longevity of this effect. Here we address this research gap by examining the effect of long-term (~ 20 years) use of low-quality wastewater for disposal purposes, followed by 6 years of ‘recovery’ with no irrigation, on the wettability of calcareous sandy soil (Xerofluvent) under a Populus alba tree stand used as a “green filter” in SE Spain. Water repellency (WR) and soil organic matter content (SOM) were determined for 120 air-dry samples from the plot and 80 control samples from adjacent and otherwise similar non-irrigated areas. To account for plot micro-topography 40 samples each were taken from ridges (R; 0-5 cm depth), furrows (F; 0-5 cm), and furrows at depth (FD; 5-10 cm). The controls included 40 samples each (0-5 cm depth) from unvegetated and unploughed soil, and from soil under the P. alba plantation.All control samples were non-repellent whereas at the irrigated plot, water repellency was present for 48, 95 and 93% of ridge, furrow and furrow-depth samples respectively. WR and SOM was strongly correlated within the whole sample population (R2 = 0.623**) and within two sample groups (R: R2 = 0.783**; FD: R2 = 0.424**), but weakly within F samples (R2 = 0.072 n.s.). The latter showed the highest frequency and persistence (WDPT) of WR, indicating that not only quantity of SOM is controlling WR. Exploratory kaolinite clay additions (0.5-8%) to samples substantially reduced WR even at the lowest concentration, indicating that this could be a promising amelioration treatment for the WR in the soils investigated here.We conclude that for the conditions studied here (i) long-term use with poor-quality wastewater for disposal had led to the development of soil WR, (ii) a 6-year period of ‘recovery’ (i.e. non-irrigation) was insufficient to eliminate the induced WR, and (iii) kaolinite addition could be a promising amelioration treatment for these sandy soils.  相似文献   

19.
A field study was conducted in order to study the effects of different wildfire severities on [1] soil organic matter content, [2] soil water repellency, and [3] aggregate stability; [4] the distribution of soil water repellency in aggregate sieve fractions (1–2, 0.5–1, 0.25–0.5 and < 0.25 mm) was also studied. Five similar burned sites and two long-unburned control sites were selected under mixed fir and pine forests in volcanic highlands from Michoacán, Mexico. Soil water repellency was observed in soil samples from all sites, although changes were influenced by fire severity. Sites affected by low severity fires did not show important changes in burned soils in comparison with controls, while high severity fires caused different responses: water repellency was increased or destroyed probably due to temperatures below or above 200–250 °C during burning. The degree of wettability/repellency from the fine earth fraction of burned soils seems to be conditioned by < 0.5 mm aggregates, more than coarser aggregates which always showed a higher degree of wettability. It is suggested that destruction of organic matter during burning occurs principally in coarse aggregates, where combustion can be more intense. Aggregate stability (measured using pre-wetted aggregates between 4 and 4.8 mm) did not change under low severity burning but it was considerably reduced in the case of a high fire severity. Losses of organic matter and destruction of water repellency seem to be the reasons for that reduction in this type of soil in contrast to previous studies, where aggregate stability increased after burning. Changes in both properties (water repellency and aggregate stability) are expected to induce modifications in runoff and soil loss rates at the hillslope scale.  相似文献   

20.
Soil redistribution by erosive processes is a serious problem for the potato growing areas of Prince Edward Island. Studies were conducted to evaluate soil loss for three major soil types under two different cropping systems, at catenary sequences with five slope positions, using the 137Cs tracer method. Adjacent forest catenas were sampled to provide baseline 137Cs levels. Soil loss over time (1960–1990) on a specific mass (kg m−2 yr−1) basis was calculated by comparing the 137Cs at the same slope positions for the cropping system and adjacent forest site. The effects of land clearing and long-term cultivation were to increase both the depth and density of the Ap horizon, and decrease the total 137Cs on an area basis, in comparison to the forested sites. The average 137Cs in the forested sites for all three soil types was 3133 Bq m−2. Catena average soil loss across all soil types and slopes, for the 1960–1990 time period, was 21 and 38 Mg ha−1 yr−1 for the pasture and crop rotation (potato) rotations, respectively. Shoulder slope positions tended to have the highest 137Cs loss, which was suggestive of tillage erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号