首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

2.
In this work we studied the influence of Pb, Zn, and Tl on microbial biomass survival and activity during a laboratory incubation of soil. In comparison to uncontaminated soil, the microbial biomass C decreased sharply in soil contaminated with Zn and Tl, whereas the addition of Pb did not have any significant inhibitory effect on the level of microbial biomass C. Zn displayed the greatest biocidal effect, confirmed by the measurement of the death rate quotient (q D). The microbial activity, measured as CO2 evolution, increased significantly in contaminated soils, emphasizing the need of living organisms to expend more energy to survive. The greater demand for energy by microorganisms in order to cope with the toxicity of pollutants was also confirmed by measurement of the metabolic quotient (q CO2). In order to determine whether soil microorganisms affect the bioavailability of these metals through their mobilization and release, we studied the relationships between available Pb, Zn, and Tl, and microbial biomass C. The water-soluble fraction of Tl, available Tl, and Zn, and microbial biomass C were related significantly, but not Pb.  相似文献   

3.
 The effect of long-term waste water irrigation (up to 80 years) on soil organic matter, soil microbial biomass and its activities was studied in two agricultural soils (Vertisols and Leptosols) irrigated for 25, 65 and 80 years respectively at Irrigation District 03 in the Valley of Mezquital near Mexico City. In the Vertisols, where larger amounts of water have been applied than in the Leptosols, total organic C (TOC) contents increased 2.5-fold after 80 years of irrigation. In the Leptosols, however, the degradability of the organic matter tended to increase with irrigation time. It appears that soil organic matter accumulation was not due to pollutants nor did microbial biomass:TOC ratios and qCO2 values indicate a pollutant effect. Increases in soil microbial biomass C and activities were presumably due to the larger application of organic matter. However, changes in soil microbial communities occurred, as denitrification capacities increased greatly and adenylate energy charge (AEC) ratios were reduced after long-term irrigation. These changes were supposed to be due to the addition of surfactants, especially alkylbenzene sulfonates (effect on denitrification capacity) and the addition of sodium and salts (effect on AEC) through waste water irrigation. Heavy metals contained in the sewage do not appear to be affecting soil processes yet, due to their low availability. Detrimental effects on soil microbial communities can be expected, however, from further increases in pollutant concentrations due to prolonged application of untreated waste water or an increase in mobility due to higher mineralization rates. Received: 28 April 1999  相似文献   

4.
 In New Zealand Hieracium is an opportunistic plant that invades high country sites more or less depleted of indigenous vegetation. To understand the invasive nature of this weed we assessed the changes in soil C, N and P, soil microbial biomass C, N and P contents, microbial C : N and C : P ratios, the metabolic quotient, and turnover of organic matter in soils beneath Hieracium and its adjacent herbfield resulting from the depletion of tussock vegetation. The amounts of soil organic C and total N were higher under Hieracium by 25 and 11%, respectively, compared to soil under herbfield. This change reflects an improvement in both the quantity and quality of organic matter input to mineral soil under Hieracium, with higher percentage organic C and a lower C : N ratio. The microbial biomass C, N and P contents were also higher under Hieracium. The amount of C respired during the 34-week incubation indicated differences in the nature of soil organic matter under Hieracium, the unvegetated "halo" zone surrounding Hieracium patches, and herbfield (depleted tussock grassland). Decomposition of organic matter in these zones showed that the Hieracium soil had the greatest rate of CO2 respired, and the halo soil had the lowest. We relate the enhanced organic C turnover to the invasive nature of Hieracium. Net N mineralization was significantly lower from the Hieracium soil (57 mg N g–1 soil N) than from herbfield and halo soils (74 and 71 mg N g–1 soil N, respectively), confirming that the nature of organic N in Hieracium soil is different from adjoining halo and herbfield soils. It seems plausible that specific compounds such as polyphenols and lignins released by Hieracium are not only responsible for increased organic N, but also control the form and amount of N released during organic matter transformations. We conclude that the key to the success of Hieracium in the N-deficient South Island high country of New Zealand lies in its ability to control and sequester N supply through modifying the soil organic matter cycle. Received: 1 December 1998  相似文献   

5.
Variations in the microbial biomass and the in situ metabolic quotient (qCO2) due to climatic conditions were determined in a typical soil from the Argentine Rolling Pampa. Microbial C was evaluated by fumigation-incubation and qCO2 was calculated using soil respiration in the field. An inverse relationship between microbial C and soil temperature was fitted to a model (r 2=0.90, P=0.01). No significant association with the soil water content was detected because the soil was generally near field capacity and thus water availability did not limited microbial growth and activity. Values of qCO2 increased (r 2=0.89, P=0.01) as the result of metabolic activatìon, likely induced by a higher maintenance energy requirement at high temperatures. The highest values of qCO2 were obtained when microbial C was the lowest, which was attributed to self consumption of microbial C in the presence of high temperatures. Consequently, microbial C was generally higher (P=0.05) in winter than in summer. Therefore, when microbial C is used as an index of soil biological activity, the influence of temperature should be taken into account.  相似文献   

6.
 Particle-size fractionation of a heavy metal polluted soil was performed to study the influence of environmental pollution on microbial community structure, microbial biomass, microbial residues and enzyme activities in microhabitats of a Calcaric Phaeocem. In 1987, the soil was experimentally contaminated with four heavy metal loads: (1) uncontaminated controls; (2) light (300 ppm Zn, 100 ppm Cu, 50 ppm Ni, 50 ppm V and 3 ppm Cd); (3) medium; and (4) heavy pollution (two- and threefold the light load, respectively). After 10 years of exposure, the highest concentrations of microbial ninhydrin-reactive nitrogen were found in the clay (2–0.1 μm) and silt fractions (63–2 μm), and the lowest were found in the coarse sand fraction (2,000–250 μm). The phospholipid fatty acid analyses (PLFA) and denaturing gradient gel electrophoresis (DGGE) separation of 16S rRNA gene fragments revealed that the microbial biomass within the clay fraction was predominantly due to soil bacteria. In contrast, a high percentage of fungal-derived PLFA 18 : 2ω6 was found in the coarse sand fraction. Bacterial residues such as muramic acid accumulated in the finer fractions in relation to fungal residues. The fractions also differed with respect to substrate utilization: Urease was located mainly in the <2 μm fraction, alkaline phosphatase and arylsulfatase in the 2–63 μm fraction, and xylanase activity was equally distributed in all fractions. Heavy metal pollution significantly decreased the concentration of ninhydrin-reactive nitrogen of soil microorganisms in the silt and clay fraction and thus in the bulk soil. Soil enzyme activity was reduced significantly in all fractions subjected to heavy metal pollution in the order arylsulfatase >phosphatase >urease >xylanase. Heavy metal pollution did not markedly change the similarity pattern of the DGGE profiles and amino sugar concentrations. Therefore, microbial biomass and enzyme activities seem to be more sensitive than 16S rRNA gene fragments and microbial amino-sugar-N to heavy metal treatment. Received: 21 January 2000  相似文献   

7.
Short-term effects of tillage systems on active soil microbial biomass   总被引:5,自引:0,他引:5  
 Conservation tillage, and especially no-tillage, induce changes in the distribution of organic pools in the soil profile. In long-term field experiments, marked stratification of the total soil microbial biomass and its activity have been observed as consequence of the application of no-tillage to previously tilled soils. Our objective was to study the evolution of the total and active soil microbial biomass and mineralized C in vitro during the first crop after the introduction of no-tillage to an agricultural soil. The experiment was performed on a Typic Hapludoll from the Argentinean Pampa. Remaining plant residues, total and active microbial biomass and mineralized C were determined at 0–5 cm and 5–15 cm depths, at three sampling times: wheat tilling, silking and maturity. The introduction of no-tillage produced an accumulation of plant residues in the soil surface layer (0–5 cm), showing stratification with depth at all sampling dates. Active microbial biomass and C mineralization were higher under no-tillage than under conventional tillage in the top 5 cm of the profile. The total soil microbial biomass did not differ between treatments. The active soil biomass was highly and positive correlated with plant residues (r 2=0.617;P<0.01) and with mineralized C (r 2=0.732;P<0.01). Consequently, the active microbial biomass and mineralized C reflected immediately the changes in residue management, whereas the total microbial biomass seemed not to be an early indicator of the introduction of a new form of soil management in our experiment. Received: 23 February 1999  相似文献   

8.
The effect of tropical forest conversion on soil microbial biomass   总被引:3,自引:0,他引:3  
We investigated the effects of converting forest to savanna and plough land on the microbial biomass in tropical soils of India. Conversion of the forest led to a significant reduction in soil organic C (40–46%), total N (47–53%), and microbial biomass C (52–58%) in the savanna and the plough land. Among forest, savanna, and plough land, basal soil respiration was maximum in the forest, but the microbial metabolic quotient (qCO2 was estimated to be at a minimum in the forest and at a maximum in the plough land.  相似文献   

9.
 Microbial populations, biomass, soil respiration and enzyme activities were determined in slightly acid organic soils of major mountainous humid subtropical terrestrial ecosystems, along a soil fertility gradient, in order to evaluate the influence of soil properties on microbial populations, activity and biomass and to understand the dynamics of the microbial biomass in degraded ecosystems and mature forest. Although the population of fungi was highest in the undisturbed forest (Sacred Grove), soil respiration was lowest in the 7-year-old regrowth and in natural grassland (approximately 373 μg g–1 h–1). Dehydrogenase and urease activities were high in "jhum" fallow, and among the forest stands they were highest in the 7-year-old regrowth. Microbial biomass C (MBC) depended mainly on the organic C status of the soil. The MBC values were generally higher in mature forest than in natural grassland, 1-year-old jhum fallow and the 4-year-old alder plantation. The MBC values obtained by the chloroform-fumigation-incubation technique (330–1656 μg g–1) did not vary significantly from those obtained by the chloroform-fumigation-extraction technique (408–1684 μg g–1), however, the values correlated positively (P<0.001). The enzyme activities, soil respiration, bacterial and fungal populations and microbial biomass was greatly influenced by several soil properties, particularly the levels of nutrients. The soil nutrient status, microbial populations, soil respiration and dehydrogenase activity were greater in Sacred Grove, while urease activity was greater in grassland. Received: 14 October 1998  相似文献   

10.
 A model describing the respiration curves of glucose-amended soils was applied to the characterization of microbial biomass. Both lag and exponential growth phases were simulated. Fitted parameters were used for the determination of the growing and sustaining fractions of the microbial biomass as well as its specific growth rate (μ max). These microbial biomass characteristics were measured periodically in a loamy silt and a sandy loam soil incubated under laboratory conditions. Less than 1% of the biomass oxidizing glucose was able to grow immediately due to the chronic starvation of the microbial populations in situ. Glucose applied at a rate of 0.5 mg C g–1 increased that portion to 4–10%. Both soils showed similar dynamics with a peak in the growing biomass at day 3 after initial glucose amendment, while the total (sustaining plus growing) biomass was maximum at day 7. The microorganisms in the loamy silt soil showed a larger growth potential, with the growing biomass increasing 16-fold after glucose application compared to a sevenfold increase in the sandy loam soil. The results gained by the applied kinetic approach were compared to those obtained by the substrate-induced respiration (SIR) technique for soil microbial biomass estimation, and with results from a simple exponential model used to describe the growth response. SIR proved to be only suitable for soils that contain a sustaining microbial biomass and no growing microbial biomass. The exponential model was unsuitable for situations where a growing microbial biomass was associated with a sustaining biomass. The kinetic model tested in this study (Panikov and Sizova 1996) proved to describe all situations in a meaningful, quantitative and statistically reliable way. Received: 19 July 1999  相似文献   

11.
 The present research was conducted to determine the relationship between the degradation of rimsulfuron and soil microbial biomass C in a laboratory-incubated clay loam soil (pH=8.1; organic matter=2.1%) under different conditions and at different initial dosages (field rate, 10 and 100 times the field rate). The half-life values varied between 0.4 and 103.4 days depending on temperature, soil moisture and initial dose. Evidence suggested that rimsulfuron could pose environmental risks in cold and dry climatic conditions. Significant decreases in microbial biomass C content in rimsulfuron-treated soil, compared to untreated soil, were observed initially, especially at higher temperatures and low moisture levels, but never exceeded 20.3% of that in control soil. The microbial biomass C content then returned to initial values at varying times depending on incubation conditions. The relationship between herbicide degradation and microbial biomass C content gave parabolic curves (P<0.005 in all cases) under all conditions tested. Generally, maximum biomass C decrease coincided with the decrease in the concentration of rimsulfuron to about 50% of the initial dose, except at 10  °C and 100×, when biomass began to recover as early as 65–70% of the initial dose. The final equations could be useful to deduce the decrease of soil microbial biomass in relation to herbicide concentration. From the degradation kinetics of the herbicide, the time required to reach this decrease can also be calculated. Received: 19 July 1999  相似文献   

12.
 As part of a broader study, the aim of which is to identify soil factors that might be associated with yield decline of sugar cane, microbial biomass and protease activities were examined in soil samples collected from seven paired old and new land sites in three cane-growing districts of north Queensland. No consistent changes in soil protease activities were observed, although some sites exhibited specific effects, as a result of extensive periods of sugar cane monoculture. Soil microbial biomass, however, was significantly lower in those soils where sugar cane had been grown for extended periods. The implications of a lowering of soil microbial biomass on sugar cane yields and sustainability are discussed. Received: 24 June 1997  相似文献   

13.
The content levels and activities of the microbiota were estimated in topsoils and in one soil profile at agricultural and forest sites of the Bornhöved Lake district in northern Germany. Discrepancies between data achieved by fumigation-extraction (FE) and substrate-induced respiration (SIR), both used for the quantification of microbial biomass, were attributed to the composition of the microbial populations in the soils. In the topsoils, the active, glucose-responsive (SIR) versus the total, chloroform-sensitive microbial (FE) biomass decreased in the order; field maize monoculture (field-MM)>field crop rotation (field-CR) and dry grassland>beech forest. This ratio decreased within the soil profile of the beech forest from the litter horizon down to the topsoil. Differences between microbial biomass and activities suggested varying biomass-specific transformation intensities in the soils. The metabolic quotient (qCO2), defined as the respiration rate per unit of biomass, indicates the efficiency in acquiring organic C and the intensity of C mineralization, while biomass-specific arginine-ammonification (arginine-ammonification rate related to microbial biomass content) seems to be dependent on N availability. The qCO2, calculated on the basis of the total microbial biomass, decreased for the topsoils in the same order as did the ratio between the active, glucose-responsive microbial biomass to the total, chloroform-sensitive microbial biomass, in contrast to qCO2 values based on the glucose-responsive microbial biomass, which did not. There was no difference between the levels of biomass-specific arginine-ammonification in topsoils of the fertilized field-CR, fertilized field-MM, fertilized dry grassland and eutric alder forest, but levels were lower in the beech forest, dystric alder forest, and unfertilized wet grassland topsoils. Ratios between values of different microbiological features are suggested to be more useful than microbiological features related to soil weight when evaluating microbial populations and microbially mediated processes in soils.  相似文献   

14.
15.
Abstract

There is limited knowledge about the differences in carbon availability and metabolic quotients in temperate volcanic and tropical forest soils, and associated key influencing factors. Forest soils at various depths were sampled under a tropical rainforest and adjacent tea garden after clear-cutting, and under three temperate forests developed on a volcanic soil (e.g. Betula ermanii and Picea jezoensis, and Pinus koraiensis mainly mixed with Tilia amurensis, Fraxinus mandshurica and Quercus mongolica), to study soil microbial biomass carbon (MBC) concentration and metabolic quotients (qCO2, CO2-C/biomass-C). Soil MBC concentration and CO2 evolution were measured over 7-day and 21-day incubation periods, respectively, along with the main properties of the soils. On the basis of soil total C, both CO2 evolution and MBC concentrations appeared to decrease with increasing soil depth. There was a maximal qCO2 in the 0–2.5 cm soil under each forest stand. Neither incubation period affected the CO2 evolution rates, but incubation period did induce a significant difference in MBC concentration and qCO2 in tea soil and Picea jezoensis forest soil. The conversion of a tropical rainforest to a tea garden reduced the CO2 evolution and increased the qCO2 in soil. Comparing temperate and tropical forests, the results show that both Pinus koraiensis mixed with hardwoods and rainforest soil at less than 20 cm depth had a larger MBC concentration relative to soil total C and a lower qCO2 during both incubation periods, suggesting that microbial communities in both soils were more efficient in carbon use than communities in the other soils. Factor and regression analysis indicated that the 85% variation of the qCO2 in forest soils could be explained by soil properties such as the C:N ratio and the concentration of water soluble organic C and exchangeable Al (P < 0.001). The qCO2 values in forest soils, particularly in temperate volcanic forest soils, decreased with an increasing Al/C ratio in water-soluble organic matter. Soil properties, such as exchangeable Ca, Mg and Al and water-soluble organic C:N ratio, were associated with the variation of MBC. Thus, MBC concentrations and qCO2 of the soils are useful soil parameters for studying soil C availability and microbial utilization efficiency under temperate and tropical forests.  相似文献   

16.
The effects of tillage on the interaction between soil structure and microbial biomass vary spatially and temporally for different soil types and cropping systems. We assessed the relationship between soil structure induced by tillage and soil microbial activity at the level of soil aggregates. To this aim, organic C (OC), microbial biomass C (MBC) and soil respiration were measured in water-stable aggregates (WSA) of different sizes from a subtropical rice soil under two tillage systems: conventional tillage (CT) and a combination of ridge with no-tillage (RNT). Soil (0–20 cm) was fractionated into six different aggregate sizes (> 4.76, 4.76–2.0, 2.0–1.0, 1.0–0.25, 0.25–0.053, and < 0.053 mm in diameter). Soil OC, MBC, respiration rate, and metabolic quotient were heterogeneously distributed among soil aggregates while the patterns of aggregate-size distribution were similar among properties, regardless of tillage system. The content of OC within WSA followed the sequence: medium-aggregates (1.0–0.25 mm and 1.0–2.0 mm) > macro-aggregates (4.76–2.0 mm) > micro-aggregates (0.25–0.053 mm) > large aggregates (> 4.76 mm) > silt + clay fractions (< 0.053 mm). The highest levels of MBC were associated with the 1.0–2.0 mm aggregate size class. Significant differences in respiration rates were also observed among different sizes of WSA, and the highest respiration rate was associated with 1.0–2.0 mm aggregates. The Cmic/Corg was greatest for the large-macroaggregates regardless of tillage regimes. This ratio decreased with aggregate size to 1.0–0.25 mm. Soil metabolic quotient (qCO2) ranged from 3.6 to 17.7 mg CO2 g− 1 MBC h− 1. The distribution pattern of soil microbial biomass and activity was governed by aggregate size, whereas the tillage effect was not significant at the aggregate scale. Tillage regimes that contribute to greater aggregation, such as RNT, also improved soil microbial activity. Soil OC, MBC and respiration rate were at their highest levels for 1.0–2.0 mm aggregates, suggesting a higher biological activity at this aggregate size for the present ecosystem.  相似文献   

17.
Woody plant proliferation in grasslands and savannas has been documented worldwide in recent history. To better understand the consequences of this vegetation change for the C-cycle, we measured soil microbial biomass carbon (Cmic) in remnant grasslands (time 0) and woody plant stands ranging in age from 10 to 130 years in a subtropical ecosystem undergoing succession from grassland to woodlands dominated by N-fixing trees. We also determined the ratio of SMB-C to soil organic carbon (Cmic/Corg) as an indicator of soil organic matter quality or availability, and the metabolic quotient (qCO2) as a measure of microbial efficiency. Soil organic carbon (Corg) and soil total nitrogen (STN) increased up to 200% in the 0–15 cm depth increment following woody plant invasion of grassland, but changed little at 15–30 cm. Cmic at 0–15 cm increased linearly with time following woody plant encroachment and ranged from 400 mg C kg−1 soil in remnant grasslands up to 600–1000 mg C kg−1 soil in older (>60 years) woody plant stands. Cmic at 15–30 cm also increased linearly with time, ranging from 100 mg C kg−1 soil in remnant grasslands to 400–700 mg C kg−1 soil in older wooded areas. These changes in Cmic in wooded areas were correlated with concurrent changes in stores of C and N in soils, roots, and litter. The Cmic/Corg ratio at 0–15 cm decreased with increasing woody plant stand age from 6% in grasslands to <4% in older woodlands suggesting that woody litter may be less suitable as a microbial substrate compared with grassland litter. In addition, higher qCO2 values in woodlands (0.8 mg CO2-C g−1 Cmic h−1) relative to remnant grasslands (0.4 mg CO2-C g−1 Cmic h−1) indicated that more respiration was required per unit of Cmic in wooded areas than in grasslands. Observed increases in Corg and STN following woody plant encroachment in this ecosystem may be a function of both greater inputs of poor quality C that is relatively resistant to decay, and the decreased ability of soil microbes to decompose this organic matter. We suggest that increases in the size and activity of Cmic following woody plant encroachment may result in: (a) alterations in competitive interactions and successional processes due to changes in nutrient dynamics, (b) enhanced formation and maintenance of soil physical structures that promote Corg sequestration, and/or (c) increased trace gas fluxes that have the potential to influence atmospheric chemistry and the climate system at regional to global scales.  相似文献   

18.
 The effects of growing trees in combination with field crops on soil organic matter, microbial biomass C, basal respiration and dehydrogenase and alkaline phosphatase activities were studied in soils under a 12-year-old Dalbergia sissoo (a N2-fixing tree) plantation intercropped with a wheat (Triticum aestivum) – cowpea (Vigna sinensis) cropping sequence. The inputs of organic matter through D. sissoo leaf litter increased and crop roots decreased with the increase in tree density. Higher organic C and total N, microbial biomass C, basal soil respiration and activities of dehydrogenase and alkaline phosphatase were observed in treatments with tree-crop combination than in the treatment without trees. Soil organic matter, microbial biomass C and soil enzyme activities increased with the decrease in the spacing of the D. sissoo plantation. The results indicate that adoption of the agroforestry practices led to an improved organic matter status of the soil, which is also reflected in the increased nutrient pool and microbial activities necessary for long-term productivity of the soil. However, tree spacing should be properly maintained to minimize the effects of shading on the intercrops. Received: 21 February 1997  相似文献   

19.
Microbial biomass content, soil respiration and biomass specific respiration rate were measured in two parts of an area polluted by a municipal waste incinerator [polychlorinated biphenyls (PCBs) from combustion processes]. The soils in the studied parts differed significantly only in their levels of PCBs. The concentration of PCBs found in a control plot (4.4 ng g-1 soil) can be regarded as a background value while the polluted plot contained an increased amount of PCBs (14.0 ng g-1 soil). A significantly lower microbial biomass (decreased by 23%, based on the chloroform-fumigation extraction technique) and a lower specific respiration rate (decreased by 14%) were observed in the polluted plot in comparison with the control plot at the end of experimental period (1992–1994). Furthermore, a lower ability of microorganisms in the polluted plot to convert available Corg into new biomass was found in laboratory incubations with glucose-amended samples.  相似文献   

20.
Data from a 16-year field experiment conducted in Shanxi, on the Chinese Loess Plateau, were used to compare the long-term effects of no-tillage with straw cover (NTSC) and traditional tillage with straw removal (TTSR) in a winter wheat (Triticum aestivum L.) monoculture. Long-term no-tillage with straw cover increased SOM by 21.7% and TN by 51.0% at 0–10 cm depth and available P by 97.3% at 0–5 cm depth compared to traditional tillage. Soil microbial biomass C and N increased by 135.3% and 104.4% with NTSC compared to TTSR for 0–10 cm depth, respectively. Under NTSC, the metabolic quotient (CO2 evolved per unit of MBC) decreased by 45.1% on average in the top 10 cm soil layer, which suggests that TTSR produced a microbial pool that was more metabolically active than under NTSC. Consequently, winter wheat yield was about 15.5% higher under NTSC than under TTSR. The data collected from our 16-year experiment show that NTSC is a more sustainable farming system which can improve soil chemical properties, microbial biomass and activity, and thus increase crop yield in the rainfed dryland farming areas of northern China. The soil processes responsible for the improved yields and soil quality, in particular soil organic matter, require further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号