首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
新疆小麦地方品种资源HMW-GS的遗传多样性组成分析   总被引:2,自引:0,他引:2  
为了明确新疆小麦地方品种高分子量麦谷蛋白亚基的遗传多样性,并为小麦品质改良提供基础材料,利用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE) 技术,分析了源自新疆地区的282份小麦地方品种的高分子量麦谷蛋白亚基组成。结果表明,在Glu-A1、Glu-B1和Glu-D1位点上的等位变异分别为3、6和 5种,三个位点上的优势亚基依次为null、7+8和2+12,其频率分别是75.5%、90.8%和72.0%。在Glu-1位点共检测到20种亚基组合,其中(null, 7+8, 2+12)组合的频率最高,为52.8%, 其次是(null, 7+8, 2.6+12)和(2*, 7+8, 2+12)组合,其频率分别为14.1%和11.0%,其它亚基组合的频率均低于10%。另外,在Glu-D1位点上还检测到一个新的亚基2.6+12。在供试的282份新疆地方品种中发现了两份具有优质亚基组合的材料,它们的亚基组成为(2*, 7+9, 5+10)和(1, 7+9, 5+10),这些地方品种可作为改良小麦品质性状的重要遗传资源。  相似文献   

2.
张钰  杨坤  曾卫军  范玲  祝长青 《核农学报》2015,29(2):229-234
为探索新疆强筋小麦的主效亚基,本文采用SDS-PAGE方法对新疆主栽的21种中筋小麦和17种强筋小麦的高分子量麦谷蛋白亚基进行了分析。结果表明:供试材料中共出现12种类型的亚基和12种亚基组合。中筋小麦Glu-A1位点亚基主要为N,Glu-B1位点亚基主要为7+8,Glu-D1位点亚基主要为2+12。强筋小麦Glu-A1位点亚基主要为1和N,Glu-B1位点亚基主要为7+8和7+9,Glu-D1位点亚基主要为5+10。聚类分析结果显示:在相似系数为0.43时可将供试小麦分为2类:第1类包括28个品种,均含有2+12亚基,其中既有强筋小麦也有中筋小麦;第2类包括12个品种,均含有5+10亚基,全部为强筋小麦。5+10亚基对小麦品质贡献明显大于其他亚基,是新疆强筋小麦的主效亚基。本研究可为提高新疆小麦面筋强度的分子育种提供理论依据。  相似文献   

3.
斯卑尔脱小麦高分子量谷蛋白亚基组成分析   总被引:19,自引:0,他引:19  
采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)方法,鉴定分析了80份斯卑尔脱小麦(Triticum spelta L.)高分子量谷蛋白亚基(HMW-GS)组成特点,3个位点上一共检测到13种不同的亚基类型,其中在Glu-Al和Glu-Bl位点上,以1和6+8亚基出现频率最高,分别高达93.75%和78.75%,与普通小麦(T.aestivum L.)相比,斯卑尔脱小麦高分子量谷蛋白亚基具有其明显的组成特点。在Glu-Dl位点上,斯卑尔脱小麦以2+12亚基出现频率最高(87.5%),5+10亚基次之(11.25%)。表明2+12亚基和5+10亚基为其主要变异类型,这与普通小麦的研究结果相似,但远低于粗山羊草(Aegilops squarrosa L.)1D染色体上的高分子量谷蛋白亚基变异形式。另外,研究还筛选出9份具有5+10优质亚基的材料,为提高斯卑尔脱小麦与普通小麦是杂交种的品质杂种优势提供了基础材料。  相似文献   

4.
The high molecular weight (HMW) glutenin subunit composition of 111 common landraces of bread wheat collected from Hubei province, China has been determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Ninety six of the accessions were homogeneous for HMW glutenin subunit composition and 15 were heterogeneous. For the Glu-1 loci, 16 alleles were detected, 3 at the Glu-A1locus, 9 at the Glu-B1and 4 at the Glu-D1. Three novel alleles were identified, two at the Glu-B1 and one at the Glu-D1locus. Combination of these 16 alleles resulted in 14 different HMW subunit patterns. The distribution of HMW glutenin subunit alleles in a subset of 105 of the 111 accessions representing six populations was assessed both at the individual population and whole population levels. The results demonstrated that the distribution of allelic patterns varied among populations. Taken together, 62.5% of the alleles detected were considered to be rare alleles while the Glu-A1c (null), Glu-B1b (1Bx7 + 1By8) and Glu-D1a (1Dx2 + 1Dy12) alleles were found most frequently in the six populations. The subset exhibited relatively high genetic diversity (A = 5.33, P = 1.00, Ae = 1.352 and He = 0.238) with 81.5% of the diversity being within populations and 18.5% between populations.  相似文献   

5.
Phenotypic diversity among 75 Nordic spring wheat cultivars was assessed in a glasshouse experiment, in which plots had no fertilizer or received 14-3-23 NPK plus Mg. On average, the fertilizer application delayed flowering by one day, shortened plant height (PH), as well as enhanced the number of fertile tillers (NFT), fresh and dry straw weight (FSW and DSW, respectively), but influenced negatively the dry matter content in the straw (DMCS) and the number of kernels per spike (K/S). The cultivar-by-fertilizer interaction did not affect significantly days to flowering (DF), PH, FSW, DSW, DMCS, thousand kernel weight, and K/S. Only NFT was significantly affected by this interaction. There were significant differences among cultivars for all characteristics, and the breeding gains were significant for improving earliness (as determined by DF), shortening PH, as well as for reducing DSW and DMCS irrespective of the environment. On average, FSW was low in newer cultivars grown in high inputs, while NFT was low in newer cultivars when grown in low inputs. The country of origin affected significantly DF, PH, DMCS, K/S, and 1000-kernel weight. On average, cultivars developed for Finland and Norway were significantly taller, and had higher DMCS. Finnish cultivars also flowered 1 or 2 days earlier and showed higher K/S than cultivars adopted in southern Scandinavia or Norway.  相似文献   

6.
The genetic diversity of high and low molecular weight glutenin subunits of 63 durum wheat landraces from different geographical regions in the Mediterranean Basin was studied using SDS-PAGE. Great variability in glutenin composition was found, with 42 high and low molecular weight glutenin haplotypes, 20 allele combinations at the HMW-GS loci, and 18 at the LMW-GS. All five possible LMW models were detected in all Mediterranean regions. Rare alleles were found at Glu-B1 locus in high frequencies and a priori related alleles to grain quality were also observed. Global genetic diversity index was relatively high (0.67); it ranged from 0.33 to 0.66. Cluster analysis on the frequency patterns of origins grouped genotypes following a geographical structure. Rogers’ distance coefficient on frequency pattern for each region of origin showed two germplasm pools with distinct quality profiles, where South West Asian landraces were very different from the landraces of other Mediterranean areas. The relationship between different regions of origin is discussed and two possible ways of introduction of wheat in the Iberian Peninsula (N Africa and SE Europe) are hypothesized. The use of Mediterranean durum wheat landraces as source of genetic variability for grain quality improvement is highly recommended.  相似文献   

7.
The genetic variations of high-molecular-weight (HMW) glutenin subunits in 1051 accessions of 13 Triticum subspecies were investigated using sodium dodecyl sulfate polyacrylamide-gel electrophoresis. A total of 37 alleles were detected, resulting in 117 different allele combinations, among which 20, 68 and 29 combinations were observed in diploid, tetraploid and hexaploid wheats, respectively. Abundance and frequency of allele and combinations in tetraploid wheats were higher than these in hexaploid wheats. Allele Glu-A1c was the most frequent subunit at Glu-A1 locus in tetraploid and hexaploid wheats. Consequently, the results also suggested that the higher variations occurred at Glu-B1 locus compared to Glu-A1 and Glu-D1. Therefore, carthlicum wheat possessing the allele 1Ay could be presumed a special evolutional approach distinguished from other tetraploid species. Furthermore, this provides a convenient approach of induction of the 1Ay to common wheat through direct cross with carthlicum wheat. Alleles Glu-B1c and Glu-B1i generally absent in tetraploid wheats were also found in tetraploid wheats. Our results implied that tetraploid and hexaploid wheats were distinguished in dendrogram, whereas carthlicum and spelta wheats and however displayed the unique performance. In addition, founder effect, no-randomness of diploidization, mutation and artificial selection could cause allele distribution of HMW-GS in Triticum. All alleles of HMW-GS in Triticum could be further utilized through hybrid in the quality improvement of common wheat.  相似文献   

8.
The endosperm storage protein of 46 European wheat (Triticum aestivum L.) landraces and obsolete cultivars have been fractionated by SDS-PAGE to determine the composition of high molecular weight glutenin subunits (HMW-GS) composition. It has been discovered that about 46% of the wheats were heterogeneous, comprising 2–11 different glutenin profiles. Eighteen of them were observed to be homogeneous. A total of 13 HMW-GS alleles, including 3 at the Glu-A1, 8 at the Glu-B1, and 3 at the Glu-D1 loci were revealed. HMW-GS null controlled by locus Glu-A1, subunits 7 + 8 by Glu-B1, and 2 + 12 by Glu-D1 predominated. However low frequented alleles such as 17 + 18, 20, 6, and 7 were observed. Furthermore, other new alleles encoding HMW-GS at the locus Glu-B1 have been found in one of France cultivar (Saumur d’Automne). The glutenin-based quality score ranged from 4 to 10.  相似文献   

9.
The objective of this study was to determine the composition of high molecular weight glutenin subunits of landraces and obsolete cultivars. Altogether glutenin profiles of 67 European wheats were analyzed by sodiumdodecylsulphate polyacrylamide gel electrophoresis. Nineteen of them were observed to be homogeneous, whereas 48 (71%) were heterogeneous in glutenin profiles. Heterogeneous accessions possessed from 2 to 9 different glutenin phenotypes. Seventeen high molecular weight (HMW)-glutenin subunits have been found, three belonged to Glu-1A, 11 to Glu-1B, and three to Glu-1D locus. The most frequented HMW-GS at the Glu-A1, Glu-B1, and Glu-D1 complex loci were 0, 7+9, and 2+12, respectively. However, allele low frequented in wheat such as 13+16, 20, 6, 7, 8, and 9 were observed also. Furthermore, other new alleles encoding HMW-GS at the locus Glu-1B with relative molecular weight 120 and 104 kDa have been found in one of the line of the Swedish cultivar Kotte. TheGlu-1 quality score in the examined accessions varied broadly with some lines reaching the maximum value of 10.  相似文献   

10.
Variation in bread wheat including pre and post green revolutions varieties of Pakistan along with landraces was investigated for high molecular weight Glutenin subunits (HMW Gs) encoded at three genes (Glu-A1, Glu-B1, Glu-D1) with SDS-PAGE. The germplasm was diverse and unique on the basis of HMW Gs compositions and out of 14 alleles detected at all the Glu-1 loci, three belonged to Glu-A1, nine to Glu-B1 and two to Glu-D1 locus. High variation was observed in the landraces and higher gene diversity was observed between the populations as compared to the gene diversity within populations, whereas a reverse pattern of gene diversity was observed when populations were pooled across the region (higher within the regions than between the regions). A lack of relationship between the HMW Gs diversity and the altitude of collection site was observed. A data base has been generated in this study which could be expanded/exploited for cultivar development or management of gene bank.  相似文献   

11.
Colors of noodle doughs made from hard white winter wheat flours from Oregon were measured at optimum noodle water absorptions (NWA). Partial correlations, removing effect of protein concentration, indicated that NWA had negative relationships with 0 hr L* and 24 hr b*, and positive relationships with 0 and 24 hr a*. Kernel hardness index had positive simple and partial correlations with NWA without any significant (P < 0.05) correlation with color parameters. High molecular weight glutentin subunits (HMW‐GS) significantly (P < 0.05) affected all measured noodle parameters except for 0 hr L*. Covariance analysis, using protein concentration as a covariate, indicated that HMW‐GS significantly affected NWA and a* (P < 0.01). Wheat cultivars with HMW‐GS 17+18 showed significantly higher mean NWA and a* values than those with alternative Glu‐B1 subunits. Protein molecular weight distributions affected noodles, as shown by significant correlations with absorbance areas and % areas of protein size exclusion (SE) HPLC chromatograms. Protein fractions that had positive correlations with redness had negative correlations with yellowness. Applying multivariate analyses to SE‐HPLC data to derive calibration models to predict fresh noodle dough a* and b* values had R2 > 0.91 and cross validations values of R2 > 0.75.  相似文献   

12.
Emmer and spelt are two species of hulled wheats that once were widely cultivated in Spain. Today on much reduced extension, these crops are still grown in Asturias (Northern of Spain). A recent expedition to this region was made with the purpose of collecting representative samples of the genetic variability, and compares these materials with those collected previously and conserved in Germplasm Banks. During the field trips, 35 populations were collected with a high diversity, although it was lower than that described in the past. The results of this comparison indicated that great part of this diversity is in risk of further losses in the remain native hulled wheat, mainly due to a progressive introduction of foreigner spelt with better harvest characteristics.  相似文献   

13.
The wild diploid goat grass (Aegilops tauschii Cosson), and the cultivated tetraploid emmer wheat (Triticum turgidum L. subsp. dicoccon (Schrank) Thell.) may be important sources of genetic diversity for improving hexaploid bread wheat (Triticum aestivum L.). Through interspecific hybridization of emmer wheat and Ae. tauschii, followed by chromosome doubling, it is possible to produce homozygous synthetic hexaploid wheat. Fifty-eight such synthetic hexaploids were evaluated for grain quality parameters: grain weight, length, and plumpness, grain hardness, total protein content, and protein quality (SDS-Sedimentation volume, SDS-S). Most synthetics showed semi-hard to hard grain texture. Results showed significant genetic variation among the synthetic hexaploids for protein content, SDS-S values, and grain weight and plumpness. Quality measurement values of synthetic hexaploids were regressed on corresponding values of the emmer wheat parents. With this offspring-parent regression, protein content and SDS-S values explained 8.7 and 28.8%, respectively, of the variation among synthetics, indicating a significant contribution from the emmer wheat parents for these traits. The synthetic hexaploids, in general, had significantly higher protein content (15.5%, on average) and longer grains than ‘Seri M82’, the bread wheat control (13.1% protein content). Synthetics with SDS-S values and grain weights higher than those of ‘Seri M82’ were also identified. Protein content among synthetics showed significantly negative correlations with grain weight and plumpness, but no correlation with SDS-S values. Despite these negative correlations, 10 superior synthetic hexaploid wheats, derived from nine different emmer wheat parents and with above average levels of protein content, SDS-S values, and either grain weight or plumpness, were identified. This study shows that genetic variation for quality in tetraploid emmer wheat can be transferred to synthetic hexaploid wheats and combined with plump grains and high grain weight, to be used for bread wheat breeding.  相似文献   

14.
The progenies of four intervarietal durum wheat crosses were used to determine the effects of glutenin variants coded at Glu‐1 and Glu‐3 loci on durum wheat quality properties. The F2 lines were analyzed for high molecular weight (HMW) and low molecular weight (LMW) glutenin composition by electrophoresis. Whole grain derived F3 and F4 samples were analyzed for vitreousness, protein, and dry gluten contents, gluten index, SDS sedimentation volume, mixograph, and alveograph properties. Allelic variation at the Glu‐B1 and Glu‐B3 loci affected gluten quality significantly. Comparisons among the Glu‐B3 and Glu‐B1 loci indicated that the LMW glutenin subunits controlled by Glu‐B3 c and j made the largest positive contribution, followed by the alleles a, k, and b. HMW glutenin subunits 14+15 gave larger SDS values and higher mixing development times than subunits 7+8 and 20. The positive effects of the glutenin subunits LMW c and HMW 14+15 were additive. Flour protein content, vitreousness, and mixograph peak height values were positively correlated with each other as well as with Dglut values, whereas the SDS sedimentation highly correlated with mixing development time, alveograph strength, and extensibility but was not correlated with the other parameters. The results of quality analysis, together with the results of the genetic analysis, led to the conclusion that SDS sedimentation, mixograph mixing development time, and peak breakdown are the tests more influenced by allelic variation of prolamin. The uses of the results in durum wheat quality breeding programs are discussed.  相似文献   

15.
Summary Italian wheat varieties (Triticum aestivum L.) have played an important role in Chinese wheat production and improvement, especially in the 1950's to 1970's. In the history of wheat introduction in China, three series of Italian germplasms making great impact on the development of wheat production and improvement are recognized. This paper describes the brief history of introduction of Italian varieties into China and the detailed use of them for wheat production and wheat improvement in China.  相似文献   

16.
Summary Wheat seedlings were inoculated with rhizosphere nitrogen-fixing bacteria and grown gnotobiotically for 15 days. The growth medium consisted of semisolid agar with or without plant nutrients. The bacteria, isolated from roots of field-grown wheat, were three unidentified Gram-negative rods (A1, A2, E1), one Enterobacter agglomerans (C1) and two Bacillus polymyxa (B1, B2). A strain of Azospirillum brasilense (USA 10) was included for comparison.Nitrogenase activity (acetylene reduction activity, ARA) was tested on intact plants after 8 and 15 days of growth. In semisolid agar without plant nutrients, five isolates showed ARA of 0.01–0.9 nmol C2H4 plant–1 h–1, while the two strains of B. polymyxa had higher ARA of 3.3–10.6 nmol C2H4 plant–1 h–1.Plant development was not affected by inoculation with bacteria, except that inoculation with B. polymyxa resulted in shorter shoots and lower root weight.Transmission electronmicroscopy of roots revealed different degrees of infection. A. brasilense, A1 and A2, occurred mainly in the mucilage on the root surface and between outer epidermal cells (low infectivity). B. polymyxa strains and E1 were found in and between epidermal cells (intermediate infectivity) while E. agglomerans invaded the cortex and was occasionally found within the stele (high infectivity).  相似文献   

17.
The genetic diversity of a subset of the Ethiopian genebank collection maintained at the IPK Gatersleben was investigated applying 22 wheat microsatellites (WMS). The material consisted of 135 accessions belonging to the species T. aestivum L. (69 accessions), T. aethiopicum Jacubz. (54 accessions) and T. durum Desf. (12 accessions), obtained from different collection missions. In total 286 alleles were detected, ranging from 4 to 26 per WMS. For the three species T. aestivum, T. aethiopicum and T. durum on average 9.9, 7.9 and 7.9 alleles per locus, respectively, were observed. The average PIC values per locus were highly comparable for the three species analysed. Considering the genomes it was shown that the largest numbers of alleles per locus occurred in the B genome (18.4 alleles per locus) compared to A (10.1 alleles per locus) and D (8.2 alleles per locus) genomes. Genetic dissimilarity values between accessions were used to produce a dendrogram. All accessions could be distinguished, clustering in two large groups. Whereas T. aestivum formed a separate cluster, no clear discrimination between the two tetraploid species T. durum and T. aethiopicum was observed.  相似文献   

18.
For millennia, wheat (Triticum spp.) has been grown in traditional aflaj-irrigation systems of remote mountain oases in Oman. However, little is known about the diversity of the ancient landraces used. Given recent reports about the occurrence of novel germplasm in such material, the objective of this study was to evaluate the genetic diversity of hexaploid wheat (Triticum aestivum L.) landraces in relation to their geographic origin using microsatellites. The collection covered most of the cultivation areas in northern Oman where wheat landraces are growing. Total genomic DNA was extracted from six pooled plants representing each accession. A total of 161 wheat accessions were assayed using 35 microsatellite loci in which a total of 305 polymorphic bands were recorded for the 35 microsatellites. The polymorphic information content (PIC) across the 35 microsatellite loci ranged from 0.02 to 0.89 with an average of 0.50. A heterozygosity percentage value of 9.09 was determined and the highest level recorded for accessions from the Batinah district. Rare alleles averaged 1.85 with the highest value being from the Dakhilia district. The results indicated a significant correlation between gene diversity and number of alleles across districts. The correlation coefficient between these two variables over the 35 loci was 0.657, whereby correlation coefficients of 0.718, 0.706, 0.657 and 0.651, respectively, were found for the Batinah, Dhahira, Dakhilia and Sharqia materials. Genetic distances indicated that all landraces were closely related. The cluster analysis discriminated most of the landraces accessions. However, it failed to achieve region-specific groupings of landraces. The present study demonstrated the presence of high diversity in Omani landraces and also indicated the effectiveness of microsatellites to describe it.  相似文献   

19.
Twenty-four wheat microsatellites (WMS) wereused to estimate the extent of genetic diversity among 15 Libyanwheat genotypes. The WMS used determined 26 loci located on 20different chromosomes, and were capable of detecting 116 alleles withan average of 4.5 alleles per locus. Only two markers located on 2DSand 4DL, were monomorphic. The results indicated that the B genome(5.9 alleles per locus) was more variable than the A and Dgenomes (4.1 and 2.7 alleles per locus, respectively).Furthermore, the results obtained suggest that a relatively smallnumber of primers can be used to distinguish all genotypes used andto estimate their genetic diversity. Genetic dissimilarity valuesbetween genotypes, calculated by the WMS derived data, were used toproduce a dendrogram. The diversity within the analysed germplasm isdiscussed.  相似文献   

20.
The effects of bacterial inoculants on the growth of winter wheat were studied in a growth chamber. Azospirillum brasilense, Azotobacter chroococcum, Bacillus polymyxa, Enterobacter cloacae, or a mixture of the four rhizobacteria were the inoculants tested. Inoculation effects on yield, yield components, and N-derived from fertilizer (Ndff) were assessed. The response of plants inoculated with individual bacteria was inconsistent and varied with treatment. At the first harvest (58 days after planting-DAP) plants inoculated with the mixture exhibited increases in plant dry weight, total-N and Ndff. At the second harvest (105 DAP), plants inoculated with A. brasilense and the mixture exhibited increases in shoot biomass, whereas at maturity (170 DAP), the inoculated plants showed no differences in total-N or shoot dry matter yield, as compared to the uninoculated controls. Inoculation with A. brasilense, however, increased the Ndff in the shoots, and B. polymyxa tended to enhance grain yield. Practical use of these rhizobacteria as inoculants for winter wheat may have limited value until such time as we better understand factors which influence rhizosphere competence of bacterial inoculants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号