首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green infrastructure approaches leverage vegetation and soil to improve environmental quality. Municipal street trees are crucial components of urban green infrastructure because they provide stormwater interception benefits and other ecosystem services. Thus, it is important to understand the patterns and drivers of structural heterogeneity in urban street tree assemblages. In this study, we compared the forest structure of street trees across nine communities along both geographic and demographic gradients in metropolitan Cincinnati, Ohio, USA. Specifically, we used a two-part statistical model to compare both the proportion of sampled street segments containing zero trees, and basal area magnitude for street segments with trees. We made community-scale comparisons based on street tree management, socioeconomics, and geographic setting. Then, using modeled stormwater interception estimates from i-Tree Streets, we investigated the implications of heterogeneity in street tree assemblages for stormwater interception benefits. The forest structure of street trees varied across communities in relation to management practices, namely participation in the Tree City USA program. As a consequence of this structural difference, we observed a stark discrepancy in estimated stormwater interception between Tree City USA participants (128.7 m3/km street length) and non-participants (59.2 m3/km street length). While street tree assemblages did not vary by community poverty status, we did find differences according to community racial composition. In contrast to previous research, basal area was greater in predominantly black (i.e., African American) and racially mixed communities than in predominantly white communities. We did not observe structural differences across geographic strata. This research underscores the importance of proactive management practices for increasing the forest structure of street trees. Our findings regarding socioeconomics and geographic setting contrast previous studies, suggesting the need for continued research into the drivers of structural heterogeneity in street tree assemblages.  相似文献   

2.
Urban forest is a crucial part of urban ecological environment. The accurate estimation of its tree aboveground biomass (AGB) is of significant value to evaluate urban ecological functions and estimate urban forest carbon storage. It has a high accuracy to estimate the forest AGB with field measured canopy structure parameters, but unsuitable for large-scale operations. Limited by low spatial resolution or spectral saturation, the estimated forest AGBs based on various satellite remotely sensed data have relatively low accuracies. In contrast, Unmanned Aerial Vehicle (UAV) remote sensing provides a promising way to accurately estimate the tree AGB of fragmented urban forest. In this study, taking an artificial urban forest in Ma'anxi Wetland Park in Chongqing City, China as an example, we used UAVs equipped with a digital camera and a LiDAR to acquire two point cloud data. One was produced from overlapping images using Structure from Motion (SfM) photogrammetry, and the other was resolved from laser scanned raw data. The dual point clouds were combined to extract individual tree height (H) and canopy radius (Rc), which were then input to the newly established allometric equation with tree H and Rc as predictor variables to obtain the AGBs of all dawn redwood trees in study area. In accuracy assessment, the coefficient of determination (R2) and Root Mean Square Error (RMSE) of extracted H were 0.9341 and 0.59 m; the R2 and RMSE of extracted Rc were 0.9006 and 0.28 m; the R2 and RMSE of estimated AGB were 0.9452 and 17.59 kg. These results proved the feasibility and effectiveness of applying dual-source UAV point cloud data and the new allometric equation on H and Rc to accurate AGB estimation of urban forest trees.  相似文献   

3.
Street trees provide significant and widespread environmental benefits to the city and its citizens, such as improved air quality and adaptation to climate change. Crown volume (CV) indicates the geometric volume of crown, which is an essential indicator for the ecological service evaluation of street trees. The measurement of CV makes it possible to assess the carbon storage and input cost of urban trees. Because of the particularity of crown shape of street trees, the existing two-dimensional methods of calculating CV of forest trees become difficult except the three-dimensional techniques through the unmanned aerial vehicle, LiDAR equipment, and traditional harvest methods. In this study, a new virtual research method for plane calculation of angle disparity (PCAD) is proposed to calculate the CV of street trees. Two temporal satellite images of the exact location were first collected from Google Earth Pro, and then the angle disparity of images was adopted as a starting point to calculate tree height. Finally, CV was calculated from tree height, stem height, and crown diameter. The feasibility of the method was verified by a sample survey of street trees in Shanghai, China and the relative error of CV calculation by PCAD compared to that by field survey was 17.31 %. PCAD has the advantages of low-cost, quick operation, and suitability for a large area in studying CV of street trees.  相似文献   

4.
Lowland ombrotrophic (rain-fed) peatlands are a declining ecological resource in Europe. Peatlands display characteristic patterns in vegetation and surface topography, linked to ecological function, hydrology, biodiversity and carbon sequestration. Laser scanning provides a means of precisely measuring vegetation pattern in peatlands, and thus holds promise as a tool for monitoring peatland condition. Terrestrial laser scanning (TLS) was used for measurement of vegetation pattern along an eco-hydrological gradient at a UK peatland (Wedholme Flow, Cumbria) at fine grain sizes (<1 cm spatial resolution over 10 m spatial extent). Seven sites were investigated—each showed varying water table and ecological characteristics. TLS data were analysed using semi-variogram analysis which enabled the scale of spatial dependence in vegetation structures to be measured. In addition ecological, hydrological and positional surveys were conducted to elucidate interpretation of spatial patterns. Results show that TLS was able to rapidly measure vegetation patterns associated with eco-hydrological condition classes. Intact sites with hummock-hollow topography showed an isotropic pattern with a grain size or length-scale of 1 m or less (indicated by semi-variogram range). Degraded sites with high shrub cover showed increased sill variance values at larger range distances—typically around 3–4 m. The work presented shows the advantages of TLS methodologies for rapid measurement of 3-D vegetation canopy structure and surface microtopography, at fine spatial scales, in short vegetation. The paper considers how these approaches may be extended to monitoring peatland structure over larger spatial extents from airborne LiDAR systems.  相似文献   

5.
One of the fastest growing cities in India, Bangalore is facing challenges of urban microclimate change and increasing levels of air pollution. This paper assesses the impact of street trees in mitigating these issues. At twenty locations in the city, we compare segments of roads with and without trees, assessing the relationship of environmental differences with the presence or absence of street tree cover. Street segments with trees had on average lower temperature, humidity and pollution, with afternoon ambient air temperatures lower by as much as 5.6 °C, road surface temperatures lower by as much as 27.5 °C, and SO2 levels reduced by as much as 65%. Suspended Particulate Matter (SPM) levels were very high on exposed roads, with 50% of the roads showing levels approaching twice the permissible limits, while 80% of the street segments with trees had SPM levels within prescribed limits. In an era of exacerbated urbanization and climate change, tropical cities such as Bangalore will have to face some of the worst impacts including air pollution and microclimatic alterations. The information generated in this study can help appropriately assess the environmental benefits provided by urban trees, providing useful inputs for urban planners.  相似文献   

6.
We evaluated the accuracy and efficiency of airborne (ALS), terrestrial (TLS) and mobile laser-scanning (MLS) methods that can be utilized in urban tree mapping and monitoring. In the field, 438 urban trees located in park and forested environments were measured and mapped from our study area located in Seurasaari, Helsinki, Finland. A field reference was collected, using a tree map created manually from TLS data. The tree detection rate and location accuracy were evaluated, using automatic or semiautomatic ALS individual tree detection (ALSITDauto or ALSITDvisual) and manual or automatic measurements of TLS and MLS (TLSauto, MLSauto, MLSmanual, MLSsemi). Our results showed that the best methods for tree detection were TLSauto and MLSmanual, which detected 73.29% and 79.22% of the reference trees, respectively. The location accuracies (RMSE) varied between 0.44 m and 1.57 m; the methods listed from the most accurate to most inaccurate were MLSsemi, TLSauto, MLSmanual, MLSauto, ALSITDauto and ALSITDvisual. We conclude that the accuracies of TLS and ALS were applicable for operational urban tree mapping in heterogeneous park forests. MLSmanual shows high potential but manual measurements are not feasible in operational tree mapping. Challenges that should be solved in further studies include ALSITDauto oversegmentation as well as MLSauto processing methodologies and data collection for tree detection.  相似文献   

7.
以黄瓜为受体,研究了银杏、毛白杨、油松、杨树、法桐、泡桐6种行道树落叶提取物对黄瓜的化感作用。结果表明:6种行道树落叶提取物对黄瓜均具有化感作用,但化感作用性质、作用强度各不相同。6种行道树落叶提取物对黄瓜苗高表现为促进作用,而对发芽率和干质量无作用|银杏、毛白杨、油松对根长表现为促进作用,杨树为抑制作用,法桐无作用,泡桐则为促进/抑制双重作用|银杏、毛白杨对幼苗鲜质量表现为促进作用,其他叶片无作用。根据综合敏感指数,行道树落叶化感作用强度银杏>毛白杨>法桐>油松>泡桐>杨树|黄瓜各性状敏感性苗高>鲜质量>根长>干质量>发芽率。  相似文献   

8.
There are sporadic reports on urban forests in Indian cities. Nagpur is one of the greenest cities of India with 18 per cent of its area under forests and plantations, 17 per cent under cultivation and 2 per cent under water bodies. The present study showed that natural vegetation of the city is very well diversified with a representation of 59 per cent vegetation including 124 trees species belonging to 38 families as compared with the overall district vegetation statistics. Air quality in the city is relatively better with lower SO2 (6 μg/m3), NO2 (18 μg/m3) and Respirable Suspended Particulate Matters (RSPM, 53 μg/m3) as against National Ambient Air Quality Standards (2009) for cities in India of 80, 80 and 100 μg/m3, respectively. It was also noted that the diversity in natural forests which are being protected is greater than the plantations undertaken by the civic authorities and private sector efforts. The study thus demonstrated the positive relationship of the city with diversified vegetation cover for cleaner environment. The analysis is expected to guide formulation of strategies for maintaining green space in the city.  相似文献   

9.
Across cities worldwide, people are recognizing the value of greenspace in ameliorating the health and well-being of those living there, and are investing significant resources to improve their greenspace. Although models have been developed to allow the quantification of ecosystem services provided by urban trees, refinement and calibration of these models with more accurate site- and species-specific data can increase confidence in their outcomes. We used data from two street tree surveys in Cambridge, MA, to estimate annual tree mortality for 592 trees and diameter growth rates for 498 trees. Overall tree turnover between 2012 and 2015 was relatively low (annualized 3.6% y−1), and mortality rate varied by species. Tree growth rates also varied by species and size. We used stem diameter (DBH) and species identity to estimate CO2 sequestration rates for each of 463 trees using three different model variations: (1) i-Tree Streets, (2) Urban Tree Database (UTD) species-specific biomass allometries and growth rates, and (3) empirically measured growth rates combined with UTD biomass allometries (Empirical + UTD). For most species, the rate of CO2 sequestration varied significantly with the model used. CO2 sequestration estimates calculated using i-Tree Streets were often higher than estimates calculated with the UTD equations. CO2 sequestration estimates were often the lowest when calculated using empirical tree growth estimates and the UTD equations (Empirical + UTD). The differences among CO2 sequestration estimates were highest for large trees. When scaled up to the entire city, CO2 sequestration estimates for the Empirical + UTD model were 49.2% and 56.5% of the i-Tree Streets and UTD estimates, respectively. We suggest future derivations of ecosystem service provision models allow localities to input their own species-specific growth values. By adding capacity to easy-to-use tools, such as i-Tree Streets, we can increase confidence in the model output.  相似文献   

10.
The implementation of trees in urban environments can mitigate outdoor thermal stress. Growing global urban population and the risk of heatwaves, compounded by development driven urban warmth (the urban heat island), means more people are at risk of heat stress in our cities. Effective planning of urban environments must minimise heat-health risks through a variety of active and passive design measures at an affordable cost. Using the Solar and Longwave Environmental Irradiance Geometry (SOLWEIG) model and working within the bounds of current urban design, this study aimed to quantify changes in mean radiant temperature (Tmrt) from increased tree cover at five different 200 × 200 m urban forms (including compact mid-rise development, residential and open grassy areas) within a suburb of Adelaide, Australia during summer. Following a successful validation of SOLWEIG, street trees were strategically distributed throughout each of the five urban forms and the model run over five warm sunny days (13–17 February 2011). Results showed spatially averaged daytime (7:30–20:00) Tmrt reduced by between 1.7 °C and 5.1 °C at each site, while under peak heating conditions (16 February, 14:00) Tmrt reduced by between 2.0 °C and 7.1 °C. The largest reduction in Tmrt under peak warming conditions was at the residential site, despite having the fewest number of trees added. Directly below clusters of trees, Tmrt could be reduced by between 14.1 °C and 18.7 °C. SOLWEIG also highlighted that more built-up sites showed higher Tmrt under peak warming conditions due to increased radiation loading from 3D urban surfaces, but over the course of the day, open sites were exposed to greater and more uniform Tmrt. This study clearly demonstrates the capacity of street trees to mitigate outdoor thermal stress and provides guidance for urban planners on strategic street tree implementation.  相似文献   

11.
The search for means to improve urban forest inventories is challenging for small communities and cities with a limited budget. Mobile applications on iPad or iPhone seem promising equipment to make some inventory practices cheaper and faster, although procedures of use are still limited. So, we tested the LiDAR scanner application on an iPad Pro 2020 for trunk perimeter measures and the position for 10 different groups of species in the Polish Airmen Park, Kraków (Poland). For each group, in 10 trees, we measured the perimeter at breast height (PBH) and relative tree trunk position. The first procedure tested the estimation of PBH according to the distance of an iPad Pro from the trunk, the time of 3D data acquisition and the number of turns around trees. The second procedure tested PBH estimations according to the number of trees scanned in just one try (3, 6 and 10 trees). The third procedure tested the estimation of the relative position of tree trunks from other trees. In each procedure, we compared 3D point clouds generated by an App running on iPad Pro with data from a measuring tape and FARO FOCUS 3D (TLS) point clouds. The results showed that the shorter the distance from the iPad Pro to the trunk surface, the more precise the PBH estimation, not significantly different (p > 0,01) from TLS values. Distances between 1.0 and 2.0 m would be most suitable for the iPad Pro application but performing two turns around the tree trunk would improve results for PBH measurements. Trees scanned as 3-tree groups with the iPad Pro presented the smallest PBH differences compared to TLS point clouds. No significant differences (p > 0,01) were found between the methods for estimating the distance among trees, which shows that the iPad Pro can deliver a precise relative position of tree trunks.  相似文献   

12.
Toxic impact of the de-icing material to street greenery in Riga, Latvia   总被引:1,自引:0,他引:1  
There is little information on the ecological composition of snow on roads as well as the toxic effect of de-icing salt on the ecological status of the street trees (Tilia x vulgaris H.) in Latvia. Tilia x vulgaris is one of the most widespread tree species of street greenery in the boreo-nemoral zone – in Central, Northern and Eastern Europe. This investigation was done to find out the accumulation of de-icing salt (main elements – sodium and chlorine) in the snow–soil–plant system of street greenery in the central part of Riga (2004–2005), in order to reveal the toxic effect on the ecological status of the street trees (Tilia x vulgaris). Snow, soil and leaf samples were collected from 27 study sites (eight objects) in the central part of Riga with intense traffic and from three control sites (one object) located in a park area. In a majority of cases, the status of street trees could be characterized as damaged. There was a high heterogeneity in the Na and Cl concentrations even along one street. Significantly, increased levels of Na and Cl in urban snow, soil and leaf samples were found in comparison with the background values. There was close correlation between the Na, Cl concentration in the leaves and the extent of leaf necrosis. Principal new information on the critical level for observation visual Tilia x vulgaris leaf necrosis was stated based on our results: 0.14% Na and 0.66% Cl concentrations in the leaves.  相似文献   

13.
Urban vegetation is shown to be unevenly distributed across cities and there is evidence of disparities in benefits provided by vegetation and of public health problems induced by urban heat islands. In order to improve vegetation cover, it remains crucial to understand the underpinning of such unevenness. In this paper, we investigate in Montreal (Canada) how the built environment, sociodemographic factors and administrative boroughs influence tree and lawn cover in public and residential land. The analysis was conducted at the dissemination area (DA) level, a Canadian census unit containing about 400–700 people. Six vegetation indicators were used as dependent variables: the proportion of a DA covered by trees/shrubs, lawn and total vegetation; the proportion of streets covered by trees/shrubs and the proportion of residential yards covered by trees/shrubs and total vegetation. Three sets of independent variables were studied: the built environment, sociodemographics and borough names. We used spatial autoregressive models to control for dependence and the spatial autoregressive term explained a large amount of variability in vegetation cover. The built-environment variables tend to have higher effects than the socio-demographic variables when predicting the three DA vegetation indicators, backyard vegetation, and to a lesser degree, street tree/shrub cover. In particular, population density is associated negatively to all indicators but positively to street tree cover. Socio-demographics are substantial in the explanation of the distribution of street trees, especially the presence of recent immigrants (negative effect) and of university degree holders (positive effect). These findings call for appropriate greening programs adapted to the local socio-demographic profile. The significance of boroughs also suggests the need for further research on the impact of within-city administrative hierarchies on the unevenness of urban vegetation.  相似文献   

14.
Quantifying urban tree biomass and carbon (C) storage by using allometric equations is required for various studies such as assessing the inventory, modelling, and measuring ecosystem services of urban trees. However, the lack of urban-specific allometric equations leads to uncertainty when estimating urban tree biomass and C storage. Therefore, we followed a nondestructive approach and developed allometric equations specifically for Acer buergerianum Miq., Ginkgo biloba L., Platanus orientalis L., Prunus yedoensis Matsum., and Zelkova serrata (Thunb.) Makino in Daegu, Korea. Diameter at breast height (DBH)-based and DBH-and-height-based allometric equations were highly accurate at estimating the aboveground volume (R2 > 0.92), while the allometric equations for P. orientalis and Z. serrata developed for traditional forests overestimated volume by 68% and 427%, respectively. The addition of a height variable into the DBH-based allometric equations did not increase the reliability of the allometric equations at a local level. The mean aboveground C storage of urban street trees was 24.9 Mg C/ha except for P. orientalis with a mean of 69.7 Mg C/ha, and the total aboveground C storage of urban street trees in Daegu was 10.6 Gg C. Alternatively, a generalized allometric equation which compiled species-specific equations can be applied for large-scale estimation. The generalized equations developed in this study and those found in the literature may suggest a constant value (~2.3–2.4) for the scaling exponent in the generalized equations. Allometric equations developed from natural or artificial stands may overestimate the volume of urban street trees; therefore, estimating urban tree biomass and C storage requires urban-specific allometric equations.  相似文献   

15.
Healthy and sustainable tree populations require a high diversity of genera and species. This study examined the occurrence and contents of tree inventories in Denmark's 30 largest municipalities. 59% of the municipalities had a tree inventory for street trees, but only about half of these were complete and updated. Only one municipality had a registration for trees other than street trees. Based on data from the tree inventories, the diversity of road side trees was analyzed at genus level and species level. A total of 82,072 street trees are part of the study. 11 different genera account for 92% of the total street tree stock, and 2–6 genera account for 40–80% of the street tree stock in the individual municipalities. Tilia was the most dominating genera (26%). 12 species account for 73% of the total street tree stock. The 6 most common species account for almost 50% of the total tree population. The species representing the largest numbers were Tilia × europaea (12%), Acer platanoides (10.9%), Platanus × acerifolia (7.2%), Tilia cordata (7.2%), Fraxinus excelsior (6.2%) and Sorbus intermedia (5.9%). The four most urbanized municipalities had a surplus of non-native species, but all municipalities apart from one had most street trees belonging to native species. The concluding recommendation of this study is that tree managers need to start working more strategic with their tree stock, in order to reduce the vulnerability, due to potential attacks from pests or diseases and climate change effects. A risk spreading system for the urban tree population is proposed, suggesting that no genera should account for more than 10% and no species for more than 5% of the tree population.  相似文献   

16.
Street trees provide shade and increase human thermal comfort during hot summer. In this study, we investigated the spatial distribution of shade provision of street trees in Boston, Massachusetts. The sky view factor (SVF), which influences the solar radiation to the ground and affects human thermal comfort, was used to indicate the contribution of street trees on shade provision. Google Street View (GSV) panoramas were used to calculate the photographic method based SVF (SVFP), with the consideration of all kinds of obstructions within street canyons. A building height model was used to calculate the simulation based SVF (SVFs), with consideration of obstruction of building blocks only. Considering the fact that street trees and building blocks are the two major obstructions of radiation within street canyons, therefore, the difference between the two SVF estimation results can be considered as the shade provision of street trees. The results show that street trees help to decrease the SVF by 24.61% in Boston, Massachusetts. The shading level varies spatially in the study area. Generally, the southwestern area has much higher shading level than the north and the east. We further explored the shading variation among different socioeconomic groups in the study area. Result shows that Hispanics tend to live in neighborhoods with lower shading level. This study can help to provide a reference for future urban greening projects for global climate change adaption.  相似文献   

17.
The purpose of this study was to determine the types and structures of small green spaces (SGs) that effectively reduce air temperature in urban blocks. Six highly developed blocks in Seoul, South Korea served as the research sites for this study. Air temperature was measured at the street level with mobile loggers on clear summer days from August to September in 2012. The measurements were repeated three times a day for three days. By analyzing the spatial characteristics, SGs within the six blocks were categorized into the four major types: polygonal, linear, single, and mixed. The result revealed that the polygonal and mixed types of SGs showed simple linear regression at a significant level (p < 0.01). It indicated that the blocks’ urban heat island (UHI) mitigation (ΔTRmn) increased in a linear fashion when the area and volume of these two types of green spaces increased. The area and volume of a polygonal SG with mixed vegetation, over 300 m2 and 2300 m3, respectively, lowered the ΔTRmn by 1 °C; SG with an area and volume of larger than 650 m2 and 5000 m3, respectively, lowered the ΔTRmn by 2 °C. The results of this study will be useful to urban planners and designers for determine the types and structures of urban green spaces to optimize the cooling effect, as well as how such green spaces should be designed and distributed.  相似文献   

18.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

19.
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed data can reduce costs if measurements derived from remotely sensed data are accurate. This study identifies and measures the errors incurred in estimating key tree dimensions from two types of remotely sensed data: high-resolution aerial imagery and LiDAR (Light Detection and Ranging). Using Sacramento, CA, as the study site, we obtained field-measured dimensions of 20 predominant species of street trees, including 30–60 randomly selected trees of each species. For each of the 802 trees crown diameter was estimated from the aerial photo and compared with the field-measured crown diameter. Three curve-fitting equations were tested using field measurements to derive diameter at breast height (DBH) (r2 = 0.883, RMSE = 10.32 cm) from the crown diameter. The accuracy of tree height extracted from the LiDAR-based surface model was compared with the field-measured height (RMSE = 1.64 m). We found that the DBH and tree height extracted from the remotely sensed data were lower than their respective field-measured values without adjustment. The magnitude of differences in these measures tended to be larger for smaller-stature trees than for larger stature species. Using DBH and tree height calculated from remotely sensed data, aboveground biomass (r2 = 0.881, RMSE = 799.2 kg) was calculated for individual tree and compared with results from field-measured DBH and height. We present guidelines for identifying potential errors in each step of data processing. These findings inform the development of procedures for monitoring tree growth with remote sensing and for calculating single tree level carbon storage using DBH from crown diameter and tree height in the urban forest.  相似文献   

20.
Fine particulate matter (PM2.5) is emerging as a serious environmental problem worldwide with the increase in anthropogenic emission sources, such as fossil fuels, transportation, and industries. In urban areas, where industrial complexes and human activities are concentrated, PM2.5 poses a threat to human health. Recently, because of their ability to reduce PM2.5, the introduction of landscaping trees as an environment-friendly solution has become popular; however, there remains a lack of research on the selection of species and their management. In this study, we quantified and compared the PM2.5 reduction capacities of 13 major landscaping tree species and analyzed their relationship with the morphological and physiological characteristics of each species. The results showed that the amount of PM2.5 reduction per leaf area differed among species and was the highest in Ginkgo biloba (28 165 ± 5353 # cm−2 min−1) and the lowest in Pinus strobus (1602 ± 186 # cm−2 min−1). Moreover, PM2.5 reduction by the broadleaf species (18 802 ± 1638 # cm−2 min−1) was approximately 8.6-fold higher than that of the needleleaf species (2194 ± 307 # cm−2 min−1). Correlation analysis revealed that differences in PM2.5 reduction were explained by differences in specific leaf area between species (P = 0.004) and by the length of margin per leaf area among individual trees (P < 0.05). Additionally, reduction in PM2.5 correlated with photosynthetic properties such as maximum assimilation and carboxylation rates (P < 0.001), indicating that PM2.5 is reduced not only by physical adsorption but also by physiological processes. These findings emphasize that for effective reduction in PM2.5 using landscaping trees, comprehensive consideration of the morphological and physiological characteristics of the species is essential during species selection, and that continuous management is also necessary to maintain the active physiological conditions of the trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号