首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With accelerating urbanization, insect pollinators in urban ecosystems face challenges such as reduced pollen sources, habitat fragmentation, and damage to the nesting environment. Urban green spaces (UGS) are essential for the stability of pollinator communities. However, little is known about the relationship between vertical layer heterogeneity and horizontal layer complexity of vegetation structure in UGS and pollinator communities. The present study aimed to assess how vegetation structure and environmental characteristics shape the insect pollinator community in UGS. To this end, this study was conducted with seven typical vegetation types which were selected according to the biotope mapping classification system (BMCS) in the ring parks around Hefei City, in Anhui province, China. A total of 11,401 pollinators belonging to 6 orders and 34 families were identified during the eight-month survey. Among the seven habitats under the BMCS, mainly successional short-cut shrub and partly open green space, trees two- or multi-layered broad-leaved mixed forest and partly closed green space, and mainly successional tall grass and partly open green space were identified as high-quality insect pollinator habitats. According to the results of the generalized linear regression, the explanatory power of the four best-fitting generalised linear models is relatively high (over 77%). In four optimal models, the effect of vegetation structure on pollinator community was greater than that of environmental characteristics. The redundancy discriminant analysis showed that the flowering abundance of nectar plants, herb richness, and shrub coverage rate were the three most important factors influencing insect pollinator communities, with a cumulative explanatory power of up to 78.8%. Pollinator abundance was positively influenced by spontaneous herbs and low-intensity management. However, high-intensity management, low diversity of plants, low nectar plant richness, ignoring seasonal nectar plant configuration, and dense tree distribution could limit pollinator reproduction and population growth. These results reflect the status of insect pollinator community in UGS in Hefei city and present a possible direction for improving urban green habitats and plant configurations.  相似文献   

2.
The importance of biodiversity conservation is well recognized, and the loss of biodiversity is particularly evident in highly urbanized areas. On the other hand, green spaces inside cities, as parks, can provide a resource for maintaining and increasing biodiversity, especially for bird species. However, only a few studies have addressed the effects of vegetation structure and land use composition on different components of biodiversity.Here, we explored the response of bird community composition to environmental differences related to land use composition and vegetation structure in green spaces in the city of Beijing, China. We compared the values of taxonomic diversity, functional diversity and community evolutionary distinctiveness in breeding bird communities, among ten urban parks of the world's third most populous city. Variation partitioning analysis and generalized linear mixed models were used to explore the unique and shared effects of land use composition and vegetation structure on each biodiversity metric.Park size was not associated with the diversity of bird communities in Beijing. Land use composition was the best predictor of change in bird community composition, followed by vegetation structure at ground level and the intersection between land use and vegetation structure at tree level. Water coverage increased bird species richness, while the presence of large trees increased both taxonomic diversity and bird functional richness in urban parks. Finally, the presence of patches of deciduous trees showed a positive effect on the average score of evolutionary distinctiveness of bird communities. In conclusion, we highlight that different elements of the environment are supporting different components of bird community diversity.  相似文献   

3.
The aim of this paper is to examine the role of urban public parks in maintaining connectivity and butterfly assemblages. Using a regression framework, we first test the relative importance of park size and isolation in predicting abundance and species richness of butterfly assemblages across a set of 24 public parks within a large metropolitan area, Marseille (South-East France). Then, we focus on landscape features that affect diversity patterns of the recorded butterfly communities. In this second part, the urban landscape surrounding each park is described (within a 1 × 1 km window) according to two major components: vegetated areas (habitat patches) and impervious or built areas (matrix patches). Specifically, we aim to test whether the incorporation of this built component (matrix) in the landscape analysis provides new insights into the understanding of ecological connectivity in the urban environment. We found a significant effect of both matrix configuration (shape complexity of the built patches) and distance from regional species pool (park isolation) on diversity of butterflies that overrides park size in their contribution to variation in species richness. This result suggests that many previous studies of interactions between biodiversity and urban landscape have overlooked the influence of the built elements.  相似文献   

4.
Tree diversity is one of the most important components of urban ecosystems, because it provides multiple ecological benefits and contributes to human well-being. However, the distribution of urban trees may be spatially segregated and change over time. To provide insights for a better distribution of tree diversity in a socially segregated city, we evaluated spatial segregation in the abundance and diversity of trees by socioeconomic group and their change over a 12-year period in Santiago, Chile. Two hundred vegetation plots were sampled across Santiago in 2002 and 2014. We found that overall abundance and diversity of urban trees for the entire city were stable over 12 years, whereas species richness and abundance of native tree species increased. There was segregation in tree species richness and abundance by socioeconomic group, with wealthier areas having more species and greater abundance of trees (for all tree species and native species) than poorer ones. Tree community composition and structure varied with socioeconomic group, but we found no evidence of increased homogenization of the urban forest in that 12 years. Our findings revealed that although tree diversity and abundance for the entire city did not change in our 12-year period, there were important inequities in abundance and diversity of urban trees by socioeconomic group. Given that 43% of homes in Santiago are in the lower socioeconomic areas, our study highlights the importance of targeting tree planting, maintenance and educational programs in these areas to reduce inequalities in the distribution of trees.  相似文献   

5.
Changes in ecosystem structure caused by urbanization produce a reduction in photosynthetic productivity, which can lead to reductions in resource availability for birds. Here, we analyzed the relation between photosynthetic productivity and bird assemblages in a subtropical urban ecosystem, in North-Western Argentina. We used Generalized Linear Models to assess the responses of bird abundance, richness and diversity to photosynthetic productivity, vegetation cover and distance to main natural forest. We found higher bird richness and diversity with increasing photosynthetic productivity and vegetation cover, and with decreasing distance to forests; while total bird abundance was positively related to vegetation cover. When we classified bird species in different groups, based on their use of the environment, we found that species adapted to urban environments were more dependent on photosynthetic productivity, while species related to native forests were more dependent on the distance to source forests. Understanding the factors that affect bird assemblages in cities is important for the development of strategies for urban planning and conservation.  相似文献   

6.
Arthropod natural enemies (ANEs) play an indispensable role in maintaining the balance for plant communities that also significantly affects the ANE diversities not only by supporting herbivorous prey, but also by providing habitats and floral food resources. Studying the diversity of ANEs is thus vital to develop an understanding of sustainable pest control. Relationships of the vegetation diversity (including richness, coverage, and Shannon–Wiener diversity) with associated arthropod aphidophagous natural enemies (AANEs) and their groups under Pinus tabuliformis of different distances were analyzed by non-metric multidimensional scaling (metaMDS). Our results indicated that the vegetation richness affects AANEs at a small scale, while the vegetation structure affects it at a large scale. The richness and abundance of AANEs and the abundance of green lacewings (GLs) and aphid parasitoids (APs) were positively related to neighboring tree richness. But the richness of AANEs and aphidophagous ladybirds (ALs) were negatively associated with nearby tree coverage, as well as AANE richness with close-up shrub coverage, while the abundance of AANEs, ALs, and GLs possessed a negative and hump-shaped relationship with nearby tree coverage, as well as the abundance of AANEs and GLs with close-up shrub coverage. When tree and shrub layers each had approximately half coverage within a vegetation structure, the richness and abundance of AANEs were highest. Similarly, the richness and abundance of AANEs were positively related to neighboring blooming plant richness. However, the richness of AANEs and ALs, and the abundance of AANEs, AL, GL, and APs had a positive association either with the coverage or with the Shannon–Wiener diversity of close-up blooming plants. Half coverage of the tree and shrub layer combined with higher diversities (richness, coverage, and Shannon–Wiener diversity) of blooming plants resulted in low aphid density. The results provide a basis for effectively improving AANE diversity.  相似文献   

7.
Gamboa-Badilla  Nancy  Segura  Alfonso  Bagaria  Guillem  Basnou  Corina  Pino  Joan 《Landscape Ecology》2020,35(12):2745-2757
Context

It is known that land-use and land-cover (LULC) changes affect plant community assembly for decades. However, both the short- and the long-term effects of contrasting LULC change pathways on this assembly are seldom explored.

Objectives

To assess how LULC change pathways affect woody plant community parameters (i.e. species richness, diversity and evenness) and species’ presence and abundance, compared with environmental factors and neutral processes.

Methods

The study was performed in Mediterranean limestone scrublands in NE Spain. Cover of each woody species was recorded in 150 scrubland plots belonging to five LULC change pathways along the past century, identified using land-cover maps and fieldwork. For each plot, total woody and herbaceous vegetation cover, local environmental variables and geographical position were recorded. Effects of these pathways and factors on plant community parameters and on species presence and abundance were assessed, considering spatial effects potentially associated to neutral processes.

Results

Species richness and diversity were associated with LULC change pathways and elevation, while evenness was only associated with this last. Pathways and environmental variables explained similar variance in both species’ presence and cover. In general, while community parameters were affected by recent-past (1956) use, species presence and abundance were associated with far-past (pre-1900) cropping. No relevant spatial effect was detected for any studied factor.

Conclusions

Historical LULC changes and current environmental factors drive local-scale community assembly in Mediterranean scrublands to an equal extent, while contrasting time-scale effects are found at community and species level. Neutral, dispersal-based processes are found to be non-relevant.

  相似文献   

8.
Conserving urban biodiversity is often promoted as a ‘win-win’ nature-based solution that can help align public health and biodiversity conservation agendas. Yet, research on the relationship between biodiversity and psychological well-being reveals inconsistent and complex results. This body of research is also restricted to a few socio-cultural and environmental contexts and tends to ignore differences in individual characteristics, such as nature relatedness (i.e., emotional affinity to nature) and ecological knowledge, that can influence people’s experience of biodiversity. The aim of this interdisciplinary research is to explore the relationships between biodiversity and psychological well-being, and test the moderating effect of nature relatedness and ecological knowledge on these relationships. An ecological survey was conducted in 24 small urban gardens in Israel to measure the richness and abundance of birds, butterflies and plants, as well as land cover characteristics. In parallel, a social survey (close-ended questionnaires) was conducted in-situ to measure psychological well-being, nature relatedness, ecological knowledge, perceived species richness and socio-demographic variables. Psychological well-being measures were mostly associated with the cover of woody species, perceived species richness, and to a lesser extent, with actual species richness and abundance, for all taxa. Nature relatedness moderated these relationships. Respondents with high nature relatedness demonstrated positive well-being-richness relationships, while those with intermediate, or low nature relatedness showed no, or even negative relationships, respectively. Opposite relationships were recorded for bird abundance. Overall, individuals demonstrated poor ecological knowledge and this variable moderated only few relations between well-being measures, perceived butterfly richness and bird abundance. Our results demonstrate that one-size-does-not-fit-all when considering the relationship between psychological well-being and biodiversity, and that affinity to nature is a key moderator for this relationship. Designing urban green spaces that provide inclusive and meaningful nature experiences and foster emotional affinity to nature, is therefore key to aligning ecological and social objectives for sustainable urban planning.  相似文献   

9.
The parameters referring to landscape structure are essential in any evaluation for conservation because of the relationship that exists between the landscape structure and the ecological processes. This paper presents a study of the relationships between landscape structure and species diversity distribution (estimated in terms of richness of birds, amphibians, reptiles and butterflies) in the region of Madrid, Spain. The results show that the response of species richness to landscape heterogeneity varies depending on the group of species considered. For birds and lepidopterans, the most important factor affecting the distribution of richness of species is landscape heterogeneity, while other factors, such as the specific composition of land use, play a secondary role at this scale. On the other hand, richness of amphibians and reptiles is more closely related to the abundance of certain land-use types. The study highlights the importance of heterogeneity in Mediterranean landscapes as a criterion for landscape planning and for definition of management directives in order to maintain biodiversity.  相似文献   

10.
Different organisms respond to landscape configuration and spatial structure in different terms and across different spatial scales. Here, regression models with variation partitioning were applied to determine relative influence of the three groups of variables (climate, land use and environmental heterogeneity) and spatial structure variables on plant, bird, orthopteran and butterfly species richness in a region of the Southern Alps, ranging in elevation from the sea level to 2,780 m. Grassland and forest cover were positively correlated with species richness in both taxonomic groups, whilst species richness decreased with increasing urban elements and arable land. The variation was mainly explained by the shared component between the three groups in plants and between landscape and environmental heterogeneity in birds. The variation was related to independent land use effect in insects. The distribution in species richness was spatially structured for plants, birds and orthopterans, whilst in butterflies, no spatial structure was detected. Plant richness was associated with linear trend variation and broad-scale spatial structure in the northern part of the region, whilst bird richness with broad-scale variation which occurs on the external Alpine ridge. Orthopteran diversity was strongly related to fine-scale spatial structure, generated by dynamic processes or by unmeasured spatially structured abiotic factors. Although the study was carried out in relatively small area, the four taxonomic groups seem to respond to biodiversity drivers in a surprisingly different way. This has considerable implications for conservation planning as it restricts the usefulness of simple indicators in prioritizing areas for conservation purposes.  相似文献   

11.
The aim of this study was to explore different components of avian diversity in two types of urban green areas, parks and cemeteries, in four European countries in relation to environmental characteristics. We studied bird species richness, functional diversity and evolutionary distinctiveness in 79 parks and 90 cemeteries located in four European countries: the Czech Republic, France, Italy and Poland.First, we found no significant differences between cemeteries and parks in bird diversity. However, in both parks and cemeteries, only: two community metrics were affected by different environmental characteristics, including local vegetation structure and presence of human-related structures. Species richness was positively correlated with tree coverage and site size, functional diversity was unrelated to any of the measured variables, while the mean evolutionary distinctiveness score was positively correlated with tree coverage and negatively associated with the coverage of flowerbeds and number of street lamps.Our findings can be useful for urban planning: by increasing tree coverage and site size it is possible to increase both taxonomic richness and evolutionary uniqueness of bird communities. In both parks and cemeteries, the potential association between light pollution and bird species richness was negligible. We also identified some thresholds where bird diversity was higher. Bird species richness was maximized in parks/cemeteries larger than 1.4 ha, with grass coverage lower than 65%. The evolutionary uniqueness of bird communities was higher in areas with tree coverage higher than 45%. In conclusion, the findings of this study provide evidence that cemeteries work similarly than urban parks supporting avian diversity.  相似文献   

12.
13.
The response of animal communities to habitat quality and fragmentation may vary depending on microhabitat associations of species. For example, sensitivity of species to woody habitat fragmentation should increase with their degree of association with woody plants. We investigated effects of local and landscape factors on spider communities in different microhabitats within Swiss apple orchards. We expected a stronger negative effect of woody habitat fragmentation on spiders inhabiting tree canopies compared to spiders living in the meadow. The 30 orchards that we sampled varied in woody habitat amount and isolation at landscape and patch scales. Local factors included management intensity and plant diversity. Spiders associated with meadow were affected by plant diversity, but not by fragmentation. In contrast, spiders associated with canopies responded to isolation from other woody habitats. Surprisingly, we found both positive and negative effects of habitat isolation on local abundance. This indicates that differences in dispersal and/or biotic interactions shape the specific response to habitat isolation. The relative importance of local and landscape factors was in accordance with the microhabitat of the spiders. Thus, considering microhabitat associations can be important for identifying processes that would be overlooked if sampling were pooled for the whole habitat.  相似文献   

14.
There is increasing focus on designing liveable cities that promote walking. However, urban walking routes can expose people to adverse environmental conditions that reduce health, well-being and biodiversity. Our primary objective is to assess how urban form is associated with environmental quality, including biodiversity, for people moving through urban spaces. We assess a range of environmental conditions that influence human health and biodiversity (temperature, noise and particulate pollution) and biodiversity of three taxa (trees, butterflies and birds) along 700 m public walking routes embedded in 500 m x 500 m grid cells across three UK towns. Cells are selected using random stratification across an urbanisation intensity gradient. Walking routes in more built-up areas were noisier and hotter; noise levels further increased in areas with more industrial land-use and large roads. There was no evidence of vegetation mitigating noise or temperature, but there was some evidence that increased vegetation cover mitigated small particulate pollution. Walking routes in more built-up environments had lower butterfly, bird and native tree species richness, and reduced butterfly abundance. Large roads were associated with reduced bird species richness and increased noise was associated with reduced bird abundance. Most specific measures of vegetation in the surrounding matrix (median patch size, structural complexity at 1.5 m resolution) were not detectably associated with biodiversity along walking routes, indicating minimal beneficial spill-over. Increased garden cover in the surrounding matrix was associated with less abundant and less species-rich butterfly communities. Our results highlight considerable heterogeneity in the environmental quality of urban walking routes and pedestrians’ potential to experience biodiversity along these routes, driven by reduced quality in areas with more built cover. A greater focus is needed on mitigating adverse effects of specific features of the built environment (roads, industrial areas, noise) surrounding walking routes to enhance the co-benefits of more biodiversity and healthier conditions for pedestrians.  相似文献   

15.
Urbanization is a permanent and still continuing expansion of human settlements and is responsible for dramatic changes of natural areas to urban areas. In traditional view, urbanization is often blamed for the loss of biodiversity and biotic homogenization of natural communities. However, for some species, urban areas, can represent suitable environment for life and even enable them to maintain stable and abundant populations. Urban ecosystems are not homogenous; within human settlements we can find several different habitats which can be occupied by species with different tolerance to certain aspects of urban life. This diversity can be exhibited by interhabitat changes in species richness, diversity and abundances of local communities. Here, we investigated biodiversity patterns in bird communities of two urban habitats, parks and cemeteries, in three Central European countries. Data on species richness, diversity and abundances of birds were collected from published papers as well as unpublished sources. Our analyses revealed that bird species richness was positively correlated with area and age of trees in both habitat types. There was however no significant relationship between species diversity and area in both habitat types. Moreover, species composition of bird communities significantly varied between cemeteries and parks with strong preference for one of habitat types in several species. Predominant occupancy of habitat type by certain species could be linked to interhabitat differences in vegetation structure, human behaviour and management. Interestingly, several bird species often recognised as urban avoiders were detected in surveyed cemeteries and parks.  相似文献   

16.
Tardigrade communities are affected by micro and macro-environmental conditions but only micro-environmental variables, and altitudinal gradients have been studied. We review previous reports of altitudinal effects and evaluate the influence by interacting macro- (climate, soils, biome, and others) and micro-environmental (vegetation, moss and leaf litter) factors on tardigrade assemblages at the Sierra de Guadarrama mountain range (Iberian Central System Mountains, Spain). Terrestrial tardigrade assemblages were sampled using standard cores to collect leaf litter and mosses growing on rocks. General Linear Models were used to examine relationships between Tardigrada species richness and abundance, and macro- and micro-environmental variables (altitude, habitat characteristics, local habitat structure and dominant leaf litter type, and two bioclimatic classifications). Variation partitioning techniques were used to separate the effects of altitude and habitat variation, and to quantify the independent influences of climate and soil, vegetation structure and dominant type of leaf litter. Altitude shows a unimodal relationship with tardigrade species richness, although its effect independent of habitat variation is negligible. The best predictors for species richness were bioclimatic classifications. Separate and combined effects of macro-environmental gradients (soil and climate), vegetation structure and leaf litter type are important determinants of richness. A model including both macro- and micro-environmental variables explained nearly 60% of tardigrade species richness in micro-scale plots. Abundance was significantly related only to soil composition and leaf litter type. Tardigrade abundance was not explained by macro-environmental gradients analysed here, despite a significant correlation between abundance and richness.  相似文献   

17.
The Neotropical region is undergoing high levels of urban expansion and harbors the greatest diversity of vascular epiphytes globally. In cities, it could be expected that the density of woody vegetation positively predicts epiphyte communities by providing substrate, resources for pollinators, and buffering microclimatic conditions. However, there is a dearth of knowledge regarding how urbanization intensity affects the diversity of vascular epiphytes. In this study, we assessed the relationship between a woody cover gradient and bromeliad species richness and community composition across a streetscape of the Neotropical city of Xalapa (Mexico). We recorded bromeliads in nine street segments and one peri-urban green space. These sites represent a gradient of woody cover ranging from 10.5% to ∼87% in a 100 m buffer, and 100% in the peri-urban green space. We recorded 824 individuals of 14 species (all from the Tillandsioideae subfamily). The most abundant species was Tillandsia recurvata and the most frequent ones were T. juncea and T. schiedeana. Results show that bromeliad species richness was positively related to the woody cover, as expected. Interestingly, community composition did not associate with the percentage of woody cover. These results suggest that additional factors such as microclimatic conditions and seed availability and/or dispersal may be key modulators on the establishment of bromeliad species. Nevertheless, wooded streets do show potential for harboring diverse bromeliad communities.  相似文献   

18.
Wetland and pond hydric vegetation is impacted across the rural, peri-urban, and urban zones by anthropogenic activities such as agricultural production, industrial manufacturing, and urban development. Previous studies have assessed urban and rural wetland vegetation, but have rarely explored the peri-urban zone of development. Therefore, to investigate the impacts of urbanization on hydric vegetation, thirty pond sites (10 rural, 10 peri-urban, and 10 urban) were randomly selected within each of the three zones. The vegetation community at each site was assessed using a quadrat method to compare the vegetation composition. In addition, floristic quality based on the conservatism value of each plant species was used to assess wetland vegetation. Results show plant communities of rural sites differed from both urban and peri-urban sites due partly to urbanization reducing the cover of obligate wetland species. Peri-urban sites contained the highest species richness, due to the increase in introduced plants associated with urbanization. Urban sites contained the lowest species richness, some of which is due to the use of rock riprap surrounding the edges of most sites. The plant conservatism values of vegetation were not different for rural and peri-urban sites, but were significantly lower in urban sites. Information from this study is useful to wetland professionals, environmental managers, and urban planners to predict hydric vegetation responses within peri-urban areas in the Prairie Pothole Region.  相似文献   

19.
A good knowledge of species diversity is essential for urban forest planning and management. In this study, we analyzed species diversity of urban forests in China using data synthesized through a systematic review. Our analysis showed that 3740 taxa of woody plants at species level and below have been reported in urban forests in 257 cities. Merging to the species level, there were 2640 species, including 1671 trees, 743 shrubs, and 226 lianas. Salix babylonica L. was the most widely distributed urban tree species in China. Overall, native species accounted for 76.02% of the observed species while the rest were exotic species. Inside cities, parks contained more species than other types of land use. Among cities, composition similarity of urban forests decreased as spatial distances among them increased. Besides, there was a latitudinal pattern in compositional similarity of urban forests in China. The relatively low ratio of the number of woody plant species in urban forests to these naturally distributed in China indicates that there is plenty of room for increasing species diversity of urban forests in China. However, cautions must be taken to avoid increasing compositional similarity of urban forests in China at the same time.  相似文献   

20.
Different taxonomic groups perceive and respond to the environment at different scales. We examined the effects of spatial scale on diversity patterns of butterflies and birds in the central Great Basin of the western USA. We partitioned the landscape into three hierarchical spatial levels: mountain ranges, canyons, and sites within can yons. We evaluated the relative contribution of each level to species richness and quantified changes in species composition at each level. Using additive partitioning, we calculated the contribution of spatial level to overall species diversity. Both canyon and mountain range had significant effects on landscape-level species richness of butterflies and birds. Species composition of butterflies was more similar in space than species composition of birds, but assemblages of both groups that were closer together in space were less similar than assemblages that were further apart. These results likely reflect differences in resource specificity and the distribution of resources for each group. Additive partitioning showed that alpha diversity within canyon segments was the dominant component of overall species richness of butterflies but not of birds. As the size of a sampling unit increased, its contribution to overall species richness of birds increased monotonically, but the relationship between spatial scale and species richness of butterflies was not linear. Our work emphasizes that the most appropriate scales for studying and conserving different taxonomic groups are not the same. The ability of butterflies and birds to serve as surrogate measures of each others diversity appears to be scale-dependent.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号