首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green roofs provide a number of different urban ecosystem services (UESS), e.g. regulation of microclimate, support of air quality improvement, or stormwater retention. To estimate the spatial variation of green roof UESS across an urban area, a GIS-based mapping and spatial analysis methodology was established and applied to the city of Braunschweig, Germany. Based on the analysis of available geodata, in a first step, a quantity of 14,138 rooftops in the study area (14% of all buildings) was found to be generally suitable for greening. This resulted in a green roof area of 3 km2. Based on criteria such as roof slope and minimum roof size, nearly two-thirds of these buildings (8596 buildings, 8.6% of total number of buildings) were categorised ‘appropriate’ for greening and subject to green roof UESS analysis.The spatial distribution of green roof UESS was estimated based on the categories thermal urban climate, air quality, stormwater retention and biodiversity. Due to their potential benefits in the four UESS categories an overall assessment resulted in a number of 867 roofs (0.9% of total number of buildings) categorised as ‘high benefit’ from rooftop greening. Another 3550 buildings (3.5%) and 4179 buildings (4.2%) were defined as ‘moderate benefit’ and ‘low benefit’, respectively. The inner city area of Braunschweig appears as a hot-spot of green roof UESS, i.e. higher percentage of ‘high benefit’ green roofs in comparison to residential areas. The proposed method is a simple but straightforward approach to analyse urban green roof UESS and their spatial distribution across a city but it is sensitive to the quality of the available input geodata.  相似文献   

2.
This paper shows the effects of several variables, which co-cause the Urban Heat Island effect on temperature distribution and outdoor thermal comfort (by using the Predicted Mean Vote, PMV) on dense urban environments. The study was conducted by means of a three-dimensional microclimate model, ENVI-met 3.1, which forecasts the microclimatic changes within urban environments. The effects of building density (% of built area) and canyon effect (building height) on potential temperature, mean radiant temperature, and Predicted Mean Vote distribution are quantified. The influence of several types of green areas (vegetation on the ground and on roofs) on temperature mitigation and on comfort improvements is investigated for different atmospheric conditions and latitudes in a Mediterranean climate. The research quantifies the effects of the variables investigated on temperature distributions and in determining outdoor comfort conditions. Vegetation on the ground and on roofs mitigates summer temperatures, decreases the indoor cooling load demand, and improves outdoor comfort. The results of the study demonstrate that density and height of buildings in a city area influence potential temperature, mean radiant temperature, and Predicted Mean Vote distribution; for most of the cases examined higher density causes higher temperatures and with taller buildings vegetation has higher cooling effects. Considering the cooling effect of vegetation, a difference can be noticed depending on the amount of green areas and vegetation type. The results of this study show also that vegetation is more effective with higher temperatures and lower relative humidity values in mitigating potential temperatures, mean radiant temperatures, and PMV and in decreasing the cooling load demand.  相似文献   

3.
Urbanization is one of the most intensive threats to biodiversity worldwide. The rapid sprawl of urban settings often comprises a drastic landscape transformation due to the replacement of natural vegetation by impervious surfaces. However, cities can serve as critical refuges for some native fauna, particularly for pollinators. Here we used citizen data to contrast the structure of hummingbird-plant meta-networks across different greenspaces (natural protected areas, urban parks, urban gardens and street trees areas) in a tropical megacity. We compiled hummingbird-plant visitation records in Mexico City available in two citizen science resources: iNaturalist and eBird. We first determined whether the retrieved dataset was representative to estimate network metrics by calculating sample coverage and estimating species richness in different greenspaces. Then, we characterized network structure and plant importance for network organization according to plant origin, life form and pollination syndrome. We recorded 17 hummingbirds visiting 84 plant species, encompassing a total of 742 interactions. Natural protected areas and urban parks showed a higher richness of hummingbirds and plants. All networks had low levels of connectance, specialization, and nestedness. Modularity was significant across all networks with higher values in natural protected areas and urban gardens. Native and introduced plant species showed a similar contribution to network organization. Non-ornithophilous plants were most important in natural protected areas, while tree species were most important in street trees greenspaces. Our results provide evidence of generalization of hummingbird-plant networks in urban areas. Introduced species and non-ornithophilous plants were equally important for hummingbirds, suggesting an integration of alien plants with no specialized bird pollination traits into ecological networks in urban scenarios. Promoting conservation initiatives as pollinator gardens with key native species for hummingbirds across the city could contribute to the functional connectivity and restoration of ecological interactions in cities.  相似文献   

4.
Urban green spaces, and green infrastructure more generally, provide multiple benefits that can enhance urban livability and sustainability. These range from the mitigation of air pollution and urban heat island (UHI) effect, to multi-dimensional benefits to human wellbeing and biodiversity. However, the expansion of urban green spaces is not always feasible in many cities. In such urban contexts, there have been proposals to utilize rooftops as green roofs in order to gain some of these benefits. This study spatially identifies areas where roofs have the potential to provide different types of benefits associated with urban green spaces if they are retrofitted with green roofs. Through a GIS-based approach we catalogue available roof space in Sumida ward in Tokyo for green roof implementation, and subsequenlty evaluate the potential of each roof patch to offer four types of benefits if retrofitted with a green roof, namely UHI effect mitigation, air pollution mitigation, and benefits to subjective wellbeing and biodiversity. Approximately 25% of the total roof surface in Sumida ward can potentially be used for green roof implementation. Furthermore, about 5.2% and 59% of this area has a respectively high and moderate potential to provide all four benefits if retrofitted with green roofs. This could increase the extent of green spaces by 10% and 120% respectively across the Sumida ward. In this sense, green roofs can become a major element of green infrastructure with ripple positive effects for urban livability and sustainability through the provision of UHI effect and air pollution mitigation, and benefits to subjective wellbeing and biodiversity.  相似文献   

5.
Ecological connectivity is the foundation of maintaining urban biodiversity and ecosystem health. Identifying and managing ecological (connectivity) networks can help maintain the stability of urban ecosystems. However, few studies have explored the cluster effect in the ecological network caused by the imbalance in connectivity strength between habitat patches, which is not conducive to the in-depth restoration of ecological networks. In the present study, a typical urban area, Shenzhen, was used as an example to analyze the important habitats in the city based on the focal species and to identify an ecological network. Habitat patch clusters in the ecological network were explored based on random walk network community detection. These are clusters of closely connected habitat lands. Finally, we analyzed existing urban policies for the protection of clusters and the points to be repaired in the network. The results showed that 50 ecological corridors connected 39 habitats in the study area, which further formed seven habitat patch clusters. Most of the clusters were well-protected by existing policies. Nineteen barrier points were identified between the clusters, and their restoration helped strengthen the connectivity between clusters. This study provides a reference for future urban ecological restoration.  相似文献   

6.
Green roofs are promoted as an effective nature-based urban heat island mitigation strategy. Green roof cooling and energy-saving benefits have been simulated for various climatic zones, but mainly at the building scale. Due to a lack of fact-based information on neighborhood cooling benefits, green roof construction lags and has rarely been incorporated into urban planning actions. This study investigated the thermal benefits and energy savings of green roofs for the central area of the Xianlin Campus of Nanjing University at the neighborhood scale. Three scenarios were simulated for a hot summer day using a validated ENVI-met model: a base case (S0), extensive green roofs (EGRs) (S1), and intensive green roofs (IGRs) (S2). The air temperature cooling benefit from green roofs extended downwards to the pedestrian level. The EGR scenario achieved a maximum 0.29 °C air temperature reduction at the pedestrian level and 0.37 °C at the rooftop level. The IGR scenario achieved a maximum 0.35 °C air temperature reduction at the pedestrian level and 0.45 °C at the rooftop level. EGRs and IGRs reduced energy demands for air-conditioning by 0.39 kWh·m−2·d−1 and 0.56 kWh·m−2·d−1 and CO2 emissions by 31,997 kg·d−1 and 45,967 kg·d−1, respectively. These results confirm that green roofs yield substantial cooling and carbon mitigation benefits. Our study provides essential data to establish green roofs as mainstream cooling technology in subtropical cities. The results also imply that urban planners and policymakers may need to embrace the implementation of green roofs in long-term planning and building design practices to improve urban thermal environments, reduce building energy demand, and curb carbon emissions.  相似文献   

7.
Liveability is an important component of the sustainable urban environment, especially in residential neighbourhoods. This study presents a comparison in perceived liveability between residents living in two very different locations, Tehran, Iran and Tartu, Estonia, using a questionnaire survey (n = 102). The image-questionnaire was used to measure residents’ response towards environmental factors and to examine the relationships between the attributes of residential neighbourhoods and perceived liveability. Statistical analyses were performed to analyze the data collected from the survey. The results showed that the neighbourhood liveability was positively influenced by proportion and scale of the spaces, amount of private green areas, street character, amount of public greenery, the variety of building form, the mix of buildings from different periods, perceived crowding and social density. The study demonstrated that residents can assess the factors and that the approach worked in two contrasting locations. The results also showed a great deal of similarity in preference, although this was not the main aim of the study. The approach has potential to be incorporated into participatory urban planning models.  相似文献   

8.
Green roofs are a promising tool to return nature to cities and mitigate biodiversity loss brought about by urbanization. Yet, we lack basic information on how green roofs contribute to biodiversity and how their placement in the urban landscape affects different taxa and community composition. We studied the effects of local and landscape variables on beetle communities on green roofs. We expected that both local roof characteristics and urban landscape composition shape communities, but that their relative importance depends on species characteristics. Using pitfall traps, we collected beetles during two consecutive years from 17 green roofs in Basel, Switzerland. We evaluated the contribution of six local and six landscape variables to beetle community structure and to the responses of individual species. Communities on the roofs consisted of mobile and open dry-habitat species, with both local and landscape variables playing a role in structuring these communities. At the individual species level, local roof variables were more important than characteristics of the surrounding urban landscape. The most influential factors affecting the abundances of beetle species were vegetation, described as forb and grass cover (mainly positive), and roof age (mainly negative). Therefore, we suggest that the careful planning of green roofs with diverse vegetation is essential to increase their value as habitat for beetles. In addition, while beetle communities on green roofs can be diverse regardless of their placement in the urban landscape, the lack of wingless species indicates the need to increase the connectivity of green roofs to ground level habitats.  相似文献   

9.
As the world’s population gets increasingly more urban, the preservation of urban green spaces becomes an important issue in the political agenda worldwide. These spaces may mitigate the negative environmental impacts of urbanisation and improve quality of life. Aiming to increase knowledge in urban biodiversity we compared the diversity of vascular plants and soil microbial communities (fungi and bacteria) in two contrasting typologies of urban green spaces (public gardens and remnant forests) in the city of Coimbra (Portugal). We found 252 taxa of vascular plants of which 58% were native and 42% exotic. Although overall diversity indices were similar in both typologies of green spaces, species richness and percentage cover of native taxa were significantly higher in forests than in gardens. Overall, plant communities in the two typologies of green spaces were distinct. We found high variability among gardens, which is consistent with vegetation in gardens being determined by man rather than by competitive or successional processes. Interestingly, the disparity between gardens and forests was also visible for both bacterial and fungal communities indicating an association between above and below-ground communities. We showed that, due to their origin, remnant forests harbour plant taxa with high conservation and ecological values. It also showed that gardens have higher percentage of exotic species, which led us to conclude that native plant species should be given more emphasis in these spaces. City planners should promote urban development by incorporating an ecological perspective into their management plans to enhance human health and global environmental quality.  相似文献   

10.
Changing an urban environment and replacing vegetated surfaces with low albedo materials is one of the reasons for increasing temperatures in an urban environment and consequently also one of the key causes of urban heat island effects. In this study, an experimental investigation at the micro-scale and also a numerical simulation at the macro-scale of a typical urban environment in Adelaide were conducted to estimate the potential for mitigating the UHI effect. The results showed that existing low albedo materials such as asphalt, metal roofs and brick pavements contribute to the heat island potential. Also, urban development and a lack of natural vegetation contribute to increased temperatures in cities. The ability of two types of extensive and intensive green roofs to reduce the surrounding micro-climate temperature were monitored. The results showed that they have significant cooling effects in summer time and could behave as an insulation layer to keep buildings warmer in the winter. Furthermore, different scenarios of adding green roofs to the Adelaide urban environment were investigated using the Envi–MET model. The scenario modelling of adding green roofs in a typical urban area in Adelaide, Australia, supported the hypothesis that this can lead to reductions in energy consumption in the Adelaide urban environment. Also an increased use of other water sensitive urban design technologies such as green walls and street trees together with the adoption of high albedo materials is recommended for achieving the optimum efficiency in terms of reducing urban temperatures and mitigating urban heat island effects.  相似文献   

11.
The pursuit of urban agriculture as part of a city’s green infrastructure is often a challenge, particularly within compact cities, where there is a limited amount of space between buildings for urban farming and gardening. Instead, such high-rise urban developments present often under-utilized spaces on the vertical surfaces of buildings. A key unknown is the adequacy of light for plant growth. Many leafy vegetables that require high amounts of light form a significant proportion of the staple diet in many Asian countries. We report on the assessment of sunlight adequacy for growing leafy vegetables in a compact tropical city, based on the high-rise and high-density residential environment of Singapore. Leaf physiological traits of seven leafy vegetables were assessed and used to estimate plant light requirements. A survey of photosynthetically active radiation (PAR) along exposed corridors showed that the daily light integral (DLI) value ranged from 2 to 35 mol m−2 d−1 under relatively ideal weather conditions during days with abundant solar insolation, and façades that experienced a minimum of half-day direct insolation matched the light requirements of vegetables within the moderate to very high-light categories. With regard to the building form, PAR increased gradually with height, but remains highly influenced by façade orientation and configuration. Owing to the annual north–south oscillation of the sun’s path, reduced annual PAR variability and higher total annual PAR at façades, buildings with an east–west orientation will better support continuous vegetable cultivation, especially for basic building typologies without self-shading configurations. However, excessive PAR and temperatures during mid-day hours may hinder plant growth. By highlighting such patterns in levels of PAR, this study confirms the potential for high-rise and high-density conditions in the tropics to support farming using typically under-utilized vertical spaces of residential buildings.  相似文献   

12.
As the impact of green space shrinkage in urban centers becomes obvious, local and regional authorities must adopt environmental planning policies that can help create new green areas to ensure a good quality of life for citizens, along with the rehabilitation of the natural environment. One approach is the promotion of green infrastructure on buildings, including multi-dwelling apartment buildings. In order to effectively promote green infrastructure on buildings, it is essential to comprehend public attitudes toward green infrastructure, so that suitable and effective strategies can be implemented by policy makers. In this study, eight hundred respondents were asked to provide their views on green infrastructure on buildings, on construction that should take place on blocks of apartments in order to accommodate green infrastructure and on the related benefits that may arise from creating green spaces on buildings. A structured questionnaire and stratified sampling were used for the interviews, which were conducted with apartment owners in two regional units of Athens. The results showed that most citizens are willing to proceed with the installation of a green roof, trellis or vertical garden, in order to improve the aesthetics and functionality of the building they live in. Most of the respondents are not familiar with the energy savings that may occur from the installation of a green roof, vertical trellis or garden and wish for a subsidy from the state in order to implement green building solutions. To conclude, the participants in our study are not environmentally aware, since they are not interested in energy conservation but only about the aesthetics of their building; furthermore, they expect to receive financial support from the state in order to make any changes to their home.  相似文献   

13.
Urban green infrastructure supports resilience in cities and promotes sustainable resource management. Small green areas, including school green areas (SGAs), are an important component of urban green infrastructure, playing a key role in supplying cities with educational services. This article describes how SGAs can amplify an urban green area's connectivity and multifunctionality. The analysis was performed in Bucharest as a case study. A survey based on questionnaires was used to obtain data regarding green spaces within public schools. A total of 411 administrators from 461 public schools participated in the survey for a response rate of 89.1%. Information from the questionnaires was augmented with spatial data of SGAs and public green spaces, i.e., parks and city gardens. Using parametric and nonparametric statistical analysis, we first identified the variables that determine an SGA's presence and size. Potential connectivity assessment results showed that most of the schools that lack or have small-sized SGAs have the possibility to cover their green space deficit by developing activities within nearby public green spaces. A structural connectivity assessment of SGAs toward other public urban green areas revealed that SGAs are an important element of the urban environment by serving as stepping stones to species flow. The multifunctionality of the SGAs was emphasized through the educational services they provide, being involved in pupils’ daily activities. The increased connectivity and multifunctionality of urban green infrastructure through small, specialized green areas, such as SGAs, is an indicator of the fact that such areas can be used to ameliorate the deficit of green space in major urban areas.  相似文献   

14.
This study analyzes the landscape characteristics and the residents’ recreational activities in the urban green spaces in Fuyang, Hangzhou, China. It explores the correlation of the desire to be in close proximity to urban green space to engage in recreational activities (the need for recreation) related to residents’ demographic and socio-economic factors: gender, education, monthly income and dwelling location. Residents’ preferences for landscape elements and attributes of urban green space are examined using principal components analysis. In addition, regression analysis identifies that coherence and vegetation are the most relevant factors correlated with perceived overall recreational appropriateness of the three most frequently visited urban parks. The purpose of the study is to attempt to quantify people's recreation needs in urban green space; identify the landscape components in urban green space which can encourage more outdoor visits and/or greater recreational activities; and provide proposals and strategies on planning, management and conservation for recreation-oriented urban green space which will enhance people's enjoyment and wellbeing by improving landscape esthetic quality, recreational and ecological function.  相似文献   

15.
By means of a cost benefit analysis, we compare public and private incentives to invest in extensive green roofs in urban areas. From the comparison of these public and private incentives we find that subsidies for green roofs are socially desirable and that subsidies are actually needed to convince potential private investors to construct green roofs. Specifically, we estimate the costs and benefits associated with an investment project in Dilbeek (Belgium) where a real estate investor considers the construction of an extensive green roof on an office building.  相似文献   

16.
Green Infrastructure (GI) connects different types of green features via various scales, thereby supporting urban biodiversity and service provision. This study presents a methodology capable of identifying multiple functions to assess GI in less-developed countries, where such methodologies are lacking. GI was assessed based on a high-resolution land use classification using both landscape metrics and spatial data within an urbanized region of San José, Costa Rica, at different scales (watershed, neighbourhood, object). Results showed highly fragmented green spaces (often <10 ha), typically unable to support high levels of biodiversity, along with a low amount of green space per inhabitant (<7.4 m²) within the watershed. Substantially higher tree cover (x6) and tree density (x5) were found in the greenest neighbourhood in comparison to the least green neighbourhood. Potential areas for new GI in the form of green roofs (4.03 ha), permeable pavement (27.3), and potential retention areas (85.3) were determined. Several green spaces (n = 11) were identified as promising GI sites with the potential to increase provision (18.6 m²/inhabitant). The adopted methodology demonstrates the potential of GI for increasing recreational green space access, runoff reduction, and flood retentions while supporting biodiversity, validating its utility in guiding decision-making and policy generation.  相似文献   

17.
Urban green spaces often form urban cool islands (UCIs), which are important for human health and urban sustainability. Previous studies have emphasized the cooling effects of urban green spaces on their surrounding areas at landscape level. Less attention, however, has been directed to effects of urban green space patterns on their own UCIs at patch level. In this study, we focused on the effects of spatial patterns of urban green patches on their own surface UCIs. The urban green spaces of Beijing, China, were extracted from one QuickBird image and were classified as Trees, Shrubs, Grass, Crops, River and Lake. Land surface temperatures (LSTs) were derived from four Landsat images, each in one season. The UCI was represented by the minimum LST of each urban green patch. Results showed spatial patterns of urban green patches had significant effects on their UCIs in four seasons. In detail, the size, edge and connectivity of urban green spaces all affected the UCIs negatively, and the influence was stronger in warm seasons. Shape of urban green space also had effects on UCIs, but the effects were stronger in cool seasons. Great differences were found between predictive values of metrics for different green types. Shape metrics were more important for indicating UCIs of River, Trees and Crops than were patch size and connectivity. However, patch size and connectivity metrics were more effective in determining UCIs of Shrubs, Grass and Lake than were shape metrics. Further, among shape metrics, only shape index was a good indicator of UCIs. The results of this study suggest that a combination of specific urban green types and pattern metrics are a prerequisite for analyzing the influence of urban green patterns on UCIs and for urban green design.  相似文献   

18.
Urban areas face severe challenges in mitigating and adapting to climate change within limited space. One solution is to develop multifunctional rooftop systems, which use underexploited urban rooftop spaces. Two main options have been to add greenery by installing extensive green roofs (EGRs) or to generate renewable energy by installing photovoltaic panels (PVs). Recently, combining the two systems on one rooftop (EGR-PV) to harvest both benefits has gained attention. Not every rooftop is suitable for such installations, which makes it difficult to estimate the scale of space a city can expect from rooftops to add greenery, renewable energy, or both. This study presents a geographical potential model using building parameters, a building stock layer, and LiDAR data to simultaneously identify the potential for installing EGRs, PVs, and EGR-PVs on rooftops, highlighting the competition and synergy between EGRs and PVs at the building level. As an empirical illustration to support future multifunctional urban rooftop space planning, Amsterdam was used as a case study. The results show that 47 % of rooftops are suitable for EGRs, which could expand the current greenery space by 6 %, and 55 % are suitable for PVs which could sufficiently provide electricity to households by 2030. Moreover, competition exists for 3.2 %, whereas synergy exists for 42 % of the existing rooftops.  相似文献   

19.
Urban green spaces play essential roles in regulating the global carbon cycle and reducing carbon dioxide (CO2) emissions. However, research on the carbon sequestration efficiency of urban public green spaces, which is closely related to the human settlement environment, has not received enough attention. Thus, we systematically analyzed the existing literature in the Web of Science core database using bibliometrics and network analysis combined with the CiteSpace visualization tool. The aim of this review was to elucidate the focus and development trend of research conducted between 2007 and 2022 on carbon sinks in urban public green spaces. Our results demonstrated that: 1) Numbers of related publications are increasing annually, indicating that the subject is receiving increasing global attention. Related research topics primarily focus on two aspects: carbon sink measurement methods and sustainable carbon sink design for urban public green spaces. 2) Methods for measuring and monitoring carbon sinks in the urban public green spaces include sample plot measurement, the assimilation method, the micrometeorological method, the remote sensing (RS) estimation method, and laboratory work. Most methods follow the forestry system approach and lack the methods and techniques to directly assess the carbon sink effectiveness of urban public green spaces. 3) Key factors affecting the carbon sink capacity of urban public green spaces are: plant species selection, plant community structure, green space characteristics, and maintenance management. 4) Future research should focus on encouraging public participation in the design of sustainable carbon sinks in urban public green spaces, advancing biodiversity research on carbon sinks in urban public green spaces, and enhancing the precision of measurements while addressing regional differences. This study contributes to the integration of research on the effectiveness of carbon sinks in urban public green spaces and provides a theoretical reference and guidance reduces prospective urban emission and achieves climate goals.  相似文献   

20.
Urban green spaces provide important ecological, environmental, and cultural benefits, including biodiversity conservation and human wellbeing. However, a significant portion of urban green space is currently managed as highly manicured grassy lawns that provide limited ecosystem services. Managing urban green spaces as diverse meadows can have a multitude of ecosystem benefits such as biodiversity conservation, stormwater infiltration, and aesthetics. Relatively little is known about the range of ecosystem services or disservices in managing urban green spaces as lawns versus meadows. In this paper, we separately characterize three major categories of ecosystem services and disservices (provisioning, regulation and maintenance, and cultural) delivered by urban lawns and meadows while highlighting several trade-offs and synergies associated with urban lawn and meadow management strategies. Additionally, we suggest specific research priorities to better evaluate ecosystem services and disservices across these urban green spaces. Understanding ecological, environmental, and cultural trade-offs and synergies of managing different urban green spaces is key to maintaining multiple ecosystem services in urban environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号