首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Ecosystem service estimation is a very popular topic. Many urban studies use the i-Tree Eco model developed by US Forest Service to estimate ecosystem services. Several ecosystem service estimation studies have been conducted acting upon the assumption that relationships developed elsewhere are applicable to sites that vary in species, site, climate, and environmental conditions. This study tested the accuracy of highly used existing leaf area and biomass models when used outside the region in which it was developed. To do this, we measured 74 urban trees from five species in Stevens Point, Wisconsin collecting data such as diameter at breast height (Dbh), tree height, height to the base of live crown, crown width, crown volume, leaf area, and leaf dry weight biomass. Using the data, we developed two models each to predict leaf area and biomass. Using ten independent samples, we compared our predictions with predictions from the existing models which are also used in i-Tree. Our results indicated that the local models developed in the current study predicted leaf area and biomass better than existing models which had higher prediction error. The difference in prediction will ultimately affect ecosystem services estimation when. using i-Tree, and future studies should acknowledge the difference.  相似文献   

2.
Urban trees store and sequester large amounts of carbon and are a vital component of natural climate solutions. Despite the well-recognized carbon benefits of urban trees, there is limited effort to examine how spatial distribution of carbon density varies across distinctive social, demographic, and built dimensions of urban landscapes. Moreover, it is unclear whether specific aspects of landscape structure and design could help increase carbon densities in urban trees. Here, we produced a fine-resolution carbon density map of urban trees in New York City (NYC) by integrating high-resolution land cover map, LiDAR-derived tree metrics, i-Tree Eco, and field survey data. We then explored spatial variations of carbon density across the gradients of urban development intensity, social deprivation index, and neighborhood age, and we examined the relationships between carbon density, and fragmentation, aggregation, size, and shape of tree canopy cover. We find that carbon stored in urban trees in NYC is estimated as 1078 Gg, with an average density of 13.8 Mg/ha. This large amount of carbon is unevenly distributed, with carbon densities being highest in Bronx and in open parks and street trees. Furthermore, carbon densities are negatively associated with urban development intensity and the social gradient of deprivation. Regarding the impacts of tree morphology on carbon density, our results show that while the amount of tree cover is the most influential factor in determining carbon density, small-sized forest patches and moderate levels of forest edges are also conductive to increasing carbon densities of urban trees. To incorporate urban forestry into developing innovative, effective, and equitable climate mitigation strategies, planners and decision makers need to identify the optimal spatial configuration of urban forests and invest in tree planting programs in marginalized communities.  相似文献   

3.
Residential lands constitute a major component of existing and possible tree canopy in many cities in the United States. To expand the urban forest on these lands, some municipalities and nonprofit organizations have launched residential yard tree distribution programs, also known as tree giveaway programs. This paper describes the operations of five tree distribution programs affiliated with the Urban Ecology Collaborative, a regional network for urban forestry professionals. We analyzed the programs’ missions, strategies, and challenges as reported through surveys and interviews conducted with program staff. The programs were led by nonprofit organizations and municipal departments in New York City, NY; Baltimore, MD; Philadelphia, PA; Providence, RI; and Worcester, MA. These organizations focused their tree distribution efforts on private residential lands in response to ambitious tree canopy or planting campaign goals. We assessed these programs through the framework of urban forests as social-ecological systems and discuss the programs’ biophysical, social and institutional contexts. Programs face principle-agent problems related to reliance on individual tree recipients to meet goals; their institutional strategies meant to ameliorate these problems varied. Differing organizational and partner resources influenced the programs’ abilities to perform outreach and follow-up on tree performance. Programs attempted to connect with diverse neighborhoods through free trees, targeting areas with low existing canopy, and forging partnerships with local community groups. Given tree recipients’ demand for smaller flowering or fruiting trees, as well as lack of resources for tree survival monitoring on private lands, program leaders appeared to have turned to social measures of success − spreading a positive message about trees and urban greening − as opposed to biophysical performance metrics. We conclude with suggestions for outcomes monitoring, whether those outcomes are social or biophysical, because monitoring is critical to the sustainability and adaptive management of residential tree programs.  相似文献   

4.
Green Infrastructure (GI) practices have shown to be promising in mitigating the air pollution in urban areas of several cities across the world. GI practices such as trees, green roofs and green walls are widely used in United States and Europe to mitigate the air pollution. However, there is yet limited knowledge available in identifying the most suitable GI strategy for an urban area in improving the air quality. Furthermore, it is evident that Australia is still lagging behind in adapting GI to mitigate air pollution, compared with US and Europe. Therefore, this study analyzed the air quality improvement through several GI scenarios consisting of trees, green roofs and green walls considering a case study area in Melbourne, Australia by using the i-Tree Eco software. The results were compared with case studies in different cities across the world. The results showed that the i-Tree Eco software can be successfully applied to an Australian case study area to quantify the air quality improvement benefits of GI. The results were further assessed with several environmental, economic and social indicators to identify the most suitable GI scenarios for the study area. These indicators were quantified using different methods, to assess the effectiveness of different GI scenarios. The results showed that, trees provided the highest air pollution removal capability among the different GI considered for the study area. Combination of different GI such as green roofs and green walls with trees did not provide a significant increment of air quality improvement however, has provided more local benefits such as building energy savings. The results obtained from this study were also beneficial in developing policies related to future GI applications in major cities of Australia for the air quality improvement.  相似文献   

5.
Vacant land, a product of population and economic decline resulting in abandonment of infrastructure, has increased substantially in shrinking cities around the world. In Cleveland, Ohio, vacant lots are minimally managed, concentrated within low-income neighborhoods, and support a large proportion of the city’s urban forest. We quantified abundance, richness, diversity, and size class of native and exotic tree species on inner-city vacant lots, inner-city residential lots, and suburban residential lots, and used i-Tree Eco to model the quantity and economic value of regulating ecosystem services provided by their respective forest assemblages. Inner-city vacant lots supported three times as many trees, more exotic than native trees, and greater tree diversity than inner-city and suburban residential lots, with the plurality of trees being naturally-regenerated saplings. The urban forest on inner-city vacant lots also had two times as much leaf area and leaf biomass, and more tree canopy cover. The quantity and monetary value of ecosystem services provided by the urban forest was greatest on inner-city vacant lots, with exotic species contributing most of that value, while native taxa provided more monetary value on residential lots. The predominately naturally-regenerated, minimally managed exotic species on vacant land provide valuable ecosystem services to inner-city neighborhoods of Cleveland, OH.  相似文献   

6.
Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the existing tree populations reveal that, on average, about 1 in 3 trees are planted in cities. Land uses and tree species with the highest proportion of trees planted were residential (74.8 percent of trees planted) and commercial/industrial (61.2 percent) lands, and Gleditsia triacanthos (95.1 percent) and Pinus nigra (91.8 percent). The percentage of the tree population planted is greater in cities developed in grassland areas as compared to cities developed in forests and tends to increase with increased population density and percent impervious cover in cities. New tree influx rates ranged from 4.0 trees/ha/yr in Baltimore to 8.6 trees/ha/yr in Syracuse. About 1 in 20 trees (Baltimore) and 1 in 12 trees (Syracuse) were planted in newly established tree populations. In Syracuse, the recent tree influx has been dominated by Rhamnus cathartica, an exotic invasive species. Without tree planting and management, the urban forest composition in some cities will likely shift to more pioneer or invasive tree species in the near term. As these species typically are smaller and have shorter life-spans, the ability of city systems to sustain more large, long-lived tree species may require human intervention through tree planting and maintenance. Data on tree regeneration and planting proportions and rates can be used to help determine tree planting rates necessary to attain desired tree cover and species composition goals.  相似文献   

7.
Across cities worldwide, people are recognizing the value of greenspace in ameliorating the health and well-being of those living there, and are investing significant resources to improve their greenspace. Although models have been developed to allow the quantification of ecosystem services provided by urban trees, refinement and calibration of these models with more accurate site- and species-specific data can increase confidence in their outcomes. We used data from two street tree surveys in Cambridge, MA, to estimate annual tree mortality for 592 trees and diameter growth rates for 498 trees. Overall tree turnover between 2012 and 2015 was relatively low (annualized 3.6% y−1), and mortality rate varied by species. Tree growth rates also varied by species and size. We used stem diameter (DBH) and species identity to estimate CO2 sequestration rates for each of 463 trees using three different model variations: (1) i-Tree Streets, (2) Urban Tree Database (UTD) species-specific biomass allometries and growth rates, and (3) empirically measured growth rates combined with UTD biomass allometries (Empirical + UTD). For most species, the rate of CO2 sequestration varied significantly with the model used. CO2 sequestration estimates calculated using i-Tree Streets were often higher than estimates calculated with the UTD equations. CO2 sequestration estimates were often the lowest when calculated using empirical tree growth estimates and the UTD equations (Empirical + UTD). The differences among CO2 sequestration estimates were highest for large trees. When scaled up to the entire city, CO2 sequestration estimates for the Empirical + UTD model were 49.2% and 56.5% of the i-Tree Streets and UTD estimates, respectively. We suggest future derivations of ecosystem service provision models allow localities to input their own species-specific growth values. By adding capacity to easy-to-use tools, such as i-Tree Streets, we can increase confidence in the model output.  相似文献   

8.
Many exemplary projects have demonstrated that Nature-based Solutions (NBS) can contribute to climate change adaptation, but now the challenge is to scale up their use. Setting realistic policy goals requires knowing the amount of different NBS types that can fit in the urban space and the benefits that can be expected. This research aims to assess the potential for a full-scale implementation of NBS for climate-change adaptation in European cities, the expected benefits and co-benefits, and how these quantities relate to the urban structure of the cities.We selected three case studies: Barcelona (Spain), Malmö (Sweden), and Utrecht (the Netherlands), and developed six scenarios that simulate the current condition, the full-scale implementation of different NBS strategies (i.e., installing green roofs, de-sealing parking areas, enhancing vegetation in urban parks, and planting street trees), and a combination of them. Then we applied spatially-explicit methods to assess, for each scenario, two climate change-related benefits, i.e. heat mitigation and stormwater regulation, and three co-benefits, namely carbon storage, biodiversity potential, and overall greenness. Finally, by breaking down the results per land use class, we investigated how the potential and benefits vary depending on the urban form.Most scenarios provide multiple benefits, but each one is characterized by a specific mix. In all cities, a full-scale deployment of green roofs shows the greatest potential to reduce runoff and increase biodiversity, while tree planting -either along streets or in urban parks– produces the greatest impact on heat mitigation and greenness. However, these results entail interventions of different size and in different locations. Planting street trees maximizes interventions in residential areas, but key opportunities for integrating most NBS types also lie in commercial and industrial areas. The results on the pros and cons of each scenario can support policy-makers in designing targeted NBS strategies for climate change adaptation.  相似文献   

9.
Trees provide multiple ecosystem services in urban centers and increases in tree canopy cover is a key strategy for many municipalities. However, urban trees also experience multiple stresses and tree growth can be impacted by urban density and impervious surfaces. We investigated the impact of differences in urban form on tree growth in the City of Merri-bek, a local government area in metropolitan Melbourne, which is the temperate climate zone. Merri-bek has a gradient in population density and urban greenness from north to south, and we hypothesized that tree growth in the southern areas would be lower because trees were more likely to have less access to water with high levels of impervious surfaces. We selected three common native evergreen species, Eucalyptus leucoxylon, Melaleuca linariifolia, and Lophostemon confertus that exhibit differences in climate vulnerability and assessed the tree canopy expansion in four urban density zones in Merri-bek between 2009 and 2020 using aerial image analysis. The differences in urban form did not significantly influence tree canopy growth and all species showed similar canopy expansion rates. However, smaller trees showed a greater relative canopy increase in the ten years, whereas larger trees had a greater absolute canopy growth. Thus, older and larger trees should be protected and maintained to achieve the canopy expansion. Our study indicated that differences in urban form are unlikely to have major impacts on the growth and canopy expansion of well adapted native tree species in open, suburban centers.  相似文献   

10.
A mathematical model is constructed for quantifying urban trees’ effects on mitigating the intensity of ultraviolet (UV) radiation on the ground within different land use types across a city. The model is based upon local field data, meteorological data and equations designed to predict the reduced UV fraction due to trees at the ground level. Trees in Seoul, Korea (2010), produced average UV protection factors (UPF) for pedestrians in tree shade at solar noon (May to August) of 8.3 for park and cemetery land uses and 3.0 for commercial and transportation land uses. The highest daily UPF was 11.8 in the park and cemetery land uses, which has the highest percent canopy cover. This UV model is being implemented within the i-Tree modeling system to allow cities across the world to estimate tree effects on UV exposure. Understanding the impacts of urban trees on UV exposure can be used in developing landscape design strategies to help protect urban populations from UV exposure and consequent health impacts.  相似文献   

11.
Since its introduction in the 1860s, gypsy moth, Lymantria dispar (L.), has periodically defoliated large swaths of forest in the eastern United States. Prior research has suggested that the greatest costs and losses from these outbreaks accrue in residential areas, but these impacts have not been well quantified. We addressed this lacuna with a case study of Baltimore City. Using two urban tree inventories, we estimated potential costs and losses from a range of gypsy moth outbreak scenarios under different environmental and management conditions. We combined outbreak scenarios with urban forest data to model defoliation and mortality and based the costs and losses on the distribution of tree species in different size classes and land uses throughout Baltimore City. In each outbreak, we estimated the costs of public and private suppression, tree removal and replacement, and human medical treatment, as well as the losses associated with reduced pollution uptake, increased carbon emissions and foregone sequestration. Of the approximately 2.3 M trees in Baltimore City, a majority of the basal area was primary or secondary host for gypsy moth. Under the low outbreak scenario, with federal and state suppression efforts, total costs and losses were $5.540 M, much less than the $63.666 M estimated for the high outbreak scenario, in which the local public and private sectors were responsible for substantially greater tree removal and replacement costs. The framework that we created can be used to estimate the impacts of other non-native pests in urban environments.  相似文献   

12.
Green infrastructure approaches leverage vegetation and soil to improve environmental quality. Municipal street trees are crucial components of urban green infrastructure because they provide stormwater interception benefits and other ecosystem services. Thus, it is important to understand the patterns and drivers of structural heterogeneity in urban street tree assemblages. In this study, we compared the forest structure of street trees across nine communities along both geographic and demographic gradients in metropolitan Cincinnati, Ohio, USA. Specifically, we used a two-part statistical model to compare both the proportion of sampled street segments containing zero trees, and basal area magnitude for street segments with trees. We made community-scale comparisons based on street tree management, socioeconomics, and geographic setting. Then, using modeled stormwater interception estimates from i-Tree Streets, we investigated the implications of heterogeneity in street tree assemblages for stormwater interception benefits. The forest structure of street trees varied across communities in relation to management practices, namely participation in the Tree City USA program. As a consequence of this structural difference, we observed a stark discrepancy in estimated stormwater interception between Tree City USA participants (128.7 m3/km street length) and non-participants (59.2 m3/km street length). While street tree assemblages did not vary by community poverty status, we did find differences according to community racial composition. In contrast to previous research, basal area was greater in predominantly black (i.e., African American) and racially mixed communities than in predominantly white communities. We did not observe structural differences across geographic strata. This research underscores the importance of proactive management practices for increasing the forest structure of street trees. Our findings regarding socioeconomics and geographic setting contrast previous studies, suggesting the need for continued research into the drivers of structural heterogeneity in street tree assemblages.  相似文献   

13.
Urban forests are recognized as a nature-based solution for stormwater management. This study assessed the underlying processes and extent of runoff reduction due to street trees with a paired-catchment experiment conducted in two sewersheds of Fond du Lac, Wisconsin. Computer models are flexible, fast, and low-cost options to generalize and assess the hydrologic processes determined in field studies. A state-of-the-art, public-domain model, which explicitly simulates urban tree hydrology, i-Tree Hydro, was used to simulate the paired-catchment experiment, and results from field observations and simulation predictions were compared to assess model validity and suitability as per conditions in the broader Great Lakes basin. Model parameters were aligned with observed conditions using automatic and manual calibration. Model performance metrics were used to quantify the weekly performance of calibration and to validate predictions. Those calibration metrics differed substantially between the two periods simulated, but most calibration metrics remained positive, indicating the model was not fitting only the period used for calibration. Predicted avoided runoff for a five-month leaf-on period was 64 L/m2 of canopy, 4 % lower than the field-estimated avoided runoff of 66 L/m2 of canopy. Interception was the most directly comparable process between the model and field observations. Based on 5 storms sampled, field estimation of precipitation intercepted and retained on trees averaged 63 % and ranged from 22 % to 81 %, while model estimation averaged 61 % and ranged from 36 % to 99 %. This model was able to fit predictions to observed catchment discharge but required extensive manual calibration to do so. The i-Tree Hydro model predicted avoided runoff comparable with the field study and earlier assessments. Additional field studies in similar settings are needed to confirm findings and improve transferability to other tree species and environmental settings.  相似文献   

14.
Paired aerial photographs were interpreted to assess recent changes in tree, impervious and other cover types in 20 U.S. cities as well as urban land within the conterminous United States. National results indicate that tree cover in urban areas of the United States is on the decline at a rate of about 7900 ha/yr or 4.0 million trees per year. Tree cover in 17 of the 20 analyzed cities had statistically significant declines in tree cover, while 16 cities had statistically significant increases in impervious cover. Only one city (Syracuse, NY) had a statistically significant increase in tree cover. City tree cover was reduced, on average, by about 0.27 percent/yr, while impervious surfaces increased at an average rate of about 0.31 percent/yr. As tree cover provides a simple means to assess the magnitude of the overall urban forest resource, monitoring of tree cover changes is important to understand how tree cover and various environmental benefits derived from the trees may be changing. Photo-interpretation of digital aerial images can provide a simple and timely means to assess urban tree cover change to help cities monitor progress in sustaining desired urban tree cover levels.  相似文献   

15.
Large amounts of urban wood resources are generated through tree removals in urban areas. Therefore, there is a growing interest to improve the environmental performance of the urban wood supply chain by quantifying the environmental impacts of creating high-value products from urban tree removals to enhance its utilization. By surveying existing urban wood utilization operations for primary data in two major cities: Baltimore, Maryland, and Milwaukee, Wisconsin, a new life cycle inventory (LCI) dataset per m3 of dry urban hardwood lumber and live edge slabs was created. Incorporating the new LCI data into life cycle assessment method, the total global warming (GW) impact of converting urban trees to kiln-dried lumber was estimated to be 122 kg CO2 eq and 336 kg CO2eq per m3 of lumber produced for Baltimore and Milwaukee, respectively. In both cases, the total environmental impact of the product was dominated by the conversion of urban trees to kiln dried lumber at the sawmill processing stage. Using scenario analysis for the source of heat generation used in kiln (force) drying wood, substituting wood fuel from coproducts for natural gas in a boiler for Milwaukee resulted in a substantial reduction in fossil-derived GW impact. Urban and traditional hardwood lumber production follow similar GW impact trajectories over their life-cycle stages with the lumber processing stage having the highest environmental impacts for both. Increasing the overall lumber yield and decreasing kiln (force) drying would substantially improve the environmental performance of urban hardwood lumber and help make it comparable to traditional lumber.  相似文献   

16.
Shade factors, defined as the percentage of sky covered by foliage and branches within the perimeter of individual tree crowns, have been used to model the effects of trees on air pollutant uptake, building energy use and rainfall interception. For the past 30 years the primary source of shade factors was a database containing values from 47 species. In most cases, values were obtained from measurements on a single tree in one location. To expand this database 11,024 shade factors were obtained for 149 urban tree species through a photometric process applied to the predominant species in 17 U.S. cities. Two digital images were taken of each tree, crowns were isolated, silhouette area defined and shade factors calculated as the ratio of shaded (i.e., foliage and woody material) pixels to total pixels within the crown silhouette area. The highly nonlinear relationship between both age and diameter at breast height (DBH), and shade factor was captured using generalized additive mixed models.We found that shade factors increased with age until trees reached about 20 years or 30 cm DBH. Using a single shade factor from a mature tree for a young tree can overestimate actual crown density. Also, in many cases, shade factors were found to vary considerably for the same species growing in different climate zones. We provide a set of tables that contain the necessary values to compute shade factors from DBH or age with species and climate effects accounted for. This new information expands the scope of urban species with measured shade factors and allows researchers and urban foresters to more accurately predict their values across time and space.  相似文献   

17.
Urban tree cover is inequitable in many American cities, with low-income and non-white neighborhoods typically having the least coverage. Some municipal and non-profit tree planting programs aim to address this inequity by targeting low-income neighborhoods; however, many programs face lack of participation or resistance from local residents. In this study, we aimed to uncover the economic, social, cultural, and physical barriers that community leaders face in planting trees and fostering engagement in a neighborhood with low tree canopy. In collaboration with an urban greening nonprofit in Philadelphia, Pennsylvania (US), twenty in-depth interviews were conducted with community leaders in a low canopy neighborhood, North Philadelphia. Half of these leaders were already involved with local tree planting programs, while the other half were not. Findings reveal that despite broad appreciation for trees and greenspaces, there are concerns about the risks and costs residents assume over the course of a tree’s life cycle, the threat of neighborhood development and gentrification associated with trees, limited plantable space, and limited time and capacity for community organizations. Additionally, these barriers to participation may be amplified among low-income and communities of color who face the legacies of historical tree disservices and municipal structural disinvestment. Addressing community concerns regarding the long-term care of trees beyond the initial tree planting would likely require further programmatic support. Overall, this research highlights the complexity of addressing inequities in tree canopy and the importance of integrating resident and community leader perspectives about disservices and management costs into tree planting initiatives.  相似文献   

18.
Street trees can provide important environmental services to residents living in high-altitude cities. Nevertheless the performance of street trees in this unique environment is largely unknown. This article examines the impact of high-altitude environments on the growth of street trees through a case study in Lhasa, China. The structure, species composition, and health condition of street trees in Lhasa were surveyed using a representative sampling approach. The history of street tree programs and factors that affect the health of street trees was also analyzed. The results showed that there were 24 species and cultivars in 2032 sampled street trees. The street tree population in Lhasa contained a significant number of small trees, which was due to the large-scale planting program initiated in recent years. The street tree population in Lhasa was not very stable due to the uneven age distribution. The health conditions of street trees were affected by climatic factors as well as by management practices. We concluded that unfavorable environmental conditions in high-altitude cities may affect the sustainability of street tree populations to some degree but that human management of the street tree population is a more significant factor.  相似文献   

19.
Native trees provide a range of benefits, from supporting native wildlife to climate regulation, and many urban natural resource managers prioritize native tree planting and restoration. Ulmus americana (American elm) was once widely planted in American cities but has been decimated by Dutch elm disease (DED; Ophiostoma ulmi). Our study evaluated U. americana establishment and growth across urban landscapes. We planted ramets from three DED-tolerant U. americana genotypes (RV16, RV474, and Sunfield) along an urbanization gradient in Newark, DE and Philadelphia, PA, and assessed physiological and morphological responses. We analyzed how U. americana clone growth, chlorophyll fluorescence, and foliar chemistry relate to impervious surface area, ozone (O3) concentrations, and soil characteristics. The one-year post planting mortality rate was low (4%) demonstrating these elms can withstand urban environmental conditions when provided ample water supply and protection from deer. As expected, the elms differed in growth rate, chlorophyll fluorescence, and foliar chemistry between the cities. Elms planted in Philadelphia had greater photosynthetic capacity in July (Fv/Fm = 0.76) and September (Fv/Fm = 0.75), while Newark elms had greater photosynthetic capacity in August (Fv/Fm = 0.78). Depleted foliar δ13C signatures in Philadelphia suggest elms are experiencing greater fossil-fuel derived atmospheric CO2 than in Newark, possibly contributing to the greater growth rates observed in Philadelphia compared to Newark. Enriched foliar δ15N and greater foliar %N in Philadelphia clones suggest they are experiencing greater N deposition from NOx-derived sources compared to Newark clones. Clones growing in Philadelphia had greater foliar nutrient concentrations despite growing in soils with greater heavy metal concentrations. These foliar-soil chemistry patterns suggest that clones growing in Philadelphia respond positively to urban environmental conditions in a large city, whereas clones growing in Newark may be experiencing N limitation in the first year of growth after planting.  相似文献   

20.
Urban tree inventories are useful tools to assess the environmental and socio-economic services provided by urban forests. These inventories enable the evaluation of the climate change risk to urban forests, and governments rely on such inventories for urban planning and management. Here, we assessed the future climate risk of Australia and the state of urban tree inventories across 116 local government areas (LGAs), representing 21 % of the country’s LGAs and encompassing 55 % of the national human population. We evaluated projected changes in temperature and precipitation by 2050 for each LGA and conducted a survey to obtain information on the extent and types of data available in existing urban tree inventories. Additionally, we compiled demographic, socio-economic, and geographical data for all LGAs to explore correlates with tree inventory status. Temperature increases in 2050 were predicted in all LGAs, with higher latitude and smaller LGAs identified to undergo greater increases in temperature compared to larger and lower latitude LGAs. Decreases in seasonal precipitation were predicted for 97 LGAs. Seventy-six (66 %) of surveyed LGAs had urban tree inventories, which most commonly included trees along streets and in parks. Sixty-one LGAs record information on tree mortality, while 31 LGAs dynamically update their inventories. The presence of an inventory and the area it covered were positively associated with human population density. More than 30 years ago, in 1988, John Gray wrote that “insufficient statistics were available in Australia to provide an accurate picture of the urban forest estate”. Our research shows there has not been a significant advance in the adoption and use of urban forest inventories over the past three decades. Long-term, dynamically updated inventories are crucial for urban forest management to inform planting choices to support sustainable and resilient cities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号