首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Long-term effects of enhanced UV-B radiation were evaluated in field-grown and greenhouse-grown Quercus rubra L. (northern red oak), a species with a multiple flushing shoot growth habit. Seeds were germinated and grown in ambient, twice ambient (2x) or three times ambient (3x) biologically effective UV-B radiation from square-wave (greenhouse) or modulated (field) lamp systems for three growing seasons. Greenhouse plants in the 2x treatment had greater heights and diameters during the later part of the first year and into the second year, but by the third year there were no differences among treatments. There were no significant differences in growth among treatments for field plants. Enhanced UV-B radiation did not significantly reduce total biomass or distribution of biomass in either field or greenhouse plants. Net photosynthesis (3x), leaf conductance (2x and 3x) and water-use efficiency (3x) of greenhouse plants were greater in the enhanced UV-B radiation treatments in the second year but unaffected by the treatments in other years. None of the treatments affected these parameters in field plants. Dark respiration was increased by the 3x treatment in the first and third years in greenhouse plants, and by the 2x treatment during the second year in field plants. Enhanced UV-B had variable effects on apparent quantum yield and light compensation points. Chlorophylls were unaffected by enhanced UV-B radiation in both greenhouse and field conditions. Bulk methanol-extractable UV-absorbing compounds were increased only by the 3x treatment in greenhouse plants during the third year and by the 2x treatment in field plants during the second year. Overall, Q. rubra appears relatively resistant to potentially damaging enhanced UV-B radiation and is unlikely to be negatively impacted even in the predicted worst-case scenarios.  相似文献   

3.
We investigated the effects of an ambient dose of ultraviolet-B (UV-B) radiation on chamber-grown Pseudotsuga menziesii var. glauca (Beissn.) Franco (Douglas-fir) seedlings, to determine if the presence of UV-B radiation in the growth light regime induces tolerance to environmental stresses such as high light and drought. Douglas-fir seedlings were grown without UV-B radiation or with 6 kJ m-2 day-1 of biologically effective UV-B, which is ambient for the intermountain regions of Idaho. Non-stressed seedlings grown with UV-B radiation had 35% lower seedling dry mass, 36% higher concentrations of UV-B absorbing compounds per unit leaf area, 30% lower stomatal frequencies, 25% lower light-saturated photochemical efficiencies of Photosystem II and 45% lower light-saturated stomatal conductance than non-stressed seedlings grown without UV-B radiation. After 4 days of high-light stress, seedlings grown with UV-B radiation had 32% higher light-saturated carbon assimilation rates (A(CO2)) than seedlings grown without UV-B radiation. After water was withheld from the seedlings for up to 15 days, seedlings grown with UV-B radiation had 50% higher A(CO2) and 40% higher seedling water potentials than seedlings grown without UV-B radiation. The results support the hypothesis that UV-B radiation can act as an environmental signal to induce tolerance to high-light and drought stress in Douglas-fir seedlings. Possible mechanisms for the enhanced stress tolerance are discussed.  相似文献   

4.
Purely symbiotic and NO3-fed nodulated seedlings of Virgilia oroboides (Bergius) T.M. Salter, Cyclopia maculata (L.) Vent and Podalyria calyptrata Willd. were exposed to biologically effective ultraviolet-B radiation (UV-B) to assess the effects of above- and below-ambient UV-B on growth, symbiotic function and metabolite concentrations. Seedlings were grown outdoors either on tables under ambient or 34 or 66% above-ambient UV-B conditions (UV-B100 control, UV-B134 and UV-B166, respectively), or in chambers providing below-ambient (22% of ambient) UV-B (UV-B22) along with a UV-A control and a photosynthetically active radiation (PAR) control. Exposure of seedlings to UV-B166 radiation reduced (P < or = 0.05) leaf and stem dry mass by 34 and 39%, respectively, in C. maculata, and reduced leaf nitrogen concentration (%N) by 12% in V. oroboides. Nodule %N in C. maculata and stem %N in P. calyptrata also decreased (P < or = 0.05) in response to UV-B22 radiation compared with the UV-A control, but not compared with the PAR control. Concentrations of flavonoids, soluble sugars and starch were unaltered by the UV-B treatments. Application of 1 mM NO3 to UV-B166-treated seedlings increased whole-plant dry mass of V. oroboides and P. calyptrata by 47 and 52%, respectively. Dry mass of organs, nodule %N and total N concentration of these species also increased with NO3 application. However, NO3 supply decreased (P < or = 0.05) nodule dry mass, stem %N and leaf %N as well as root and leaf anthocyanin concentrations in C. maculata. In terms of UV-B x N interactions, dry mass of stems, roots, nodules and total biomass of NO3-fed C. maculata seedlings were reduced, and nodule %N, total N and leaf anthocyanins were depressed by the UV-B134 and UV-B166 treatments relative to UV-B100-treated seedlings. Although we found that above-ambient UV-B had no effects on growth and symbiotic function of V. oroboides and P. calyptrata seedlings, feeding NO3 to these species increased (P < or = 0.05) seedling growth. In contrast, purely symbiotic C. maculata seedlings were sensitive to the UV-B166 radiation treatment, and adding NO3 further increased their sensitivity to both the UV-B134 and UV-B166 treatments.  相似文献   

5.
Long-term outdoor experiments were conducted to investigate the effects of elevated ultraviolet-B (UV-B, 280-320 nm) radiation on secondary metabolites (phenolics and terpenoids) and the main soluble sugars (sucrose, raffinose and glucose) in the bark of silver birch (Betula pendula Roth) saplings. Saplings were exposed to a constant 50% increase in erythemal UV irradiance (UV-B(CIE); based on the CIE (International Commission on Illumination) erythemal action spectrum) and a small increase in UV-A radiation (320-400 nm) for three growing seasons in an irradiation field in central Finland. Two control groups were used: saplings exposed to ambient radiation and saplings exposed to slightly increased UV-A radiation. Concentrations of sucrose, raffinose and glucose in bark were higher in UV-treated saplings than in saplings grown in ambient radiation, indicating that stem carbohydrate metabolism was changed by long-term elevated UV radiation. Saplings in the elevated UV-A + UV-B radiation treatment and the UV-A radiation control treatment had significantly increased concentrations of certain UV-absorbing phenolics, such as salidroside, 3,4'-dihydroxypropiophenone-3-glucoside, (+)-catechin and (-)-epicatechin compared with saplings in ambient radiation. In contrast, the radiation treatments had no effect on the non-UV-B-absorbing terpenoids, papyriferic acid and deacetylpapyriferic acid. We conclude that plant parts, in addition to leaves, accumulate specific phenolic UV-filters in response to UV radiation exposure.  相似文献   

6.
One hundred Norway spruce (Picea abies (L.) Karst.) clones (three ramets per clone) were analyzed for phloem phenol composition and concentration before and 10 days after wound inoculation with sterile malt agar. Fifty clones (Experiment 1) belonged to the same provenance, whereas the remaining clones (Experiment 2) belonged to five provenances from three geographic areas. In Experiment 2, two additional ramets from the same clones were mass inoculated with Ceratocystis polonica (Siem.) C. Moreau to quantify the resistance of each clone. Tree response to wound inoculations was characterized by increased catechin concentration in both experiments, accompanied by increases in astringin and decreases in piceid in Experiment 1. In both experiments, we observed a diverse group of phenolic compounds whose concentrations increased (catechin, astringin) or did not vary (taxifolin glucoside) in response to wound inoculations, whereas concentrations of a homogeneous group of stilbene compounds decreased (piceid) or did not vary (isorhapontin, unidentified stilbene). In Experiment 2, provenances from the alpine and Hercynian-Carpatic areas differed from provenances from the Baltic area with respect to the relative importance of these two groups of compounds, further indicating that the two groupings of phenolic compounds structure the Norway spruce populations. Eighty days after mass inoculation, the percentage of healthy sapwood, which was taken as a measure of tree resistance, indicated that clones from the Baltic area were less resistant to mass inoculations than clones from the alpine and Hercynian-Carpatic areas. We conclude that the degree of resistance of Norway spruce trees to mass inoculations with a bark beetle-associated fungus can be predicted based on the diversity of constitutive phloem phenols and the ability to induce phenol synthesis in response to wounding.  相似文献   

7.
Xu X  Zhao H  Zhang X  Hänninen H  Korpelainen H  Li C 《Tree physiology》2010,30(12):1489-1498
We investigated sex-related morphological and physiological responses to enhanced UV-B radiation in the dioecious species Populus cathayana Rehd. Cuttings were subjected to two UV-B radiation regimes: ambient (4.5 kJ m?2 day?1) and enhanced (12.5 kJ m?2 day?1) biologically effective UV-B radiation for one growing season. Enhanced UV-B radiation was found to significantly decrease the shoot height and basal diameter and to reduce the leaf area, dry matter accumulation, net photosynthesis rate (P(n)), chlorophyll a/b ratio (Chl a/b) and anthocyanin content. Enhanced UV-B radiation also increased chlorophyll pigment, leaf nitrogen, malondialdehyde and abscisic acid (ABA) content, superoxide dismutase and peroxidase activities and UV-B-absorbing compounds. No significant effects of enhanced UV-B radiation were found on biomass allocation, gas exchange (except for P(n)), photochemical efficiency of photosystem II or water use efficiency. Moreover, different sensitivity to enhanced UV-B radiation between males and females was detected. Under enhanced UV-B radiation, males exhibited significantly higher basal diameter and leaf nitrogen, and lower Chl a/b, ABA content, UV-B-absorbing compounds, as well as less decrement of leaf area and dry matter accumulation than did females. However, no significant sexual differences in these traits were found under ambient UV-B radiation. Our results suggest that males may possess a greater UV-B resistance than do females, with males having a more efficient antioxidant system and higher anthocyanin content to alleviate UV-B penetration stress than females.  相似文献   

8.
We compared the physiological and morphological responses of rooted cuttings of Populus trichocarpa Torr. & Gray and P. trichocarpa x P. deltoides Bartr. ex Marsh. grown in either near-ambient solar ultraviolet-B (UV-B; 280-320 nm) radiation (cellulose diacetate film) or subambient UV-B radiation (polyester film) for one growing season. Midday biologically effective UV-B radiation was 120.6 and 1.6 mJ m(-2) s(-1) under the cellulose diacetate and polyester films, respectively. Gas exchange, leaf chlorophyll, light harvesting efficiency of photosystem II, and foliar UV-B radiation-absorbing compounds (i.e., flavonoid derivatives) were measured in expanding (leaf plastochron index (LPI) 5), nearly expanded (LPI 10), and fully expanded mature (LPI 15) leaves of intact plants of plastochron index 30 to 35. Plants were then harvested and height, diameter, biomass allocation and leaf anatomical attributes determined. Net photosynthesis, transpiration, and stomatal conductance were significantly greater in mature leaves exposed to subambient UV-B radiation than in mature leaves exposed to near-ambient UV-B radiation. Concentrations of UV-B radiation-absorbing compounds (measured as absorbance of methanol-extracts at 300 nm) were significantly greater in mature leaves exposed to near-ambient UV-B radiation than in mature leaves exposed to subambient UV-B radiation. The UV-B radiation treatments had no effects on chlorophyll content or intrinsic light harvesting efficiency of photosystem II. Height, diameter, and biomass were not significantly affected by UV-B radiation regime in either clone. Leaf anatomical development was unaffected by UV-B radiation treatment in P. trichocarpa x P. deltoides. For P. trichocarpa, leaf anatomical development was complete by LPI 10 in the near-ambient UV-B radiation treatment, but continued through to LPI 15 in the subambient UV-B radiation treatment. Mature leaves of P. trichocarpa were thicker in the subambient UV-B radiation treatment than in the near-ambient UV-B radiation treament as a result of greater development of palisade parenchyma tissue. We conclude that exposure to near-ambient UV-B radiation for one growing season caused shifts in carbon allocation from leaf development to other pools, probably including but not limited to, UV-B absorbing compounds. This reallocation curtailed leaf development and reduced photosynthetic capacity of the plants compared with those in the subambient UV-B radiation treatment and may affect growth over longer periods of exposure.  相似文献   

9.
We compared the growth and physiological responses of cuttings of Populus kangdingensis C. Wang et Tung and P. cathayana Rehder originating from altitudes of 3500 m and 1500 m, respectively, when exposed to three ultraviolet-B (UV-B) radiation regimes: zero UV-B, ambient (4.5 kJ m(-2) day(-1)) and twice-ambient (9 kJ m(-2) day(-1)) biologically effective UV-B radiation for one growing season, to determine if Populus trees that are adapted to contrasting UV-B habitats exhibit different tolerances to enhanced UV-B radiation. Compared with cuttings grown without UV-B radiation, twice-ambient UV-B radiation significantly decreased total biomass, total leaf area and internode length in both species, whereas root/shoot ratio, leaf number, amount of photosynthetic pigments and ascorbate peroxidase activity were unaffected. Differences in responses were also observed between the study species. Cutting height increment, total biomass, total leaf area, free proline concentration and membrane damage assessed by electrolyte leakage were significantly more affected by the twice-ambient UV-B radiation in P. cathayana than in P. kangdingensis. However, specific leaf mass, amount of UV-B absorbing compounds and superoxide dismutase and guaiacol peroxidase activities increased more with increasing UV-B radiation in P. kangdingensis than in P. cathayana, perhaps reflecting important characteristics of species with low to moderate tolerance to UV-B radiation. Overall, the results indicated that P. kangdingensis, which originates from altitudes of 3500 m, has greater tolerance to enhanced UV-B radiation than P. cathayana originating from altitudes of 1500 m.  相似文献   

10.
Sager EP  Hutchinson TC 《Tree physiology》2006,26(10):1351-1361
Anticipated effects of climate change involve complex interactions in the field. To assess the effects of springtime warming, ambient ultraviolet-B radiation (UV-B) and nitrogen fertilization on the foliar chemistry and herbivore activity of native sugar maple (Acer saccharum Marsh.) seedlings, we carried out a field experiment for 2 years at two sugar maple forests growing on soils of contrasting acidity. At the Oliver site, soils are derived from a strongly calcareous till, whereas the naturally acidic soils and base-poor soils of the Haliburton site are derived from the largely granitic Precambrian Shield. At both sites, removal of ambient UV-B led to increases in chlorogenic acid and some flavonoids and reduced herbivore activity. At Haliburton, ammonium nitrate fertilization led to further increases in foliar manganese (Mn), whereas at Oliver there were no such changes. Nitrogen additions led to decreases in the concentrations of some flavonoids at both sites, but seedlings at Oliver had significantly higher concentrations of flavonoids and chlorogenic acid than seedlings at Haliburton. We suggest that this could be associated with increased mobilization of Mn due to increased soil acidity, which interferes with the role of calcium (Ca) in the phenolic biosynthetic pathway. It appears that the composition of the forest soil governs the response of seedlings when they are exposed to abiotic stressors.  相似文献   

11.
酚甙类物质是杨柳科植物体内最重要的防御性物质。本文以美洲黑杨回交群体为研究对象 ,研究了整个群体生长量和叶部酚甙类物质的变异情况。结果表明 ,叶部几种酚甙类物质水杨甙、柳皮甙和美洲黑杨甙等的含量 ,以及高生长和地径均遵循正态变化 ,表现为较为典型的数量性状。总酚甙含量与高生长呈负相关 ,相关系数为 - 0 30 4。颤杨甙首次从美洲黑杨中测到。植物防御系统可能会以消耗一定的生长为代价 ;可以从群体内选出生长快且酚甙含量高的无性系。机械伤害对树皮酚甙类物质有明显的诱导作用 ,特别是柳皮甙在 4 8h内升高 78 9%。在致伤条件下酚甙类物质增多是杨树对动物、昆虫及病菌防御的主要机制  相似文献   

12.
We compared growth, morphology, anatomy and physiology of field-grown Olea europaea L. plants after one year with or without supplemental UV-B radiation equivalent to the increase at ground level resulting from a 15% depletion in stratospheric ozone concentration over Patras, Greece (38.3 degrees N, 29.1 degrees E). In a parallel greenhouse experiment, plants were exposed for four months to either zero UV-B radiation or UV-B radiation equivalent to that of the supplemented outdoor treatment. In the field, the only significant changes in response to supplemental UV-B radiation were an increase in adaxial epidermal thickness and a decrease in total protein concentration. In the greenhouse-grown plants, UV-B radiation caused significant increases in abaxial cuticle thickness and trichome UV-B absorbing compounds. We conclude that Olea europaea exhibits high UV-B tolerance and will not be affected by the predicted increases in UV-B radiation.  相似文献   

13.
Concentrations of total soluble phenolics, catechin, proanthocyanidins (PA), lignin and nitrogen (N) were measured in loblolly pine (Pinus taeda L.) needles exposed to either ambient CO(2) concentration ([CO(2)]), ambient plus 175 or ambient plus 350 micromol CO(2) mol(-1) in branch chambers for 2 years. The CO(2) treatments were superimposed on a 2 x 2 factorial combination of irrigation and fertilization treatments. In addition, we compared the effects of branch chambers and open-top chambers on needle chemistry. Proanthocyanidin and N concentrations were measured in needles from branch chambers and from trees in open-top chambers exposed concurrently for two years to either ambient [CO(2)] or ambient plus 200 micromol CO(2) mol(-1) in combination with a fertilization treatment. In the branch chambers, concentrations of total soluble phenolics in needles generally increased with needle age. Concentrations of total soluble phenolics, catechin and PA in needle extracts increased about 11% in response to the elevated [CO(2)] treatments. There were no significant treatment effects on foliar lignin concentrations. Nitrogen concentrations were about 10% lower in needles from the elevated [CO(2)] treatments than in needles from the ambient [CO(2)] treatments. Soluble phenolic and PA concentrations were higher in the control and irrigated soil treatments in about half of the comparisons; otherwise, differences were not statistically significant. Needle N concentrations increased 23% in response to fertilization. Treatment effects on PA and N concentrations were similar between branch and open-top chambers, although in this part of the study N concentrations were not significantly affected by the CO(2) treatments in either the branch or open-top chambers. We conclude that elevated [CO(2)] and low N availability affected foliar chemical composition, which could in turn affect plant-pathogen interactions, decomposition rates and mineral nutrient cycling.  相似文献   

14.
A growth chamber experiment was conducted to examine the effects of UV-B exposure (4.9 kJ m(-2) day(-1) of biologically effective UV-B, 280-320 nm) on shoot growth and secondary metabolite production in Betula pendula (Roth) and B. resinifera (Britt.) seedlings originating from environments in Finland, Germany and Alaska differing in solar UV-B radiation and climate. Neither shoot growth nor the composition of secondary metabolites was affected by UV-B irradiance, but the treatment induced significant changes in the amounts of individual secondary metabolites in leaves. Leaves of seedlings exposed to UV-B radiation contained higher concentrations of several flavonoids, condensed tannins and some hydroxycinnamic acids than leaves of control seedlings that received no UV-B radiation. At the population level, there was considerable variation in secondary metabolite responses to UV-B radiation: among populations, the induced response was most prominent in Alaskan populations, which were adapted to the lowest ambient UV-B radiation environment. I conclude that solar UV-B radiation plays an important role in the formation of secondary chemical characteristics in birch trees.  相似文献   

15.
UV-B辐射对亚热带森林凋落叶分解的影响   总被引:3,自引:0,他引:3  
采用分解袋法研究自然和UV-B辐射滤减2种环境下6种亚热带代表性树种(杉木、马尾松、木荷、香樟、青冈和甜槠)凋落叶的分解情况。结果表明:除个别分解阶段外,各树种凋落叶在2种UV-B辐射环境下的干质量剩余率均存在显著差异,且随着分解时间延长,差异逐渐加大;与对照相比,UV-B辐射滤减显著降低了6个树种凋落叶的分解速率(P<0.01),降幅为33.3%~69.6%,对香樟凋落叶分解的影响最小,对杉木凋落叶分解的影响最大;UV-B辐射处理和凋落物类型对凋落叶的分解速率均有极显著影响(P<0.001),以UV-B辐射的影响更强烈;自然和UV-B辐射滤减环境下凋落叶的分解速率均与C∶N呈显著负相关(P<0.05)。  相似文献   

16.
Spiraea pubescens, a common shrub in the warm-temperate deciduous forest zone which is distributed in the Dongling Mountain area of Beijing, was exposed to ambient and enhanced ultraviolet-B (UV-B, 280–320 nm) radiation by artificially supplying a daily dose of 9.4 kJ/m2 for three growing seasons, a level that simulated a 17% depletion in stratospheric ozone. The objective of this study was to explore the effects of long-term UV-B enhancement on stomatal conductance, leaf tissue δ 13C, leaf water content, and leaf area. Particular attention was paid to the effects of UV-B radiation on water use efficiency (WUE) and leaf total nitrogen content. Enhanced UV-B radiation significantly reduced leaf area (50.1%) but increased leaf total nitrogen content (102%). These changes were associated with a decrease in stomatal conductance (16.1%) and intercellular CO2 concentration/ air CO2 concentration (C i /C a) (4.0%), and an increase in leaf tissue δ 13C (20.5‰), leaf water content (3.1%), specific leaf weight (SLW) (5.2%) and WUE (4.1%). The effects of UV-B on the plant were greatly affected by the water content of the deep soil (30–40 cm). During the dry season, differences in the stomatal conductance, δ 13C, and WUE between the control and UV-B treated shrubs were very small; whereas, differences became much greater when soil water stress disappeared. Furthermore, the effects of UV-B became much less significant as the treatment period progressed over the three growing seasons. Correlation analysis showed that enhanced UV-B radiation decreased the strength of the correlation between soil water content and leaf water content, δ 13C, C i/C a, stomatal conductance, with the exception of WUE that had a significant correlation coefficient with soil water content. These results suggest that WUE would become more sensitive to soil water variation due to UV-B radiation. Based on this experiment, it was found that enhanced UV-B radiation had much more significant effects on morphological traits and growth of S. pubescens than hydro-physiological characteristics. __________ Translated from Journal of Plant Ecology, 2006, 30(1): 47–56 [译自: 植物生态学报]  相似文献   

17.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were grown for 50 days in growth chambers in an ambient or twice ambient carbon dioxide concentration ([CO2]) at a day/night temperature of 19/12 degrees C or 23/16 degrees C. Although elevated [CO2] (EC) had only slight effects on the growth parameters measured, elevated temperature (ET) increased above ground dry mass of both species. Among treatments, biomass accumulation of both species was greatest in the combined EC + ET treatment. The EC treatment induced thylakoid swelling and increased numbers of plastoglobuli observed in Scots pine needles. Although EC had little effect on Rubisco protein or N concentration of needles, ET had a large effect on N-containing compounds and enhanced N allocation from 1-year-old needles. Terpenoids were more responsive to EC and ET than total phenolics. Generally, terpene concentrations were reduced by EC and increased by ET. Increased terpenoid concentrations in response to ET might be associated with thermotolerance of photosynthesis. In Norway spruce, EC decreased total phenolic concentrations in needles, probably as a result of increased growth. We conclude that, in seedlings of these boreal species, the effects of elevated [CO2] on the studied parameters were small compared with the effects of elevated temperature.  相似文献   

18.
紫外辐射(UV-B)对人类健康、水域和陆地生态系统都存在不同程度的影响。综合论述了近年来有关陆地植物对UV-B辐射响应的研究成果及进展,包括植被外部形态、光合作用和光合色素以及UV-B吸收物质等胁迫响应特征变化。另外,对植被在生态系统尺度上对UV-B辐射增强的响应以及UV-B与其它环境与生物因子间的交互效应也进行了阐述。文献分析表明,约2/3的陆地植被对UV-B辐射增强的响应表现显著,虽然存在种间和亚种间的差异,但多数的研究显示UV-B辐射增强对陆地植被生长和发展存在不利影响。最后指出如何采取措施降低UV-B辐射增强对陆地植被影响,特别是对经济作物的影响将是未来一个重要的研究课题。  相似文献   

19.
We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a height of 34 m. No visible symptoms of foliar ozone damage were apparent throughout the 61-day exposure period and none of the ozone treatments affected branch growth. Despite the similarity in ozone concentrations in the branch chambers within a treatment, the trees exhibited different physiological responses to increasing ozone uptake. Differences in diurnal and seasonal patterns of g(s) among the trees led to a 2-fold greater ozone uptake in tree No. 2 compared with trees Nos. 1 and 3. Tree No. 3 had significantly higher CER and g(s) at 0.25x ambient ozone than trees Nos. 1 and 2, and g(s) and CER of tree No. 3 declined with increasing ozone uptake. The y-intercept of the regression for dark respiration versus ozone uptake was significantly lower for tree No. 2 than for trees Nos. 1 and 3. In the 0.25x and 1x ozone treatments, the chlorophyll concentration of current-year foliage of trees Nos. 1 and 2 was significantly higher than that of current-year foliage of tree No. 3. Chlorophyll concentration of current-year foliage on tree No. 1 did not decline with increasing ozone uptake. In all trees, total needle water potential decreased with increasing ozone uptake, but turgor was constant. Although tree No. 2 had the greatest ozone uptake, g(s) was highest and foliar chlorophyll concentration was lowest in tree No. 3 in the 0.25x and 1x ambient atmospheric ozone treatments.  相似文献   

20.
Will RE  Teskey RO 《Tree physiology》1997,17(10):655-661
To determine the effects of CO(2)-enriched air and root restriction on photosynthetic capacity, we measured net photosynthetic rates of 1-year-old loblolly pine seedlings grown in 0.6-, 3.8- or 18.9-liter pots in ambient (360 micro mol mol(-1)) or 2x ambient CO(2) (720 micro mol mol(-1)) concentration for 23 weeks. We also measured needle carbohydrate concentration and water relations to determine whether feedback inhibition or water stress was responsible for any decreases in net photosynthesis. Across all treatments, carbon dioxide enrichment increased net photosynthesis by approximately 60 to 70%. Net photosynthetic rates of seedlings in the smallest pots decreased over time with the reduction occurring first in the ambient CO(2) treatment and then in the 2x ambient CO(2) treatment. Needle starch concentrations of seedlings grown in the smallest pots were two to three times greater in the 2x ambient CO(2) treatment than in the ambient CO(2) treatment, but decreased net photosynthesis was not associated with increased starch or sugar concentrations. The reduction in net photosynthesis of seedlings in small pots was correlated with decreased needle water potentials, indicating that seedlings in the small pots had restricted root systems and were unable to supply sufficient water to the shoots. We conclude that the decrease in net photosynthesis of seedlings in small pots was not the result of CO(2) enrichment or an accumulation of carbohydrates causing feedback inhibition, but was caused by water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号