首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increase in alfalfa (Medicago sativa L.) production for energy (gasification of stems) and protein supplement (from leaves) has been proposed for the upper Midwestern United States, an area where corn (Zea mays L.) in rotation with soybean (Glycine max L.) is the predominant crop sequence. This study was undertaken to assess the impact on runoff and water quality, especially for the loss of oxygen demanding material with snowmelt. Four field size watersheds were instrumented at Morris, Minnesota, USA on a rolling prairie landscape. Snowmelt runoff from each watershed was measured with two flumes with overlapping ranges arranged in series. An automatic water sampler collected runoff samples for chemical analysis. Oxygen demand was used as a surrogate for reduced carbon. Water samples were analyzed for total solids, biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Based on the results of snowmelt events of 1997, 1998, and 1999, the alfalfa fields yielded more runoff than corn-soybean fields. The loss of total solids was more consistent from alfalfa fields. Total solids losses interacted with crop and year. Compared to alfalfa fields losses were less following soybeans and greater following corn. On average losses were similar between alfalfa and corn-soybean fields. Runoff from alfalfa fields contained about four times more BOD than corn-soybean fields. Although not statistically significant due to only two replications, there was a similar trend for COD. This study shows that although losses of total solids in snowmelt from alfalfa fields was similar to corn-soybean fields, there can be increased losses of oxygen demanding materials.  相似文献   

2.
The impacts of tillage and organic fertilization on soil organic matter (SOM) are highly variable and still unpredictable, and their interactions need to be investigated under various soil, climate and cropping system conditions. Our work examined the effect of reduced tillage and animal manure on SOM stocks and quality in the 0–40 cm layer of a loamy soil under mixed cropping system and humid temperate climate. The soil organic carbon (SOC) and N stocks, particulate organic matter (POM), and C and N mineralization potential (301 days at 15 °C) were measured in a 8‐yr‐old split‐plot field trial, including three tillage treatments [mouldboard ploughing (MP), shallow tillage (ST), no tillage (NT)] and two fertilization treatments [mineral (M), poultry manure 2.2 t/ha/yr C (O)]. No statistically significant interactive effects of tillage and fertilization were measured except on C mineralization. NT and ST showed greater SOC stocks (41.2 and 39.7 t/ha C) than MP (37.1 t/ha C) in the 0–15 cm increment, while no statistical differences were observed at a greater depth. N stocks exhibited similar distribution patterns with regard to tillage effect. Animal manure, applied at a rate representative of typical field application rates, had a smaller impact on SOC and N stocks than tillage. The mean SOC and N stocks were higher under O than M, but the differences were statistically significant only in the 0–5 cm increment. MP showed lower C‐POM stocks than NT and ST in the 0–5 cm increment, whereas greater C‐POM stocks were measured under MP than under NT or under ST in the 20–25 cm increment. Organic fertilization had no impact on C‐POM or N‐POM stocks. In the 0–25 cm increment, NT showed a lower C and N mineralization potential than MP. Our work shows that the sensitivity of SOM to reduced tillage for the whole soil profile can be relatively small in a loamy soil, under humid‐temperate climate. However, POM was particularly sensitive to the differential effects of tillage practices with depth, and indicative of differentiation in total SOM distribution in the soil profile.  相似文献   

3.
Reduced tillage is proposed as a method of C sequestration in agricultural soils. However, tillage effects on organic matter turnover are often contradictory and data are lacking on how tillage practices affect soil respiration in northern Europe. This field study (1) quantified the short-term effects of different tillage methods and timing on soil respiration and N mineralisation and (2) examined changes in aggregate size distribution due to different tillage operations and how these relate to soil respiration. The study was conducted on Swedish clay soil (Eutric Cambisol) and compared no-tillage with three forms of tillage applied in early or late autumn 2010: mouldboard ploughing to 20–22 cm and chisel ploughing to 12 or 5 cm depth. Soil respiration, soil temperature, gravimetric water content, mineral N and aggregate size distribution were measured. The results showed that respiration was significantly higher (P?<?0.001) in no-till than in tilled plots during the 2 weeks following tillage in early September. Later tillage gave a similar trend but treatments did not differ significantly. Soil tillage and temperature explained 56 % of the variation in respiration. In the early tillage treatment, soil respiration decreased with tillage depth. Mineral N status was not affected by tillage treatment or timing. Soil water content did not differ significantly between tillage practices and therefore did not explain differences in respiration. The results indicate that conventional tillage in early autumn may reduce short-term soil respiration compared with chisel ploughing and no-till in clay soils in northern Europe.  相似文献   

4.
Surface runoff, soil loss, suspended sediment concentration (SSC), texture of eroded soils and suspended sediment were determined on slightly eroded chernozems (mouldboard fall-ploughed) during years with different amounts of snow in three areas of southern West Siberia (Predsalairye, Priobye and Kuznetsk hollow). These areas have different geomorphological and climatic characteristics and soils. Observations were made from 1969 to 2007. The soil loss during very low-snow and low-snow years did not exceed 2 t ha− 1. After winters with normal amounts of snow, the runoff led to slight soil loss (2–5 t ha− 1). Soil losses in high-snow and very high-snow years varied from slight to severe (4.8–15.8 t ha− 1) depending on studied area. The main sediment exported during intensive snowmelt and the 1 mm of runoff transported from 35 to 150 kg ha− 1 of soil material. The removal of soil particles < 0.01 mm (especially clay) prevailed during the initial and final stages of snowmelt. Clay removal by meltwater from the ploughed layer in high-snow and very high-snow years varied from 3300 to 4200 kg ha− 1 and, in the initial and final stages of snowmelt clay removal, accounted for 1260–1,500 kg ha− 1. Among the three studied regions, Predsalairye had decreased soil erosion resistance and was the area with the greatest danger of erosion.  相似文献   

5.
A field study was conducted to assess the long-term effects of no-tillage (NT) and conventional tillage (CT), and the short-term effects following tillage conversion from CT to NT (NTn) and from NT to CT (CTn) on soil quality (SQ) indicators in a semi-humid climate. First, plots of a long-term tillage experiment on a Luvic Phaeozem initiated in 1986 were split into two subplots in 2012, yielding four treatments: NT, CT, NTn and CTn. In 2015, composite soil samples were collected from each treatment and from a natural site (Ref) at depths 0–5, 5–10, 10–20 and 0–20 cm. Several indicators were determined: soil organic carbon (SOC) and nitrogen (SON); particulate organic C (POM-C) and N (POM-N); potential N mineralization (PMN) and soil respiration (Rs). Moreover, bulk density was determined in long-term tillage systems. Different ratios between indicators were calculated, with emphasis on its function in the agroecosystem, that is functional indicators. Significant differences in SOC, SON and PMN were found between CT and NT at most depths. In contrast, 3 years after tillage conversion, only a part of the SQ indicators studied were modified mainly at the 0–10 cm depth. The functional indicators showed differences between tillage systems in the long-term and after short-term tillage conversion depending on the depth; however, the PMN/SON ratio demonstrated differences at all depths. Under these conditions, this ratio-related to easily mineralizable N fraction proved to be a promising indicator for assessing SQ under contrasting tillage systems regardless of the sampling depth.  相似文献   

6.
The effects of tillage and liming on degradation of organic matter of a Rhodic Ferralsol were investigated. Samples were taken from a tillage experiment and from a trial with different levels of lime application. Organic matter was separated into the fractions of undecomposed organic matter and humic substances by density fractionation. Chemical composition of the humic substances was determined by Kononova's fractionation method. Other chemical parameters measured were total organic C, pH, exchangeable cations, and the physical property determined was aggregate stability. Tillage, and to a lesser degree, liming, substantially decreased organic matter content when compared to samples taken from a virgin forest. The proportion of humic acids C (HC) varied most, so that the ratio of fulvic acids C (FC) to HC increased from 2.5 (virgin forest), to 3.4 (lime treatments and no-tillage) and to 5.8 (conventional tillage). Content of FC was affected by pH, while no distinct factors were found to influence HC content. Aggregate stability was best related to content of HC, confirming the importance of this fraction of organic matter for aggregation. It was concluded that especially excessive tillage greatly affects soil fertility because organic matter is decomposed to a great extent. However, a further need for research seems necessary to clarify interactions conclusively between changes of pH, adsorption of humic substances and other chemical properties in the entire profile of Ferralsols.  相似文献   

7.
The objectives were to investigate (1) to which extent water-stable macro- and microaggregates sequester organic matter (OM) in a minimum tillage (MT) system compared to a conventional tillage (CT) system and (2) if the content of biochemically stabilized OM differs between both tillage systems, and (3) to study the temporal dynamics of the distribution of aggregate size classes and of storage of OM within aggregates in the field. Surface soils (0–5 cm) and subsoils (10–20 cm) were sampled after fallow (March 2007) and directly after tillage (November 2007) from a long-term experimental field near Göttingen, Germany. Macroaggregates (>0.25 mm) were in general less abundant after fallow than directly after tillage. In March, only 21% (CT) and 45% (MT) of Corg was stored within macroaggregates in the surface soil, whereas in November, the percentages increased to 58% and 73%, respectively. CT and MT soils of both depths were incubated as bulk soil (CTbulk, MTbulk) and with macroaggregates disrupted (<0.25 mm) (CTmd, MTmd) for 28 days at 22°C and water content of 50% of the maximum water holding capacity. For the MTbulk and MTmd surface soils, C mineralization was significantly higher compared to the CT soils. Incubation of md soils did not generally result in a significantly higher C mineralization compared to the respective bulk soils, except for the MTmd subsoil. Acid hydrolysis showed that the proportion of biochemically stabilized, nonhydrolysable, Corg to total Corg was lower in the MT than in the CT soils. Overall, the data indicate that the effect of physical stabilization of OM stored in the macroaggregates may not be a mechanism protecting very labile C with a turnover time of weeks, but that longer preservation likely occurs after macroaggregate transformation into microaggregates, and the surplus of OM found in the surface soil of MT does not only depend on the biochemically stabilized OM. Finally, our data suggest that the temporal variability of distribution of aggregate size classes in the field is large, but spatial and operator variability also contributed to the observed differences.  相似文献   

8.
Abstract

Soybeans, Glycine max (L.) Merr., field peas, Plsum sativum I., and fababeans, Vicia faba L., were each grown at either three or four locations. Fertilizer treatments consisted of three rates of N, three of P and three of K applied in all possible combinations.

In general fertilizers had minimal effects on yields and on the percentages of N, P, K, Ca and Mg in leaf tissue. The most consistent effect was a decrease in leaf Mg with application of increasing; rates of K.

Average yields at different locations ranged from 1735–2997 kg/ha for soybeans, 2940–3246 kg/ha for field peas and 1569—4435 kg/ha for fababeans. The results suggest, however, that factors other than soil chemical properties probably had an appreciable effect on yields.  相似文献   

9.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   

10.
Management practices including various tillage systems influence quantity and composition of soil organic matter (SOM). Parameters for evaluating both the SOM quantity (organic C [Cox], total N [Nt]) and quality (microbial biomass C, hydrophobic and hydrophilic organic components) were determined in soil samples, taken from two soil depths (0–0.1 m and 0.1–0.3 m) in a field experiment in the period 2001–2007, with different tillage systems. The experiment, founded in 1995 in Prague-Ruzyně, includes conventional soil tillage (CT) plus some selected methods of conservation tillage: (a) no tillage (NT), (b) no tillage + mulch (NTM), and (c) minimum tillage with pre-crop residues incorporated (MTS). Cox and microbial biomass C contents increased significantly with conservation tillage as compared to CT in 0–0.1 m layer, non-significant increase was found in 0.1–0.3 m layer. Nt increased non-significantly in both layers. Along with the depth of sampling, the content of the characterized parameters decreased in all variants; but the decrease in the conventionally tilled variant was, for the most part, lower than in the conservation tillage. The functional hydrophobic and hydrophilic groups of soil organic matter were identified by Fourier transform infrared (FTIR) spectroscopy, and the hydrophobic/hydrophilic group intensities ratio was calculated as the parameter of soil hydrophobicity. A higher soil hydrophobicity existed in all three conservation tillage treatments compared to CT due to the significantly higher content of hydrophobic organic components. Cox correlated significantly with microbial biomass C, Nt, hydrophobic components, and soil hydrophobicity (R = 0.552–0.654; P < 0.05). Hydrophilic components did not correlate with other soil characteristics, with the exception of hydrophobic components. These data show that shifting from CT to the conservation tillage systems increased the content of SOM in top soil layer in relatively short time, improved the SOM quality and increased soil hydrophobicity in the condition of experiment.  相似文献   

11.
长期施肥下黑土活性有机质和碳库管理指数研究   总被引:16,自引:1,他引:16  
基于东北黑土长期定位试验,研究不同施肥措施对黑土活性有机质及其碳库管理指数的影响。结果表明:在不同施肥措施的影响下土壤有机质得到了不同程度的提高。撂荒处理(CK0)土壤有机质较初始值提高了35.62%;单施化肥处理有机质提高最小,为10%~15%;其次为秸秆还田处理提高了20%;有机肥和化肥配施处理土壤有机质提高效果最显著,为66.38%~92.13%。黑土活性有机质分布规律为高活性有机质、中活性有机质、低活性有机质分别占有机质含量的3.80%~10.28%、1.59%~12.32%、8.71%~27.45%。以撂荒处理为参考土壤,有机肥和化肥配施处理高活性有机质、中活性有机质碳库管理指数高于参考土壤;氮磷钾肥配施处理(NPK)高活性有机质及其高活性有机质碳库管理指数与参考土壤较为接近;单施氮肥处理(N)、施用氮肥和磷肥处理(NP)、施用氮肥和钾肥处理(NK)、施用磷肥和钾肥处理(PK)高活性有机质、中活性有机质及总活性有机质碳库管理指数均低于参考土壤。采用有机肥无机肥配施对提高黑土活性有机质含量,提高土壤碳库管理指数具有比较好的效果。  相似文献   

12.
Conservation tillage is not yet widely accepted by organic farmers because inversion tillage is considered to be necessary for weed control. Three long-term experiments were established with combinations of reduced and conventional plough tillage and stubble tillage to determine weed infestation levels in organic farming, i.e. herbicide application being excluded. Experiment 1 (with very low stocking density of perennial weeds) showed that in presence of primary tillage by mouldboard ploughing the number of annual weeds was nearly unaffected by the mode of stubble tillage. In experiment 2, however, with Canada thistle (Cirsium arvense) being artificially established, thistle density was significantly affected by stubble tillage and by a perennial grass–clover forage crop. Experiment 3 combined two levels of stubble tillage (skimmer plough, no stubble tillage = control) with four implements of primary tillage in the order of decreasing operation depth (deep mouldboard plough, double-layer plough, shallow mouldboard plough or chisel plough). Primary tillage by chisel plough resulted in significantly highest annual weed density compared to all other treatments. The natural C. arvense infestation in experiment 3 showed highest shoot density in the “skimmer plough/chisel plough” treatment compared to the lowest infestation in the “skimmer plough/double-layer plough” treatment. The poor capacity of the chisel plough for weed control was also reflected by the soil seed bank (5500 m−2 C. arvense seeds for chisel plough, <300 seeds for all other primary tillage). A reduced operation depth of the mouldboard plough (“shallow mouldboard plough”) seemed to have an insufficient effect in controlling C. arvense infestation as well. Stubble tillage by the skimmer plough in addition to nearly any primary tillage operation largely reduced both annual weeds and thistle shoots. Most effective in controlling C. arvense was also a biennial grass–clover mixture as part of the crop rotation.Double-layer ploughing is a compromise between soil inversion and soil loosening/cutting and can be regarded as a step towards conservation tillage. In terms of controlling annual weeds and C. arvense, the double-layer plough was not inferior to a deep mouldboard plough and seems to be suitable for weed control in organic farming. Tilling the stubble shallowly after harvest can support weed control in organic farming remarkably, particularly in reducing C. arvense. If no noxious, perennial weeds occur and primary tillage is done by soil inversion, an omission of stubble tillage can be taken into consideration.  相似文献   

13.
Soil degradation due to tillage has been reported Africa-wide. Other main causes of soil degradation are overgrazing, extensive cultivation of marginal lands, widespread clearing of vegetation for agriculture, deforestation, exploitation of unsuitable agricultural technologies, mis-management of arable lands, and frequent drought. Hence, declining soil fertility and increasing population pressure on lands are fragile bases on which to build expectations for improved crop production. This paper recognizes conservation tillage systems as one means for preventing food shortages and natural resources degradation throughout the continent. Conservation tillage has the potential for increasing soil organic matter content and enhancing soil aggregation. Conservation tillage systems can create an aggregated, fertile surface layer that is important from a soil erosion reduction perspective and thus for a sustainable agriculture in Africa. Some indigenous tillage systems in Africa can be adapted to meet objectives of conservation tillage systems. Further, recent technological developments in tillage and seeding machinery will certainly enhance the rate of farmer’s acceptance and adoption of conservation tillage.  相似文献   

14.
转变耕作方式对长期旋免耕农田土壤有机碳库的影响   总被引:3,自引:6,他引:3  
土壤深松是解决长期旋免耕农田耕层浅薄化、亚表层(>15~30 cm)容重增加等问题的有效方法之一,而将长期旋免耕农田进行深松必然导致农业生态系统中土壤有机碳(soil organic carbon,SOC)及碳固定速率的变化。因此,为对比将长期旋免耕转变为深松前后农田土壤有机碳库变化,该研究利用连续12a 的旋耕和免耕长期定位试验以及在此基础上连续6 a旋耕-深松和免耕-深松定位试验,对比了转变耕作方式对农田土壤0~30 cm有机碳含量、周年累积速率及其固碳量的影响。研究结果表明,经过连续12 a的旋耕和免耕处理(2002-2014),2014年免耕处理土壤0~30 cm有机碳储量比试验初期(2002年)提高38%,旋耕处理降低了30%,而对照常规处理无显著差异。免耕处理土壤0~30 cm有机碳储量比旋耕处理高约2.6倍(2014年)。长期免耕显著提高了土壤0~30 cm的有机碳含量,2002~2014年其土壤0~30 cm固碳量为16.69 t/hm2,但长期旋耕导致土壤0~30 cm SOC含量显著降低,表现为土壤有机碳的净损耗,年损耗速率为?0.75 t/hm2。而长期旋耕后进行深松(旋耕-深松处理)6年其土壤0~30 cm的有机碳含量较原旋耕处理提高32%~67%,且显著提高了土壤固碳量及周年累积速率;免耕-深松土壤0~30 cm的有机碳周年累积速率较免耕处理下降了42%。长期旋耕造成有机碳水平下降的条件下,将旋耕处理转变为深松处理在短期内更有利于促进土壤有机碳的积累,而将长期免耕处理转变为深松措施,降低了土壤有机碳的累积速率和固碳量。  相似文献   

15.
Although many studies suggest that no-tillage (NT) increases soil organic carbon (SOC) within the soil profile relative to mouldboard ploughing, other studies indicate that no net change occurs. The latter studies suggest that NT only stratifies the SOC, where a near-surface increase in SOC is offset by a concomitant decrease in the subsurface. We examined the SOC distribution and stocks in a cool, humid Brookston clay (Typic Argiaquoll) soil under four soil management systems with a corn–soybean rotation. The objectives of this study were to compare the profile distribution and total amount of SOC under long-term (21 years) NT and mouldboard plough (MP) tillage with the changes that occur over 8 years when 13-years continuous NT is converted to MP, and when 13-years continuous MP is converted to NT. In the top 5 cm of soil, the long-term NT management accumulated greater SOC compared with the long-term MP treatment. However, this near-surface increase was offset by lower SOC concentrations in the 10–20 cm depth, resulting in similar total amounts of SOC stored in 0–20 cm for both long-term NT and MP. The SOC stratification that existed after 13 years of NT management was eliminated with one mouldboard ploughing operation, however the total SOC content in the plough layer of the new-MP treatment remained relatively constant over the subsequent 8 years. Soil organic carbon stratification was evident in the new no-tillage treatment 3 years after the cessation of tillage. The continuous build-up of SOC in the surface of new-NT soils was associated with no change in the total amount of SOC in the plough layer relative to long-term NT. This implies that the diminution of SOC in the 10–20 cm depth was at the same rate as the accumulation of SOC in the 0–5 cm depth. Although there was no net effect of tillage on total carbon stocks in this fine-textured soil, SOC stratification required several years to build-up after adoption of NT, but only a single year to destroy under MP.  相似文献   

16.
Different agricultural practices can result in a decline in soil organic carbon (SOC) and a consequent reduction in soil structural stability. Experiments were conducted on soils with a range of SOC values, to quantify the destabilizing effects of increased tillage intensity. Different tillage intensity was simulated with the use of a falling weight, where specific energy levels, similar to those experienced during tillage, were reproduced. The level of destabilization was assessed by the quantity of mechanically dispersed clay (using a turbidimetric technique) and the quantity of water-stable aggregates (WSA) > 0.25 mm remaining after being shaken in water.

The quantity of clay dispersed increased with increasing water content, in the absence of any mechanical pretreatment, the rate of increase rising sharply with declining SOC. Following simulated tillage, and at water contents above the plastic limit, clay dispersion increased in proportion to the energy of disruption, and also increased with decreasing SOC levels. Below the plastic limit all the soils were relatively insensitive to mechanical disruption. A simple empirical model was derived to link clay dispersion to SOC, water content and energy of disruption.

The proportion of WSA declined sharply with decreasing SOC, and to a lesser extent following tillage. The quantity of WSA following simulated intensive tillage (300 J kg−1) of grassland (SOC, 2.8–3.2 g (100 g)−1) was greater than that present, prior to tillage from fallow, arable and arable/ley rotation treatments (SOC 1.1–2.5 g (100 g)−1). Aggregate tensile strength was found to be relatively insensitive to differences in SOC. However, variations of strength within treatments, an indicator of soil friability, increased in proportion with SOC. A turbidity index was derived in which the turbidity of natural and remoulded aggregates was compared. Variation of this index with increasing mechanical energy is used as an indicator of the sensitivity of soils to damage during tillage. A visual representation is constructed to link the sensitivity of soils to damage during tillage with both SOC and water potential. These experiments illustrate that management practices, which lead to a long term reduction in SOC, are responsible for an increase in aggregate strength and reduction in stability plus an increase in sensitivity of soils to structural decline following subsequent tillage.  相似文献   


17.
针对松干流域农田面源污染控制需求,该文开展了植物篱埂垄向区田技术在坡耕地上的水土及氮磷流失控制效应研究。田间设置8个试验处理,包括两个对照即传统顺垄种植(CK1)与横垄种植(CK2)、3个间距的顺垄种植植物篱埂(1 m间距,T1;3 m间距,T2;5 m间距,T3)和3个间距的土埂(1 m间距,T4;3 m间距,T5;5 m间距,T6)。选择三叶草为植物篱材料。结果表明:1)与传统顺垄种植相比,横垄种植泥沙量减少46.9%,径流量减少52.9%;植物篱埂T1、T2与T3泥沙量分别减少44.6%、44.1%和42.1%,径流量分别减少50.6%、49.8%和49.2%;T4、T5和T6也能降低水土流失量,但与T1、T2与T3相比,泥沙流失量分别增加16.3%、12.6%和29.5%,径流量分别增加29.6%、46.8和76.9%;植物篱埂垄向区田技术的泥沙量与径流量控制效果相对接近横垄种植。2)与传统顺垄种植相比,各处理泥沙与径流TN浓度增大,TP浓度无变化;各处理的径流TN与TP浓度增大,其中各处理间的TN浓度有较大差异,TP浓度无明显差异;径流液TN浓度增加并没有引起农田氮流失增加,农田氮流失平均降低19.7%。3)考虑到经济投入问题,推荐植物篱埂间距3~5 m,较大坡度和坡上坡中采用较小间距,较小坡度和坡底采用较大间距;植物篱埂垄向区田技术能够提高玉米产量,平均增产5%~5.6%。  相似文献   

18.
Abstract

Differential thermogravimetry (DTG), differential scanning calorimetry (DSC), and stepwise thermogravimetry (STG), together with two acid hydrolysis methods (hydrolysis with hydrochloric acid in a single step, and hydrolysis with sulfuric acid in two steps), were evaluated to determine the quality of four plant materials (Medicago sativa, Eucalyptus globulus, Quercus ilex, and Pinus halepensis) before and after mixing with a red earth. These quality indices were then compared with the same materials in the field, whether their decomposition could be predicted. All the thermal methods gave poor results. In both DTG and DSC, the presence of the mineral matrix gave rise to strong distortions in the spectra. Since the spectrum of any mixture is not simply the sum of the spectra of the two components (organic matter + mineral matter), these distortions could not be corrected by simply subtracting the spectrum of the red earth alone. STG trials also gave poor results, because the presence of the mineral matrix greatly increased the quality indices, and reduced the ability of the method to distinguish between organic matter qualities. In view of our results, the usefulness of thermal methods in the characterization of soil organic matter would seem to be restricted to certain organic horizons (L, F, and perhaps H). In contrast, methods based on acid hydrolysis were comparatively more satisfactory. Their resolution (ability to distinguish organic matter qualities) was much higher than that of thermal methods. However, they were able to distinguish carbon more accurately than nitrogen. The sulfuric acid method, unlike the hydrochloric acid method, was affected by the presence of a mineral matrix. While both methods could be improved, in their present form they seem to operate as good predictors of carbon and nitrogen mineralization.  相似文献   

19.
ABSTRACT

Certain plant combinations can stimulate the mineralization of soil organic matter (SOM), thereby changing the storage of soil organic carbon and affecting the physical and chemical soil properties. The aim of this study was to evaluate whether competition between weeds and maize can stimulate SOM decomposition. Eight treatments were performed: monoculture of maize and weeds (Amaranthus viridis, Bidens pilosa, and Ipomoea grandifolia), maize in competition with weeds, and non-cultivated soil. During cultivation, the rhizosphere priming effect (RPE) on SOM was estimated. Additionally, at 60 days after planting, soil samples were collected to measure the C contents of particulate (POM) and mineral-associated (MAOM) organic matter. From the 43rd day of cultivation onwards, the coexistence between maize and B. pilosa led to the highest RPE values, while maize vs. A. viridis showed negative RPE. Maize vs. A. viridis and maize vs. I. grandifolia caused increase in MAOM-C and decreases in POM-C. Ipomoea grandifolia monoculture and maize vs. B. pilosa led to the highest MAOM-C losses and reduced POM-C compared to the non-cultivated soils. Here it is demonstrated that competition between maize and B. pilosa increases SOM mineralization, while competition between maize and A. viridis or I. grandifolia retards this process.  相似文献   

20.
It is well known that no-tillage (NT) practices can promote greater stocks of soil organic matter (SOM) in the soil surface layer compared to conventional tillage (CT) by enhancing the physical protection of aggregate-associated C in temperate soils. However, this link between tillage, aggregation and SOM is less well established for tropical soils, such as Oxisols. The objective of this study was to investigate the underlying mechanisms of SOM stabilization in Oxisols as affected by different crop rotations and tillage regimes at two sites in southern Brazil. Soils were sampled from two agricultural experiment sites (Passo Fundo and Londrina) in southern Brazil, with treatments comparing different crop rotations under NT and CT management, and a reference soil under native vegetation (NV). Free light fraction (LF) and intra-aggregate particulate organic matter (iPOM) were isolated from slaking-resistant aggregates. Of the total C associated with aggregates, 79–90% was found in the mineral fraction, but there were no differences between NT and CT. In contrast, tillage drastically decreased LF-C concentrations in the 0–5 cm depth layer at both sites. In the same depth layer of NT systems at Londrina, the concentrations of iPOM-C were greater when a legume cover crop was included in the rotation. At Londrina, the order of total iPOM-C levels was generally NV > NT > CT in the 0–5 cm depth interval, but the difference between NT and CT was much less than in Passo Fundo. At Passo Fundo, the greatest concentrations and differences in concentrations across tillage treatments were found in the fine (53–250 μm) iPOM fractions occluded within microaggregates. In conclusion, even though no aggregate hierarchy exists in these Oxisols, our results corroborate the concept of a stabilization of POM-C within microaggregates in no-tillage systems, especially when green manures are included in the rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号