共查询到10条相似文献,搜索用时 57 毫秒
1.
L. Wang C. R. Butterly X. L. Yang Y. Wang H. M. S. K. Herath X. Jiang 《Soil Use and Management》2012,28(2):148-156
Information regarding the interaction between liming agents and crop residues on soil acidity amelioration is limited. A laboratory incubation study was undertaken to investigate the combined application of alkaline slag (AS, the major component is CaO) and crop residues with different C/N ratios and ash alkalinity content. Incorporation of amendments was effective in reducing soil exchangeable acidity and Al saturation and increasing exchangeable base cations (P < 0.05), but the effect of AS on soil pH adjustment was reduced when added with a high amount of residue with a low C/N ratio. Initial increases in soil pH were attributed to the release of alkalinity from the combined amendments and the mineralization of organic nitrogen (N). During subsequent incubation, the soil pH decreased because of nitrification. Crop residues with a high C/N ratio increased N immobilization and reduced net nitrification, resulting in a slight pH decrease. Crop residues with a low C/N ratio resulted in a sharp decrease in soil pH when applied with low levels of AS because of stimulated soil nitrification, whereas high AS had no consistent effect on net nitrification. Hence, compared to the control (pH = 4.21), a large increase in soil pH occurred, especially when peanut straw was applied at 10 g/kg (pH = 5.16). It is suggested that crop residues with high C/N ratio and also combined with a liming agent such as AS are preferred to ameliorate soil acidity. The liming effect of AS is likely to be negated if added in combination with residues with high N contents. 相似文献
2.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (P < 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars. 相似文献
3.
L. Wang C. R. Butterly Y. Wang H. M. S. K. Herath Y. G. Xi X. J. Xiao 《Soil Use and Management》2014,30(1):119-128
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (P < 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (P < 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (P < 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils. 相似文献
4.
农业废弃物及其制备的生物质炭对酸性土壤的改良作用 总被引:13,自引:0,他引:13
The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor aflecting their liming potential, and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility. 相似文献
5.
Biochar was prepared using a low temperature pyrolysis method from nine plant materials including non‐leguminous straw from canola, wheat, corn, rice and rice hull and leguminous straw from soybean, peanut, faba bean and mung bean. Soil pH increased during incubation of the soil with all nine biochar samples added at 10 g/kg. The biochar from legume materials resulted in greater increases in soil pH than from non‐legume materials. The addition of biochar also increased exchangeable base cations, effective cation exchange capacity, and base saturation, whereas soil exchangeable Al and exchangeable acidity decreased as expected. The liming effects of the biochar samples on soil acidity correlated with alkalinity with a close linear correlation between soil pH and biochar alkalinity (R2 = 0.95). Therefore, biochar alkalinity is a key factor in controlling the liming effect on acid soils. The incorporation of biochar from crop residues, especially from leguminous plants, can both correct soil acidity and improve soil fertility. 相似文献
6.
Peter Blaser Lorenz Walthert Stephan Zimmermann Elisabeth Graf Pannatier Jörg Luster 《植物养料与土壤学杂志》2008,171(2):163-170
Soil chemical parameters related to soil acidity were determined for 1450 soil samples taken from individual mineral soil horizons in 257 forest soils in Switzerland, 196 developed from carbonate‐containing and 61 from carbonate‐free parent material. The distribution of pH values and exchangeable base cations in corresponding pH ranges were related to the capacity and rate of buffer reactions in the soil. Based on this, five acidity classes for individual soil samples were defined. To describe and classify the status of soil acidity and base saturation (BS) of an entire soil body, the pH and the BS of the total fine earth in the soil were calculated from the pH and BS, respectively, of the individual soil horizons and the estimated volumetric content of fine earth. The status of soil acidification of soil profiles was assessed primarily using the total amount of exchangeable acidic cations in percent of the CEC of the fine earth in the entire soil profile. As a second factor, the gradient between the acidity class of the most acidic soil horizon and the estimated acidity class at the beginning of soil formation was used. The application of these classification schemes to our collection of soil profiles revealed the great influence played by the type of parent material. The acidification status of most soils on carbonate‐containing parent material was classified as very weak to weak, whereas soils on carbonate‐free parent material were found to be strongly to very strongly acidified. In terms of parent rock material, microclimate, and natural vegetation, the results of this study and the proposed classification schemes can be considered appropriate for large parts of Europe. 相似文献
7.
The amelioration of an acid Alfisol from a tea garden was studied by incorporating various plant materials: canola straw, wheat straw, rice straw, corn straw, soybean straw, peanut straw, faba bean straw, Chinese milk vetch shoot and pea straw prior to incubation for a maximum of 65 days. Soil pH increased after incubation with all the incorporated materials with the legumes causing the largest increases. The final soil pH was correlated with ash alkalinity ( r 2 = 0.73), base cations ( r 2 = 0.74) and N content ( r 2 = 0.93) of the applied materials. It was assumed that the incubation released the base cations in plant materials as they decomposed which ultimately increased the base cation saturation of the soil. Similarly, soil exchangeable Al was also decreased with the incorporation of the legume plant materials and corn straw and rice straw. Our investigation demonstrated that legumes are the preferred choice for controlling the soil acidity and also for reducing the toxicity of Al in acid soils. 相似文献
8.
In the present work, the exchangeable acidity of a red soil colloid and a latosol colloid at different pH during reacting with four neutral salts was measured. The results show that the exchangeable acidity increased with increasing amounts of the neutral salts added, and the relation between them was almost linear. When the amount of the neutral salt added was lower than a certain value, the slope of the line was high, and the slope turned low when the amount exceeded that value, so there was a turning point in each line. The addition amounts of the neutral salts for the turning points were affected by the cation species of the neutral salts, but pH had less effect on them. After the turning points occurred, the exchangeable acidity of the red soil colloid still gradually increased with the addition amounts of the neutral salts, but that of the latosol colloid did not increase any more. The exchangeable acidity in NaClO4, KClO4 and NaCl solutions increased at first, and then decreased with increasing pH, that is to say, peak values appeared. The peak positions of the exchangeable acidity in relation to pH changed with neutral salt solutions and were affected by the surface characteristics of the soil colloids, but not affected by the amounts of the neutral salts added. The exchangeable acidity in the Ba(NO3)2 solution increased continuously with increasing pH. The exchangeable acidity of the red soil colloid was obviously larger than that of the latosol colloid. 相似文献
9.
Ultisols are widely distributed in the subtropical regions of China as well as in the world. High acidity of Ultisols limits plant growth and reduces crop yields. Amelioration of an acid Ultisol was investigated by incorporating the residues of canola (Brassica campestris L.), wheat (Triticum aestivum L.), rice (Oryza sativa), corn (Zea mays), soybean (Glycine max), peanut (Arachis hypogaea), faba bean (Vicia faba L.) and pea (Pisum sativum) and Chinese milk vetch (Astragalus sinicus L.) shoots after incubation of the agricultural by‐products for a maximum of 75 days, soil pH was increased by each of the plant materials. The degree of amelioration of the soil acidity by the plant materials was found to depend on the ash alkalinity and N content of the materials; the legumes of higher ash alkalinities and lower N contents, such as peanut straw and faba bean straw, led to the largest increases in soil pH, while the legumes of higher N contents showed less amelioration of the acidity to a certain degree, because of the release of protons during nitrification of NH from mineralisation of organic N. The non‐leguminous materials have medium amelioration effects and increased soil pH by 0·42–0·56 units at the end of incubation. The incorporation of the plant materials also increased exchangeable base status and reduced exchangeable Al, and thus decreased the toxicity of Al in the soil. This study demonstrates that plant materials, especially crop residues, can be used as amendments for acidic soils to restore degraded land in subtropical regions. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
四环素类抗生素在土壤和堆肥中的吸附和降解 总被引:6,自引:0,他引:6
Two agricultural soils were collected from Dahu and Pinchen counties and swine manure compost (SMC) from Ping-tung County in Taiwan, China to investigate the sorption and dissipation of three tetracyclines (TCs), i.e., oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC), in compost, soils and soil/compost mixtures with different organic carbon (OC) contents. There were seven treatments in total. TCs were most strongly adsorbed to SMC in all treatments due to the high OC content. When SMC was present in the soils, the sorption of TCs was significantly enhanced, which might be attributed to the increased OC content and CEC. The adsorption of TCs showed non-linear adsorption isotherms and fitted well to the Freundlich model. After 49 d of incubation at 25 ℃ in soils and soil/compost mixtures in the dark, TCs elapsed in all substrates, with the time required for 50% degradation (DT50) between 20 and 41 d, and the time for 90% degradation (DT90) between 68 and 137 d. Soil amended with compost enhanced the stability of TCs and reduced their mobility. The dissipation of TCs in a soil environment was slow, indicating that these compounds might be persistent in soil. 相似文献