首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural run-off is an important source of nonpoint source pollution. Surface run-off driven by rainfall events was analyzed at two sugarcane fields (SC1 and SC2) in Louisiana, USA. The study site was within a watershed confined by the Mississippi River levee and a drainage canal (St. James Canal). In total, 14 representative rainfall run-off events were analyzed. For comparison with onsite monitoring, a modeling technique was used to estimate run-off. The results show that run-off/rainfall ratios at SC1 were significantly higher (p < 0.0001, n = 14) than at SC2, probably mainly due to a higher sand content of the soil and a higher infiltration rate at SC2 than at SC1. Model-calculated run-off showed substantial overestimation compared with the monitoring results, especially at SC2. Comparison analysis suggests that significant infiltration following precipitation is expected in sandy fields, and water discharge into the groundwater aquifer cannot be ignored. Without considering groundwater discharge in model algorism, the model calculation may significantly overestimate actual surface run-off.  相似文献   

2.
水土保持措施对秃尾河径流的影响   总被引:3,自引:0,他引:3  
在黄土高原地区,水土保持措施是影响流域产汇流的重要因素之一。本文采用双累积曲线、时间序列分析等方法,分析秃尾河流域降水及河川径流、暴雨洪水特征变化及其对流域水土流失治理的响应。结果表明:流域多年平均降水量406.4mm,河道多年平均径流量3.4亿m3,1977年后年径流量呈显著性减小趋势。与1977年之前相比,在水土保持措施影响下,汛期径流量占年径流量比例下降,枯水期径流量比例上升,季节分配趋于均匀。相似降水条件下,场次洪水总量、洪峰流量减少,洪水过程均化。  相似文献   

3.
渗流潜蚀作用临界发生条件的推导   总被引:1,自引:0,他引:1  
为了进一步深入了解渗流潜蚀作用的发生条件及其机理,首先在对国内外文献进行广泛调研的基础上,将“管涌”、“渗透压密”、“流土”、“突涌”等几种最为常见的渗流潜蚀作用的概念模型进行了严格界定,将流土及突涌发生时的渗流方向扩展到任意方向。其次,通过受力分析,利用解析方法推导了“管涌”、“渗透压密”、“流土”、“突涌”等渗流潜蚀作用发生的临界条件,并对其他地下径流作用下发生的潜蚀作用进行了讨论。最后,指出由于渗流潜蚀作用发生环境的多样性,对其发生临界条件的判断应就其具体受力情况来具体分析。根据渗流潜蚀作用临界发生条件推导得出的相关结果,为潜蚀作用的进一步研究提供了理论基础。  相似文献   

4.
粗粒土常常作为农业水土工程、水利工程和土壤特性改良工程的重要材料和载体,在浑水渗流作用下,其特性的变化对工程应用有重要影响。该研究推导了浑水渗流作用下,圆管中粗粒土渗流计算式,并采用自制装置系统分析了浑水渗流作用下粗粒土的渗透特性,探讨了粗粒土的水力梯度、渗透系数、渗流量以及孔隙填充率的变化规律,并将推导的理论式与试验结果进行对比验证。结果表明:在水力、几何条件均满足的前提下,浑水在粗粒土中的渗流可分为3个阶段,分别是细颗粒运移畅通阶段(阶段1),孔隙堵塞和运移并存阶段(阶段2)和粗粒土顶部淤积分层阶段(阶段3),粗粒土在各阶段表现出不同的渗透和物理特性;粗粒土渗透特性主要受到浑水浓度和水头的影响,随着浓度和水头的增大,浑水中细颗粒在粗粒土中的运移、堵塞和淤积会加剧,粗粒土整体的水力梯度会增大,而渗透系数会逐渐减小;粗粒土的不均匀系数是影响浑水渗流过程的重要因素,不均匀系数越大粗粒土内部孔隙率就越小,细颗粒运移的通道越不畅通,更容易发生堵塞和淤积;随着水头的增大,在较大渗透力的作用下细颗粒的运移会更容易,但也加快了内部堵塞和顶部淤积的速度,细颗粒持续向下运移的距离也会减小;随着浑水浓度的增大,粗粒土顶部的孔隙会快速沉积、封堵,细颗粒运移速度和距离都会被削弱;试验完成后,粗粒土柱沿着渗流路径方向自上而下孔隙率逐渐较小,在0~5 cm范围内下降梯度最大,5~20 cm范围下降趋缓。研究结果揭示了浑水渗流作用下粗粒土抗渗透特性的变化规律,为浑水渗流和工程应用提供理论支持。  相似文献   

5.
The infiltration process is important in the planning and management of irrigation systems. This study was performed in Mazandaran province, Iran, to compare the effect of magnetized and non‐magnetized irrigation water on cumulative infiltration and final infiltration rate of three soil textures. Magnetized water was obtained by passing the water through a strong permanent magnet installed on a feed pipeline. The results showed that the effects of soil texture and magnetized irrigation water on cumulative water infiltration and final infiltration rate was significant (P < 0.01). Cumulative water infiltration and final infiltration rates with magnetized water were greater than that of non‐magnetized water. The cumulative water infiltration rate after 4 h for magnetized and non‐magnetized water was 26.4 and 12.7 cm in clay soil, 37.6 and 20 cm in silty loam soil and 40.8 and 29.3 cm in sandy loam soil, respectively. The final infiltration rates after 4 h for magnetized and non‐magnetized water were 0.05 and 0.023 cm/min in clay soil, 0.063 and 0.036 cm/min in silty loam soil and 0.076 and 0.046 cm/min in sandy loam soil, respectively. Therefore, magnetized irrigation water had most effect on the infiltration capacity of clay soil.  相似文献   

6.
[目的]建立可靠的地下水数值模型,为煤矿矿坑涌水的预测提供参考。[方法]采用Modflow-2005中的Conduit Flow Process(CFP)方法对某煤矿放水试验进行模拟,并用局部灵敏度分析方法进行水文地质参数不确定性分析。[结果]建立了"渗流—管流耦合模型",经过反复调参,分析拟合结果,求得最佳拟合的水文地质参数。通过灵敏度分析,获得最大的灵敏度参数。[结论]研究区内含水层渗透性差异比较大,在疏放水过程中要做好预防措施;灵敏度分析结果表明,井管C值对放水试验影响最大,纵向上侏罗系下统延安组渗透系数的影响大于其他含水岩组。  相似文献   

7.
Background, Aims, and Scope  As a consequence of human living and activity, water infiltration to the urban subsurface occurs from a variety of different sources, like precipitation, irrigation, leaking pipes and sewers, septic tanks and rainwater infiltration ponds. This infiltration is strongly related with quality issues of the infiltrated water and further impact on groundwater quality. In order to set up an integrated urban water balance it becomes essential to estimate the infiltration processes, i.e. water flow and solute transport, from these different infiltration sources and to take into account the large spatial variability of sediment properties, the geometric settings of these sources and the groundwater table. For that purpose, the development of simple, physically-based quantification approaches is required in order to establish an efficiently working prediction and risk analysis tool within the framework of an integrated urban water management system. The scope of the presented work was to demonstrate the applicability of the developed approaches at urban scale. Methods  Since a detailed, three-dimensional, numerical quantification of the infiltration processes within the entire urban area is not possible, the individual sources were considered as independent within the EU AISUWRS project. Different models were developed for balancing infiltration from areal and point sources with respect to the related flow pattern. The analytical model UL_FLOW, based on one-dimensional, steady state analytical solutions, allows the estimation of conservative tracer residence times in layered sediments under varying infiltration rates. The numerical model WSTM, based on a three-dimensional random walk approach, calculates water and solute transport from pipe leaks. Additionally, the sources were classified in accordance to the spatial distribution of the parameters determining the infiltration processes. Results  UL_FLOW was applied to data sets from the city of Rastatt within a case study of the AISUWRS project. Each neighbourhood of water balance computation by the Urban Volume and Quality Model (UVQ) was defined as an areal infiltration source with unique parameter values for sediment depth, profile and properties, as well as infiltration rate time series. Groundwater recharge and residence time series were computed for each neighbourhood. Relevant statistical parameters obtained by time series analyses from those time series could be mapped by GIS. Point infiltration, particularly from sewers, was classified due to the sediment parameters and the distance to the groundwater table at each source location in order to reduce computational efforts. WSTM computations provided time series of groundwater recharge and tracer breakthrough for some specific cases. Discussion  The analytical model UL_FLOW provides fast and efficient computation of groundwater recharge and residence times accounting for storage effects within the unsaturated zone of urban areas. The reliability of this model has been shown by cross validation with HYDRUS1D. Because of the high computational effort, WSTM could provide only short-term simulations for some specific parameter sets for which residence time estimates could be derived. Conclusions  UL_FLOW provides an analytical modelling tool for balancing one-dimensional areal infiltration and estimating residence times under varying conditions including spatial parameter variability. These balances could be used for assessing the impact of those infiltration sources on groundwater quality. The tracer breakthrough from point infiltration sources computed by WSTM could also be used for such kinds of assessment. The larger spatial parameter variability associated with these sources could be handled by classification in GIS environments. Recommendations and Perspectives  Similar to the areal sources, a simple balance approach for point sources based on analytical solutions needs to be developed for estimating residence times in order to avoid large computational efforts. Such a model would complete the balancing of all kinds of infiltration sources in urban areas efficiently. Since the approaches are based on the balance of the physical processes, they have a large predictive capability and could be included into an integrated urban water balance and management system. The mapping of the statistical values of the residence times provides a tool to compare parts of the urban areas and to visualize differences between urban water management scenarios.  相似文献   

8.
以试验方法,探讨暴雨作用下于不同坡度时,对坡地破坏及保护方式之研究。保护方式分为4类:地下排水、支排水、干砌卵石及浆砌卵石、试验中观测地下水之变化,量测流失之土方、排水量,以及最后破坏之断面,并进行边坡稳定分析,试验结果指出:(1)压实度较小、渗透性较佳之土壤,因地下水渗透,在坡脚产生瞬间坍方。(2)压实度较大,渗透笥较差之土壤,将产生地表径流冲蚀,若无排水或坡地保护措施,将发展成严重的径流冲蚀,  相似文献   

9.
At the end of waste disposal in 2005, a temporary mineral system was constructed to cover the waste body of the municipal landfill in Rastorf (N Germany). The aim of this study was to evaluate the effectiveness of this temporary cover system in limiting the infiltration of surface water into the waste body. The numerical modeling for the hydrological year 2012 was performed in FEFLOW 6.0. The required input data for modeling were achieved by laboratory measurements of the saturated hydraulic conductivity and the water retention characteristics of the mineral layers. The assumed initial and boundary conditions were based on in‐situ measurements of matrix potential and volumetric water content at three different measuring points by tensiometers, FDR sensors and observed meteorological conditions. The model was applied according to Darcy's and Richards' equations for variably saturated flow. Our results allowed assessing the components of water balance for a temporary cover system, especially water seepage into the waste body. The correlation between the measured and modeled volumetric soil water content in the layered temporary cover system was observed (R2 = 0.56 to 0.90). Deviations between the measured and modeled values are superficially related to the soil´s heterogeneity. In conclusion, the measured and modeled water balance parameters indicate that the temporary coverage system remains effective in limiting the infiltration rate. However, our studies revealed that the calculated and measured water seepage exceeded the values allowable by the German regulations. Additional studies have to assess variations in the soil water characteristics caused by weather‐related wetting and drying cycles and influence of waste settlement changing the profile of slope.  相似文献   

10.
设计流量和土壤质地对微孔陶瓷灌水器入渗特性的影响   总被引:1,自引:1,他引:0  
为探明微孔陶瓷灌水器土壤中入渗流量变化的原因,明确微孔陶瓷灌水器的出流原理,该研究基于土桶模拟试验,研究3种设计流量(0.72、1.87和4.40 L/h)的微孔陶瓷灌水器下2种土壤(黄绵土、塿土)的渗流特性。结果表明,使用不同灌水器灌溉后,短时间内入渗流量均迅速减小,而后缓慢减小趋于稳定。设计流量与土壤质地均影响灌水器的出流。灌水器周围土壤水势的变化是造成入渗流量变化的直接原因,土壤含水率的变化是入渗流量变化的根本原因。在没有淹没出流的情况下,土壤含水率越高,入渗流量越小。设计流量为1.87 L/h灌水器应用于塿土中,当土壤含水率由13%增大至40%时,入渗流量由1.4 L/h下降至0.3 L/h左右。灌水器周围土壤含水率对入渗流量具有反馈调节作用。采用微孔陶瓷灌水器作为灌溉系统的核心部件,在内部水头适宜(微压或零压)的情况下,通过灌水器入渗流量与土壤含水率的耦合作用,可实现土壤水分的自动调控,达到主动灌溉的目的。该文可为微孔陶瓷灌水器的推广应用提供参考。  相似文献   

11.
Precipitation is the most important water resource in semi-arid regions of China. The redistribution of precipitation among atmospheric water, soil water and groundwater are related to the land surface afforested ecological system. The study took widely replanted Pinus sylvestris var. Mongolica (PSM) in Mu Us Sandy Land (MUSL) as a research object and monitored precipitation, soil moisture, sap flow, and deep soil recharge (DSR) to find out moisture distribution in shallow soil layers. Results showed that the restoration process of PSM in MUSL changed the distribution of precipitation, with part of it infiltrating downward as DSR and part of it being stored in the shallow soil. Consequently, evapotranspiration increased and DSR significantly decreased, resulting in up to 466.9 mm of precipitation returning to the atmosphere through evapotranspiration in 2016. Vegetation increased soil water storage (SWS) capacity, with maximum SWS in PSM plot and bare sandy land (BSL) being 260 mm and 197 mm per unit horizontal area, respectively in 2016. DSR decreased from 54% of precipitation in the BSL plot to 0.2% of precipitation in the PSM plot in 2016. A great portion of infiltrated water was stored in the PSM ecosystem, resulting in a time lag of infiltration to reach the deep soil layer, and the infiltration rate in the BSL plot was 11 times of that in the PSM plot. SWS decreased 16 mm and 7.6 mm per unit horizontal area over a one-year period (from March to October, non-freezing time) in 2017 and 2019, respectively. The PSM annual sap flow was maintained at a relatively constant level of 154 mm/yr. Through in-situ measurement and comparative analysis of the precipitation redistribution of the BSL plot and the PSM plot, we find that PSM can significantly reduce the shallow soil water storage and DSR. However, substantial reduction of shallow soil water storage and DSR is detrimental for the long-term development of PSM forest. Therefore, it is necessary to reduce PSM density to cut the water consumption by PSM per unit area, thus to augment the shallow SWS and DSR, which will be beneficial for the PSM to survive under extreme drought conditions in the future. This study helps us understand the role of precipitation-induced groundwater recharge in the process of vegetation restoration in semi-arid regions and explains the possible causes of PSM forest degradation.  相似文献   

12.
Zn and Pb release of sphalerite (ZnS)-bearing mine waste tailings   总被引:2,自引:0,他引:2  
Background, aim, and scope  Contaminated mine drainage water has become a major hydrogeological and geochemical problem. Release of soluble metal contaminants and acidity from mining sites can pose serious chemical risks to surface and groundwater in the surrounding environment, and it is an important socio-economic factor addressed by working groups like SUITMA Morel and Heinrich (J Soils Sediments 8:206–207, 2008). The release of Zn and Pb from sulfide-bearing flotation residues of a small scale mine in Western Germany is investigated with focus on metal transfer to soil solution. Total contents of the soil material as well as soil water sampled with suction cups were analyzed. The influence of pH on leaching behavior was investigated with pHstat tests. Isotopic analyses helped assessing seepage water velocity. The aim of this study was the assessment of the environmental behavior of zinc and lead caused by the weathering of sulfide-bearing mine tailings. Especially, we address in this paper the dissolution of sphalerite (ZnS) in contrast to the well-known dissolution processes of pyrite (FeS2). Materials and methods  Total metal contents of the soil samples were analyzed by energy-dispersive X-ray fluorescence spectroscopy, total C concentration was measured using a CHNS elemental analyzer. X-ray diffraction (XRD) spectra were recorded from powdered soil samples. Soil water was sampled in nylon suction cups. Electrical conductivity (EC), pH, and temperature of the soil water samples were measured in the field immediately after sampling. Major anions (F, Cl, NO2, NO3, SO4) were analyzed by ion chromatography, major cations (Ca, Na, K, Li) were analyzed by flame photometry, heavy metals (Zn, Pb, Fe, Mn, and Mg) by flame atomic absorption spectrometry. Tritium was analyzed by liquid scintillation counting (LSC), 18O and 2H were analyzed by isotope ratio mass spectrometry (IRMS). pHstat tests were performed at four different pH values between 2 and 5. Results  Total Zn contents of the soil samples averaged 10 g kg−1, Pb contents averaged 2.5 g kg−1, Fe 22 g kg−1, S 8.0 g kg−1, and total carbon 4.0 g kg−1. Below 2-m depth, soil samples had neutral pH values. Toward the surface, pH decreased down to pH 5.4 in P1 and P3, and to pH 5.9 in core P2, respectively. Dissolved contents of major ions (Mg, Ca, K, SO4, and HCO3) in the soil solution increased with depth. Metal concentrations (Fe, Mn, Zn) decreased with depth. The solution pH was neutral to slightly alkaline in samples below 2 m and slightly acidic (pH 6) at 1 m depth. Tritium values are around 7 TU and correspond to modern rain, i.e., after 1975. Stable isotope values plot on the global meteoric water line. The pHstat tests provide two kinds of information, the acid neutralization capacity after 24 h (ANC24) and the release of metals depending on pH. The ANC24 increases linearly with decreasing pH from about 60 mmol(eq) kg−1 at pH 5 to about 460 mmol(eq) kg−1 at pH 2. Zn and Fe release show a strong increase with decreasing pH to 126 and 142 mmol(eq) kg−1, respectively. Pb release increases at pH <4 and Mn release at pH <5, both to about 10 mmol(eq) kg−1. Discussion  With an average of 10 g kg−1, this field site is highly enriched in Zn. In the oxidized topsoil, Zn concentrations are significantly lower than in the anoxic subsoil. The distribution pattern of total Zn contents and soil pH values indicate that the topsoil, which is prone to oxidation and acidification, is already depleted in Zn. Only in soil core P2, Zn (and Fe) contents in the topsoil were higher than in the subsoil. Oxidation of the sulfidic material leads to redistribution into mobilizable species. High soil water concentrations (10 to 15 mg L−1) can be found at acidic pH. The dominant Zn species in the soil solution is Zn2+. At neutral pH, Zn concentrations are below 0.001 mg L−1. During the soil passage, the contaminated seepage water enters the anoxic subsoil with pH buffering carbonates. Results indicate that Zn is immobilized there. However, when the acid neutralization capacity is exhausted, a breakthrough of dissolved Zn to the groundwater has to be expected. Lead averages 2.5 g kg−1 inside the flotation dump. In contrast to Zn, the first centimeters of the oxidized topsoil with high TOC contents show higher Pb contents than the anoxic subsoil. About 80% of the cation exchange capacity in the topsoil is occupied by Pb. In contrast to Zn, Pb is not abundant as aqueous species at slightly acidic pH. Values lower than pH 4 are necessary to mobilize Pb in higher amounts, as pHstat experiments confirm. Hence, Pb is not expected to be leached out until the buffer capacity of the soil is exhausted. Conclusions  The environmental fate and behavior of Zn and Pb in the flotation dump is strongly depending on pH and redox conditions. Oxidation of sphalerite leads to a transfer of Zn from immobile to easily mobilizable species. Sulfide oxidation leads to an acidification of the topsoil where the buffer capacity is already exhausted due to the leaching of carbonates. At acidic pH, Zn is transferred to the aqueous phase and leached to the subsoil where soil pH is neutral. Electron supply and the buffer capacity of the material are found to be the main factors controlling the mobility of Zn. In contrast, the transfer of comparable amounts of Pb to the aqueous phase requires pH values <4. Since Pb is enriched in the topsoil, not leaching to the groundwater, but direct uptake (e.g., children, animals) and uptake by plants is the highest environmental risk. If the acidification of the soil proceeds with the same rate as in the last 40 years, it will reach the bottom of the tailing in about 200 years and a breakthrough of metals to the groundwater has to be expected. Recommendations and perspectives  The behavior of the different metals and their environmental impact depends on the different metal properties as well as on external conditions, e.g. pH, redox conditions, buffer capacity, and groundwater recharge. To assess the future release of metals from a flotation dump it is crucial to determine the main processes leading to acidification, the buffer capacity, and heavy metal binding forms. The release of heavy metals to the groundwater could be prevented by liming or other buffering techniques de Andrade et al. (J Soils Sediments 8:123–129, 2008). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
西南山区采煤塌陷对水田土壤物理性质的影响   总被引:3,自引:1,他引:3  
为探讨西南山区采煤塌陷对水田土壤物理性质的影响及受损水田复垦途径,通过野外试验与室内测定方法分析了水田受损前后土壤物理性质的变化,结果表明:1)0~40 cm受损水田土壤容重显著增加,含水率、孔隙度(0~20 cm旱地1、2除外)显著下降;0~60 cm土壤垂直剖面除含水量干化趋同外,构型及演替规律未发生变化;2)水田受损后黏粒含量与成土母质密切相关:0~20 cm土层中0.005 mm黏粒含量高低呈现旱地3(泥页岩风化物)旱地1(泥页岩+灰岩风化物)旱地2(泥页岩+灰岩+砂岩风化物)变化,水耕历史较长、受损漏失严重的水田土壤黏粒(0.005 mm)质量分数均值分布自上而下累积增加;3)试验点土壤剖面构型、成土母质是造成渗透流量和渗透速度随累计时间增加呈减小趋势和波动与趋稳现象的主要原因,采煤塌陷并未对土壤包气带层渗水性产生严重影响;4)根据试验数据分析结果,研究区受损水田复垦可优先选择泥页岩、灰岩风化物沉积区、水耕历史较长、渗透系数小于3 m/d的沟谷区进行。该研究可为研究区采煤塌陷对水田土壤物理性质的影响提供系统诊断依据,并为受损水田复垦提供有效途径。  相似文献   

14.
祁连山东段高寒植被类型对土壤理化特征的影响   总被引:1,自引:1,他引:0  
[目的]探讨祁连山东段不同高寒植物的土壤理化特征,为区域水资源合理利用提供理论依据.[方法]对祁连山东段6种灌丛植被和高寒草地的土壤基本性状、土壤持水能力和土壤渗透性进行了相关指标的测定.[结果]①祁连山东段高寒植被的土壤容重随着土层深度的增加而增大,土壤含水量则随着土层深度的增加而降低.②祁连山东段土壤总孔隙度随着土...  相似文献   

15.
Liu  Bingxia  Wang  Shiqin  Kong  Xiaole  Liu  Xiaojing 《Journal of Soils and Sediments》2019,19(12):3982-3993
Purpose

In the lowland area of the North China Plain (NCP), increasing utilization of brackish water could promote the transformation of precipitation into available water resources, and alleviate the conflict between increase food production and freshwater scarcity. However, the processes of soil water movement and salt migration might be altered, because utilization of brackish water results in frequent changes in groundwater depth and thickness of vadose zone. Thus, it was necessary to understand soil water movement and salt migration when using brackish water for irrigation.

Materials and methods

In this study, soil matric potential (SMP) and total dissolved solids (TDS) at multiple depths were measured in situ to investigate the mechanisms of soil water movement and salt migration at one grassland (site 1) and at three typical irrigated croplands (sites 2, 3, and 4) with different soil textures and groundwater depths in a lowland area of the NCP.

Results and discussion

The study showed that deep soil water and groundwater were recharged generally following heavy precipitation during rainy season. SMP values increased quickly at site 4 due to relatively homogeneous soils, followed by site 3?>?site 2?>?site 1 with an obvious hysteresis response of SMP at multiple depths to precipitation. Soil water mainly moved downward in piston flow, and preferential flow also existed in the soil above 100 cm in the percolation process at four sites. Generally, SMP values followed the order of site 4?>?site 1?>?site 2?>?site 3 and exhibited an inverse trend for TDS, which was mainly due to soil heterogeneity and soil texture in vertical profiles. The differences in SMP among the four sites were mainly due to land use and groundwater depth. There were significantly differences in spatiotemporal distribution of water and salts between homogenous and heterogeneous soils. The processes of infiltration and water redistribution ended quickly in relatively homogeneous soils after heavy rains. However, there was obvious hysteresis in SMP with an increase in soil depth in heterogeneous soils.

Conclusions

Homogenous soils favored water infiltration, salt leaching, and groundwater recharge, and the flow of soil water flow was blocked and salt accumulated significantly in layered soils. The soil water movement and the transformation relationship between water and salt in the vadose zone provided a basis for utilization of brackish water irrigation in lowland region of the NCP.

  相似文献   

16.
黄土高原水土流失严重,生态环境脆弱,水资源短缺,地下水对保障区域社会经济发展和维持生态系统平衡具有重要意义,而该区的地下水转化和补给机制尚不明确。为探究黄土高原水蚀风蚀交错区土壤剖面深层水分运动及降水对浅层地下水补给的可能性,利用六道沟小流域分布的粗质地风沙土样地2013—2016年土壤剖面0~600 cm含水量数据,运用HYDRUS-1D模型对各土层水力参数进行反演和验证,并用于模拟样地土壤深剖面0~1 500 cm水分运移过程。结果显示,在平水年2014年(439 mm)和干旱年2015年(371 mm),0~600 cm土壤含水量生长季末与生长季初持平或略有亏缺;降水充沛年2013年(669 mm)和2016年(704 mm)土壤含水量生长季末远高于生长季初,降水入渗深度超过观测深度(600 cm)。深剖面水分运动模拟显示,2014年和2015年剖面含水量变化不明显,水分向深层运移微弱缓慢;但是,2013年和2016年降水可分别入渗运移至1 100 cm和1 200 cm深度,远超过样地上生长的旱柳根系区域,可能补给浅层地下水。在4年模拟期间,平均土壤蒸发为14.87 cm·a-1,平均植物蒸腾为33.70 cm·a-1,土壤水分主要以植物蒸腾形式损耗。在2个丰水年,得益于较充足的降水和粗质地风沙土壤的高入渗率,降水大量转化为土壤水快速向下入渗运移,模拟显示当年生长季末降水最深运移至1 200 cm,至年末已超过模拟深度(1 500 cm),水分继续运移可能补给浅层地下水。相关研究结果为黄土高原水蚀风蚀交错区地下水来源和补给机制提供理论依据。  相似文献   

17.
城市土壤的压实退化及其环境效应   总被引:17,自引:2,他引:17  
城市土壤普遍存在严重的压实退化现象。由于压实的影响,土壤物理性质发生了显著的改变:结构破坏、容重和硬度增大、孔隙度和渗透性降低。这些重要的变化对土壤生物活动、土壤物理-化学平衡和氧化还原状况、土壤的过滤和缓冲性能都产生影响。由此对环境产生严重的负面效应:地下水的自然回灌减少,地表径流量增加,降雨的径流洪峰加快、加大,地表水体的污染负荷增加。土壤温度、微生物活动、养分转化都不同于自然土壤,植物的生长也受到严重的影响。  相似文献   

18.
微咸水入渗下施加PAM土壤水盐运移特性研究   总被引:11,自引:0,他引:11  
王全九  张继红  谭帅 《土壤学报》2016,53(4):1056-1064
土壤改良剂与微咸水灌溉相结合,对于合理开发利用微咸水、改善盐碱土结构及促进作物生长有着重要意义。基于一维垂直土柱积水入渗和水平土柱吸渗试验,研究了微咸水入渗条件下,不同聚丙烯酰胺(polyacrylamide,PAM)施量(0、0.02%、0.04%和0.06%)对盐碱土水盐运移特性的影响。结果表明:(1)微咸水入渗条件下,施加PAM能够降低土壤入渗速率,增加土壤保水性能。(2)施加PAM对Philip及Kostiakov入渗模型参数有显著影响,在PAM施量0.04%时,吸渗率S和经验系数K最小,而经验指数β最大。(3)在PAM施量为0.04%时,土壤饱和体积含水量最大,BrooksCorey模型进气吸力hd增加了15.30%,土壤持水性能显著提高;土壤水分扩散率最小,水分分布最均匀。(4)施加PAM能够显著提高土层的持水效率和微咸水的淋洗效果,在PAM施量为0.04%时,土层持水效率最高,盐分淋洗量最大。  相似文献   

19.
Traditional rainfed agriculture in semi-arid regions heavily relies on soil and water conservation (SWC) structures to supplement the sparse rainfall. As referring to the ecosystem functions of these constructions, when extensive such systems prevent any runoff into the fluvial system. The extent to which these dams and terraces resist major events is variable, and earthen dams can be major sediment sources. Extensification and increasing mechanization of rainfed agriculture in marginal areas have led to a change in cropping systems. Large-scale almond and olive plantations with widely spaced trees do not rely on runoff water, but draw the soil water from a large soil volume of bare soil maintained by regular shallow tillage. The high density of terraces has now become a nuisance to the farmers. The aim of this paper is to i) demonstrate the degradation of SWC structures and the relative importance of the driving forces, ii) assess the limits of the protection that earthen dams can provide by surveying their resistance during a heavy storm (return period 8.2 years) and iii) demonstrate the implications of the abandonment of SWC structures over the period 1956–2005 for the hydrological connectivity between croplands and the ephemeral rivers system. The headwaters of a marl catchment with a continuous area treated with SWC structures in Murcia region (Spain) already had a very high density of step terraces and check dams (182 m ha− 1) in 1956. This density decreased by 27% in the period 1956–2005. Furthermore, many terraces have not been maintained and flow traces indicate that they no longer retain water. This is particularly true for the check dams in abandoned lands. The distance between the step terraces has increased over time, making them vulnerable to erosion. The mean drainage area of the dams that failed during the heavy storm was significantly (3.16 ha) higher than that of the ones that remained intact (1.11 ha). The probability of failure increases with drainage area from P = 0.16 for an area of 1.8 ha to P = 0.8 for an area of 20 ha. The percentage of cropland draining directly on the river system without interference of a check dam has increased from just 9% in 1956 to 31% in 2005 and 40% after the storm in November 2006.  相似文献   

20.
针对砂质潮土水分容量低、持水性差、渗透性强的问题,通过土柱试验比较几种保水材料与沙土培养前后对水分运动参数的改善效果。试验保水材料为:2%生物炭、2%秸秆和0.1%保水剂,施入方式包括2种:与沙土混匀和25 cm处铺层。结果表明:2%生物炭和2%秸秆与沙土混匀总入渗时间分别为各自铺层处理的1.88倍和1.66倍,入渗完成时入渗率降低;而0.1%保水剂在土柱中铺层比混匀延长1.82倍。不同土柱总入渗时间依次为保水剂铺层 > 保水剂混匀 > 秸秆混匀 > 生物炭混匀 > 不添加保水材料的对照(CK)=秸秆铺层 > 生物炭铺层。混匀处理土柱培养30 d后,各土柱总入渗完成时间均大于培养前,其中生物炭与秸秆总入渗时间分别提高了2.88倍与1.50倍,极大改善沙土漏水。与CK相比,生物炭、秸秆和保水剂的饱和导水率分别降低了6.1%,22.3%,82.4%;培养30 d后分别降低了77.2%,10.5%,79.1%。综上,保水剂铺层施用效果好于混匀,而其余材料与沙土混匀效果较好;随施用时间延长,生物炭和秸秆对沙土水分参数的改善效果较为明显,本结果可以为砂质潮土渗透、持水能力的改良提供方法及数据参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号