首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

2.
The fertile, but naturally poorly drained soils of the western Fraser Valley in British Columbia, Canada are located in an area subject to about 1200 mm of rainfall annually. These soils were under intensive conventional tillage practices for years, which contributed to their poor infiltrability, low organic matter, and overall poor structure. Development of tillage practices that incorporate winter cover crops and reduce traffic in spring is required to reduce local soil degradation problems. The objective of this study was to determine short-term responses of soil physical properties to fall and spring tillage (ST) and fall and no spring tillage (NST) systems, both using spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) as winter cover crops. Field experiments were conducted for 3 years following seeding of the winter cover crops in fall 1992 on a silty clay loam Humic Gleysol (Mollic Gleysol in FAO soil classification). Average aeration porosity was 0.15 m3 m−3 on NST and 0.22 m3 m−3 on ST, while bulk density was 1.22 Mg m−3 on NST and 1.07 Mg m−3 on ST at the 0–7.5 cm depth. Neither of these two soil properties should limit seedling and root growth. After ST, mechanical resistance was consistently greater for 500–1000 kPa in NST than in ST, but never reached value of 2500 kPa considered limiting for root growth. The NST system did not increase soil water content relative to ST, with soil water contents being similar at 10 and 40 cm depth in all years. In 2 out of 3 years NST soil was drier at the 20 cm depth than was ST soil. Three years of NST did not result in a significant changes of aggregate stability relative to ST. This experiment showed that limiting tillage operations to the fall did not adversely affect soil physical conditions for plant growth in a humid maritime climate.  相似文献   

3.
Effects of 12 years of 4 tillage systems, were studied on soil bulk density, infiltration rate, penetration resistance, structural stability of aggregates, root length density, moisture release characteristics and grain yield. The objective of this study was to assess long-term effects of tillage methods and guided traffic on soil properties and crop response on a heavy-textured poorly drained soil. Tillage systems included: (A) continuous no-till for 12 years; (B) no-till for 10 years followed by plow-till for 2 years; (C) plow-till for 10 years followed by no-till for 2 years; (D) continuous plow-till for 12 years. Wheel tracks had significant effects on soil physical properties. Soil in the traffic zone (TZ) in no-till treatment had higher bulk density and penetration resistance (PR) for the upper 0–30-cm layer than plow-till treatment. The PR for the surface layer in TZ was 25–46% more than in the row zone (RZ). Mean soil bulk density in the TZ of no-till plots was about 12% more than in the RZ (1.53 vs. 1.36 g cm−3). Changeover from no-till to plow-till decreased PR in RZ and TZ by 50–60% while that from plow-till to no-till increased PR by 10–20%. Similar effects were observed in percent aggregation and the mean weight diameter. In no-till treatments both initial and equilibrium infiltration rates were significantly lower in TZ than RZ (27.5 vs. 6.8 cm h−1 initial and 10.0 vs. 1.5 cm h−1 final). There were more macropores (> 2 mm) for the TZ in no-till compared with the plow-till treatments. Fine or micropores were comparatively more numerous in the sub-soil of no-till than plow-till treatments. The median aggregate size (D50) was 6.2, 4.2, 4.8 and 3.5 mm for Treatments A, B, C and D, respectively. Root length density of corn in plow-till plots was significantly more than that in no-till plots for the top 0–20-cm layer. Corn and soybean yields were greater in plow-till than no-till treatments. Grain yields in Treatment D were greater than those in Treatment A by 10% for corn and by 6% for soybean.  相似文献   

4.
The effects of conservation tillage (CT) systems on crop production and erosion control have been well documented, but limited information is available concerning the effects of different CT systems on the hydraulic properties of layered soils. The effects of three CT treatments: chisel (CH), no-tillage (NT) and till-plant (TP) as compared with conventional modlboard plowing (CN) were investigated on a Griswold silt loam soil (Typic Argiudoll), formed in loess overlaying glacial till. Hydraulic properties were determined in situ. In addition, hydraulic conductivity was determined in the laboratory where more detailed hydraulic conductivity changes were monitored for the lower soil moisture tension range near soil saturation.

At or near saturation, there was no difference in hydraulic properties for all four tillage treatments. For example, mean saturated hydraulic conductivities (from laboratory determination) were 25.5, 25.1, 24.2 and 22.8 cm day−1 for CN, CH, TP and NT, respectively. However under unsaturated conditions, tillage treatments and soil layering (discontinuity between surface loess and glacial till beneath) affected hydraulic properties. In situ hydraulic conductivity (K) ranked CH>CN = NT = TP for the 0.32–0.33 m3 m−3 moisture content range. There were no differences in K for all treatments at other moisture ranges considered and at moisture contents 0.31 m3 m−3, in situ specific moisture capacity was, however, significantly lower in NT than in the other three treatments. Throughout the 20-day free drainage period for in situ K determination, the effect of layering is exhibited by the mean K values at the 50-cm depth being higher than those at 25 cm. There were negligible treatment-block interaction effects on the hydraulic properties as the soil became drier. Spatial variability in hydraulic properties was also noted for all treatments and soil depths considered.  相似文献   


5.
Deep tillage that is used before vine plantation to remove old vine roots and loosen subsoil may induce physical soil degradation that could affect soil structure and vine water supply. The objective of the study was to experimentally evaluate the effect of deep tillage on soil structure. The impacts on soil structure of two deep tillage techniques, i.e. deep ploughing and ripper, and two contrasted soil water conditions were compared in a experimental field by combining morphological observations, bulk density and saturated hydraulic conductivity measurements. These three methods were found very complementary to analyse and discriminate the impact of the different treatments. The proportion of compacted zones and mean bulk density increased from the initial plot (0.15 m2 m−2, 1.45 Mg m−3) to a maximum in the case of the deep ploughing under wet conditions plot (0.60 m2 m−2, 1.60 Mg m−3). The main results showed that (i) a significant soil compaction was observed after wet conditions only, (ii) deep ploughing produced more soil compaction than ripper because of a greater volume of soil affected by wheeling in the former operation and (iii) a specific response of soils is significatively observed in the case of deep ploughing only with an increase of compacted zones fragmentation in relation to a decrease of clay content.  相似文献   

6.
Although biotic communities have long been recognized as important factors in soil development, especially of A horizons, few studies have addressed their influence on soil physical properties in nonagricultural settings. A biosequence of 50-year-old soils supporting near monocultures of Coulter pine (Pinus coulteri), scrub oak (Quercus dumosa), and chamise (Adenostoma fasciculatum) was used to determine the relative influence of vegetation type and associated soil organisms on the development of soil structural characteristics and water flow. Total porosity ranged from a high of 51% in the heavily worm-worked A horizon under oak to a low of 39% within the 35- to 50-cm depth under pine, where earthworms were absent. Macroporosity (pores with diameters >300 μm) was highest in the A horizon under oak (15.6%) and lowest under pine (9.5%). Saturated hydraulic conductivity of surface soils ranged from 10.8 cm h−1 under oak to 3.2 cm h−1 under pine. Soil under chamise, which had fewer earthworms than that under oak, had Ksat and bulk density values intermediate between oak and pine. Root and macrofauna distributions suggest that roots are the dominant factor in the development of macroporosity under pine, while earthworms have had the greatest effect under oak. Porosity has increased at an average rate of 0.22% per year in the 0- to 7-cm depth under oak (from 41% to 56%), but has not been significantly altered within the same depth under pine. Below the 7-cm depth, porosity values are similar for each vegetation type and the original parent material. Available water capacity (AWC) within the first 0- to 7-cm depth has increased from the original values (about 0.11 m3 m−3) to 0.17 m3 m−3 under oak, 0.16 m3 m−3 under chamise, and 0.13 m3 m−3 under pine. The data show that the presence of burrowing macrofauna, which is determined by litter palatability and therefore indirectly controlled by vegetation, can significantly influence porosity, increasing the water-holding capacity of a soil.  相似文献   

7.
Earthworms are often referred to as ecosystem engineers due to their ability to alter the soil environment. Since earthworms influence a wide range of critical chemical and physical soil properties it is important to understand how their populations are impacted by soil management. Earthworms were sampled during the spring and summer of 2001, 2002, and 2003 from conventional tillage (CT) and no-till (NT) plots established in 2000. Although there was a strong trend for higher earthworm density in NT plots in 2001 (p = 0.08) and 2002 (p = 0.19), statistically significant differences were not detected between tillage treatments until 2003 (p = 0.04) when mean earthworm density was 37.7 individuals m−2 in CT and 149.9 individuals m−2 in NT during spring and 17.1 individuals m−2 in CT and 58.4 individuals m−2 in NT in summer. A high mortality rate between spring and summer, combined with greater cocoon production under NT suggests that the earthworm population turns over rapidly in NT plots. Data also suggest that adverse soil environmental conditions will limit earthworm density in these dryland agroecosystems. Despite significantly higher earthworm density after three years of NT management, soil bulk density, saturated hydraulic conductivity, and aggregate stability of the 0.5- to 1-mm size fraction were not different between the two tillage treatments. The apparent lack of impact of reduced disturbance and increased earthworm density on soil physical properties may be due to the short time this soil has been under NT management, limited seasonal earthworm activity due to environmental conditions, or differences in the scale at which soil physical properties have been affected after three years of NT management and the scale at which our measurements were made.  相似文献   

8.
Contrasting soil management techniques were applied to a hardsetting red-brown earth (Alfisol) used for flood-irrigated wheat (Triticum aestivum) production at Trangie, N.S.W., Australia. The individual and combined effects of deep mouldboard ploughing to a depth of 0.45 m, gypsum application (5 t ha−1) and double cropping upon aggregate stability, bulk density, porosity, cone index and the non-limiting water range were evaluated. Dispersion and slaking of the surface soil were unaffected by the treatments when measured at the end of the second year of the experiment. Approximately 60% of the soil mass in the 0–0.15 m layer slaked on wetting, whereas less than 1% of the soil dispersed. Organic carbon (OC) levels of the surface soil were not affected by double cropping or gypsum application, but were reduced by mouldboard ploughing from 0.9% to 0.6% OC. The relationship between OC and macroaggregate (more than 250 μm) stability indicated that large increases in OC beyond 0.7% OC were required for relatively small increases in aggregate stability. Mouldboard ploughing increased clay content of the upper 0.15 m of the soil from 22% to 27%. This was associated with an increase in the frequency and depth of cracking which, however, diminished over time. The non-limiting water range (NLWR) was expanded in the uppermost 0.1 m by gypsum application from 0.15–0.30 to 0.09–0.28 m3 m−3. Mouldboard ploughing expanded the NLWR at a depth of 0.2 m. Penetrometer resistance, on average, exceeded the critical value for wheat root growth at a water content of 0.15 m3 m−3, which is substantially higher than the wilting point (0.09 m3 m−3). Excessive resistance to penetration as opposed to inadequate aeration or water availability is the main agronomic impediment in these soils, at least in the initial stages of crop development. Penetration resistance within the 0.05–0.3 m layer was reduced during a drying cycle in the order: mouldboard ploughing>gypsum>double cropping. The reduced penetration resistance associated with mouldboard ploughing was due to higher water content to a depth of 0.2 m and reduced bulk density below this depth.  相似文献   

9.
Soil thermal conductivity determines how a soil warms or cools with exchange of energy by conduction, convection, and radiation. The ability to monitor soil thermal conductivity is an important tool in managing the soil temperature regime to affect seed germination and crop growth. In this study, the temperature-by-time data was obtained using a single probe device to determine the soil thermal conductivity. The device was used in the field in some Jordanian clay loam and loam soils to estimate their thermal conductivities under three different tillage treatments to a depth of 20 cm. Tillage treatments were: no-tillage, rotary tillage, and chisel tillage. For the same soil type, the results showed that rotary tillage decreased soil thermal conductivity more than chisel tillage, compared to no-tillage plots. For the clay loam, thermal conductivity ranged from 0.33 to 0.72 W m−1 K−1 in chisel plowed treatments, from 0.30 to 0.48 W m−1 K−1 in rotary plowed treatments, and from 0.45 to 0.78 W m−1 K−1 in no-till treatments. For the loam, thermal conductivity ranged from 0.40 to 0.75 W m−1 K−1 in chisel plowed treatments, from 0.34 to 0.57 W m−1 K−1 in rotary plowed treatments, and from 0.50 to 0.79 W m−1 K−1 in no-till treatments. The clay loam generally had lower thermal conductivity than loam in all similar tillage treatments. The thermal conductivity measured in this study for each tillage system, in each soil type, was compared with independent estimates based on standard procedures where soil properties are used to model thermal conductivity. The results of this study showed that thermal conductivity varied with soil texture and tillage treatment used and that differences between the modeled and measured thermal conductivities were very small.  相似文献   

10.
Little is known about the long-term effects of tillage and crop residue management on soil quality and organic matter conservation in subarctic regions. Therefore, we quantified wet aggregate stability, bulk density, pH, total organic C and N, inorganic N, microbial biomass C and N, microbial biomass C:N ratio, microbial quotient, and potential C and N mineralization for a tillage/crop residue management study in central Alaska. Soil from no-till (NT), disked once each spring (DO), and disked twice (DT, spring and fall) treatments was sampled to 20 cm depth in spring and fall of the 16th and 17th years of the study. Crop residues were either retained or removed after harvest each year. Reducing tillage intensity had greater impact on most soil properties than removing crop residues with the most notable effects in the top 10 cm. Bulk density was the only indicator that showed significant differences for the 10–20 cm depth, with values of 0.74 Mg m−3 in the surface 10 cm in NT compared to 0.86 in DT and 1.22 Mg m−3 in NT compared to 1.31 in DT for the 10–20 cm depth. Wet aggregate stability ranged from 10% in DT to 20% in NT. Use of NT or DO conserved soil organic matter more than DT. Compared to measurements made in the 3rd and 4th years of the study, the DT treatment lost almost 20% of the soil organic matter. Retaining crop residues on the soil conserved about 650 g m−2 greater C than removing all residues each year. Soil microbial biomass C and mineralizable C were highest in NT, but the microbial C quotient, which averaged only 0.9%, was not affected by tillage or crop residue treatment. Microbial biomass C:N ratio was 11.3 in DT and 14.4 in the NT, indicating an increasing predominance of fungi with decreasing tillage intensity. Barley grain yield, which averaged 1980 kg ha−1 over the entire 17 years of the study, was highest in DO and not significantly different between NT and DT, but weeds were a serious problem in NT. Reduced tillage can improve important soil quality indicators and conserve organic matter, but long-term NT may not be feasible in the subarctic because of weed problems and build up of surface organic matter.  相似文献   

11.
In the hills of north–west India, maize (Zea mays L.)-wheat (Triticum aestivum L.) is the dominant cropping system. However, rainfed wheat suffers from lack of optimum moisture at sowing. Field experiments were conducted for 3 years on a silty clay loam (Typic Hapludalf) to evaluate the effectiveness of mulches and conservation tillage for rainfed wheat in mitigating this problem. The treatments were ten factorial combinations of five mulch-tillage practices and two nitrogen levels (N60 and N120 kg ha−1). Mulch treatments consisted of application of 10 Mg ha−1 (dry weight basis), to previous standing maize, of either wild sage (Lantana camara L.) or eupatorium (Eupatorium adenophorum Sprengel) in combination with either conventional or conservation (minium) tillage prior to wheat sowing. These alternative practices were compared to the conventional farmer practice of soil tillage after harvest of maize with no mulch. The application of these weed mulches to standing maize maintained friable soil structure owing to a five fold higher mean population of earthworms underneath mulch. Mulches resulted in 0.06–0.10 m3 m−3 higher moisture in the seed-zone when wheat was sown compared with the conventional farmer practice of soil tillage after maize harvest. Mulch-conservation tillage treatments favourably moderated the hydro-thermal regime for growing a wheat crop. The mean root mass density under these treatments at wheat flowering was higher by 1.27–1.40 times over the conventional farmer practice during the 3 year study. Conservation tillage holds promise because it does not require elaborate tillage and may ultimately reduce animal draught in the hilly regions. Recycling available organic materials having no fodder value coupled with conservation tillage may help enrich the soil environment in the long-term. The practice also offers gainful use of these obnoxious weeds that cause great menace in grass and forest lands in the region.  相似文献   

12.
In view of their potential benefits, reduced or no tillage (NT) systems are being advocated worldwide. Concerns about impairment of some soil conditions, however, cast doubt on their unqualified acceptance. We evaluated the effects of 6 years of tillage and residue management on bulk density, penetration resistance, aggregation and infiltration rate of a Black Chernozem at Innisfail (loam, 65 g kg−1 organic matter, Udic Boroll) and a Gray Luvisol at Rimbey (loam, 31 g kg−1 organic matter, Boralf) cropped to monoculture spring barley (Hordeum vulgare L.) in a cool temperate climate in Alberta, Canada. Tillage systems were no tillage and tillage with rototilling (T), and two residue levels were straw removed (−S) and straw retained (+S). Bulk density (BD) of the 0–7.5 and 7.5–15 cm depths was significantly greater under NT (1.13–1.58 Mg m−3) than under T (0.99–1.41 Mg m−3) in both soils, irrespective of residue management. In both soils, penetration resistance (PR) was greater under NT than under T to 15 cm depth. Residue retention significantly reduced PR of the 0–10 cm soil in NT, but not in T. In the 0–5 cm depth of the Black Chernozem, the >2 mm fraction of dry aggregates was highest under NT + S (72%), and lowest under T − S (50%). The wind-erodible fraction (dry aggregates <1 mm size) was smallest (18%) under NT + S and largest (39%) under T − S. Soil aggregation benefited more from NT than from residue retention. Proportion of wind-erodible aggregates was generally greater in the Gray Luvisol than in the Black Chernozem. In the Black Chernozem, steady-state infiltration rate (IR) was significantly lower (33%) under NT than under T. Residue retention improved IR in both NT and T. In the Gray Luvisol, IR was not significantly affected by tillage and residue management. Despite firmer soil, NT and residue retention are recommended to improve aggregation in the cool temperate region of Western Canada.  相似文献   

13.
Soil compaction can affect the turnover of C and N (e.g. by changing soil aeration or by changing microbial community structure). In order to study this in greater detail, a laboratory experiment simulating total soil porosities representative of field conditions in cropped and pasture soils was set up. Soils were silty clay loams (Typic Endoaquepts) from a site that had been cropped with cereals continuously for 28 years, a permanent pasture and a site that had been cropped with maize continuously for 10 years. Soils from the three sites were compacted into cores to different total porosities (corresponding bulk densities ranging from 0.88 to 1.30 Mg m−3). The soil cores were equilibrated to different matric potentials (ranging from −1 to −100 kPa), yielding values for the fraction of air-filled pores of < 0.01 to 0.53 m3 m−3, and then incubated at 25°C for 21 days. C-mineralization was on average 15, 33 and 21 μg C g−1 day−1 for soils from the cropped, pasture and maize sites, respectively, and was positively correlated with soil water contents. Net N-mineralization showed a similar pattern only for well-aerated, high total porosity cores (corresponding bulk density 0.88 Mg m−3) from the pasture soil. Denitrification at < 0.20 m3 m−3 for the fraction of air-filled pores may have caused the low N-mineralization rates observed in treatments with high water content or low porosity. Microbial biomass estimates decreased significantly with increasing water contents if measured by fumigation-extraction, but were not significantly affected by water content if estimated by the substrate-induced respiration method. The degree of soil compaction did not affect the microbial biomass estimates significantly but did affect microbial activity indirectly by altering aeration status.  相似文献   

14.
A 3-year field study was conducted to evaluate the effect of three tillage practices (conventional, zero and reduced/strip) with two nitrogen levels (120 and 150 kg N ha−1) applied in primary strips and three crop residue management practices (removal, burning and incorporation) in secondary strips in wheat after rice. Reduced tillage resulted in significantly higher overall mean wheat yield (5.10 Mg ha−1) compared to conventional (4.60 Mg ha−1) and zero tillage (4.75 Mg ha−1). Residue incorporation resulted in highest mean yield (5.86 Mg ha−1) during third year. Maximum mean yield (6.1 Mg ha−1) was obtained in reduced tillage followed by conventional tillage (5.8 Mg ha−1) under residue incorporation in third year. The weed dry weight recorded at 30 days after sowing was highest (0.3 Mg ha−1) under zero tillage and lowest under conventional tillage (0.16 Mg ha−1). Among crop residue management practices, the highest dry weight of weeds (0.22 Mg ha−1) was recorded under residue incorporation. The highest infiltration rate (1.50 cm h−1) was recorded in residue incorporation followed by residue burning (1.44 cm h−1) whereas; the lowest (0.75 cm h−1) in zero tillage. Soil bulk density was the highest (1.69 Mg m−3) under zero tillage and the lowest in residue incorporation (1.59 Mg m−3). There were no changes in soil available P and K after each crop sequence in relation to tillage practices during first 2 years. Higher organic carbon (5.1–5.4 g kg−1) was measured under zero tillage compared to other treatments. Residue incorporation increased soil organic carbon and available P while higher available K was monitored in burning treatment during the third year. These results suggest that reduced tillage and in situ incorporation of crop residues at 5 Mg ha−1 along with 150 kg N ha−1 were optimum to achieve higher yield of wheat after rice in sandy loam soils of Indo-Gangetic plains of India.  相似文献   

15.
Field observations have shown that root residues maintain root-adhering soil for several months after harvest. The aim of this work was to compare post-harvest effect of Amaranthus hypochondriacus (amaranth), Phaseolus vulgaris (common bean) and Zea mays (maize) roots on root-adhering soil, aggregation and organic carbon content. The experimental site was located on a volcanic sandy soil (Typic Ustifluvent) in the Valley of Mexico. In 1999 and 2000, maize had the highest root mass (92 and 94 g m−2) and the highest root-adhering soil (9051 and 5876 g m−2) when a root–soil monolith of 0.20 m × 0.20 m × 0.30 m was excavated after harvest. In contrast, bean roots (2 and 5 g m−2) had only 347 and 23 g m−2 of adhering soil per monolith in each year. Amaranth had intermediate values between maize and bean. Dry soil aggregate classes (<0.25, 0.5, 1, 2, 5 and >5 mm) were similarly distributed among the three species. The sum of the three soil macro-aggregates classes >1 mm was 0.1 g g−1 in both years. Neither water stability of the 2–5 mm aggregates (0.05–0.09 g g−1) nor soil organic C (SOC) in three aggregate classes (<0.25, 1–2 and >5 mm; mean 14.6 mg g−1) was affected by species (P < 0.05) in either year. Observations of thin sections (10× and 40×) revealed absence of macro-aggregates under maize. Soil compaction was attributed to high mass of maize roots in the sampled soil volume. Root systems sampled after harvest had the capacity to maintain a well structured soil mass, which was proportional to root mass. Root-adhering soil measured in the field could be used to select species promoting soil adhesion by roots.  相似文献   

16.
Most of the tillage erosion studies have focused on the effect of tractor-plough tillage on soil translocation and soil loss. Only recently, have a few studies contributed to the understanding of tillage erosion by manual tillage. Furthermore, little is known about the impact of tillage erosion in hilly areas of the humid sub-tropics. This study on tillage erosion by hoeing was conducted on a purple soil (Regosols) of the steep land, in Jianyang County, Sichuan Province, southwestern China (30°24′N and 104°35′E) using the physical tracer method.

The effects of hoeing tillage on soil translocation on hillslopes are quite evident. The tillage transport coefficients were 26–38 kg m−1 per tillage pass and 121–175 kg m−1 per tillage pass respectively for k3- and k4-values. Given that there was a typical downslope parcel length of 15 m and two times of tillage per year in this area, the tillage erosion rates on the 4–43% hillslopes reached 48–151 Mg ha−1 per year. The downslope soil translocation is closely related to slope gradient. Lateral soil translocation by such tillage is also obvious though it is lower than downslope soil translocation. Strong downslope translocation accounts for thin soil layers and the exposure of parent materials/rocks at the ridge tops and on convexities in the hilly areas. Deterioration in soil quality and therefore reduction in plant productivity due to tillage-induced erosion would be evident at the ridge tops and convex shoulders.  相似文献   


17.
Plant growth is directly affected by soil water, soil aeration, and soil resistance to root penetration. The least limiting water range (LLWR) is defined as the range in soil water content within which limitations to plant growth associated with water potential, aeration and soil resistance to root penetration are minimal. The LLWR has not been evaluated in tropical soils. Thus, the objective of the present study was to evaluate the LLWR in a Brazilian clay Oxisol (Typic Hapludox) cropped with maize (Zea mays L. cv. Cargil 701) under no-tillage and conventional tillage. Ninety-six undisturbed soil samples were obtained from maize rows and between rows and used to determine the water retention curve, the soil resistance curve and bulk density. The results demonstrated that LLWR was higher in conventional tillage than in no-tillage and was negatively correlated with bulk density for values above 1.02 g cm−3. The range of LLWR variation was 0–0.1184 cm3 cm−3 in both systems, with mean values of 0.0785 cm3 cm−3 for no-tillage and 0.0964 cm3 cm−3 for conventional tillage. Soil resistance to root penetration determined the lower limit of LLWR in 89% of the samples in no-tillage and in 46% of the samples in conventional tillage. Additional evaluations of LLWR are needed under different texture and management conditions in tropical soils.  相似文献   

18.
Soil erosion and depositional processes in relation to land use and soil management need to be quantified to better understand the soil organic carbon (SOC) dynamics. This study was undertaken on a Miamian soil (Oxyaquic Hapludalfs) under on-farm conditions in western Ohio with the objectives of evaluating the effects of degree of erosion on SOC stock under a range of tillage systems. Six farms selected for this study were under: no-till (NT) for 15, 10, 6 and 1.5 years; chisel till every alternate year with annual manure application (MCT); and annual chisel till (ACT). A nearby forest (F) site on the same soil was chosen as control. Using the depth of A horizon as an indicator of the degree of erosion, four erosion phases identified were: uneroded (flat fields under F, NT15, and on the summit of sloping fields under NT10, NT6, NT1.5 and MCT); deposition (NT10, NT6, NT1.5 and ACT); slight (NT10, MCT and ACT); and moderate erosion (NT10 and ACT). Core and bulk soil samples were collected in triplicate from four depths (i.e., 0–10, 10–20, 20–30 and 30–50 cm) for each erosional phase in each field for the determination of bulk density, and SOC concentrations and stocks. SOC concentration in NT fields increased at a rate of 5% year−1 for 0–10 cm and 2.5% year−1 for 10–20 cm layer with increasing duration under NT. High SOC concentration for NT15 is indicative of SOC-sequestration potential upon conversion from plow till to NT. SOC concentration declined by 19.0–14.5 g kg−1 in MCT and 11.3–9.7 g kg−1 in NT10 between uneroded and slight erosion, and 12.0–11.2 g kg−1 between slight and moderate erosion in ACT. Overall SOC stock was greatest in the forest for each of the four depths. Total SOC stock for the 50 cm soil layer varied in the order F (71.99 Mg ha−1) > NT15 (56.10 Mg ha−1) > NT10 (37.89 Mg ha−1) = NT6 (36.58 Mg ha−1) for uneroded phase (P < 0.05). The lack of uneroded phase in ACT indicated high erosion risks of tillage, as also indicated by the high SOC stock for deposition phase from 0 to 50 cm soil layer (ACT (56.56 Mg ha−1) > NT1.5 (42.70 Mg ha−1) > NT10 (30.97 Mg ha−1)). Tillage increased soil erosion and decreased SOC stock for top 10 cm layer for all erosional phases except deposition.  相似文献   

19.
Tillage affects the ability of coarse-textured soils of the southeastern USA to sequester C. Our objectives were to compare tillage methods for soil CO2 flux, and determine if chemical or physical properties after 25 years of conventional or conservation tillage correlated with flux rates. Data were collected for several weeks during June and July in 2003, October and November in 2003, and April to July in 2004 from a tillage study established in 1978 on a Norfolk loamy sand (fine-loamy, kaolinitic, thermic Typic Kandiudults). Conventional tillage consisted of disking to a depth of approximately 15 cm followed by smoothing with an S-tined harrow equipped with rolling baskets. Conservation tillage consisted of direct seeding into surface residues. Flux rates in conservation tillage averaged 0.84 g CO2 m−2 h−1 in Summer 2003, 0.36 g CO2 m−2 h−1 in Fall 2003, 0.46 g CO2 m−2 h−1 in Spring 2004, and 0.86 g CO2 m−2 h−1 in Summer 2004. Flux rates from conventional tillage were greater for most measurement times. Conversely, water content of the surface soil layer (6.5 cm) was almost always higher with conservation tillage. Soil CO2 flux was highly correlated with soil water content only in conventional tillage. In conservation tillage, no significant correlations occurred between soil CO2 flux and soil N, C, C:N ratio, pH, bulk density, sand fraction, or clay fraction of the surface 7.5 cm. In conventional tillage, sand fraction was positively correlated, while bulk density and clay fraction were negatively correlated with soil CO2 flux rate, but only when the soil was moist. Long-term conservation tillage management resulted in more uniform within- and across-season soil CO2 flux rates that were less affected by precipitation events.  相似文献   

20.
Numerous investigators of tillage system impacts on soil organic carbon (OC) or total nitrogen (N) have limited their soil sampling to depths either at or just below the deepest tillage treatment in their experiments. This has resulted in an over-emphasis on OC and N changes in the near-surface zones and limited knowledge of crop and tillage system impacts below the maximum depth of soil disturbance by tillage implements. The objective of this study was to assess impacts of long-term (28 years) tillage and crop rotation on OC and N content and depth distribution together with bulk density and pH on a dark-colored Chalmers silty clay loam in Indiana. Soil samples were taken to 1 m depth in six depth increments from moldboard plow and no-till treatments in continuous corn and soybean–corn rotation. Rotation systems had little impact on the measured soil properties; OC content under continuous corn was not superior to the soybean–corn rotation in either no-till or moldboard plow systems. The increase in OC (on a mass per unit area basis) with no-till relative to moldboard plow averaged 23 t ha−1 to a constant 30 cm sampling depth, but only 10 t ha−1 to a constant 1.0 m sampling depth. Similarly, the increase in N with no-till was 1.9 t ha−1 to a constant 30 cm sampling depth, but only 1.4 t ha−1 to a constant 1.0 m sampling depth. Tillage treatments also had significant effects on soil bulk density and pH. Distribution of OC and N with soil depth differed dramatically under the different tillage systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC and N, relative to no-till, in the 30–50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Our results suggest that conclusions about OC or N gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken well beyond the deepest tillage depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号