首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以大型红藻真江蓠Gracilaria asiatica、脆江蓠Gracilaria chouae、蜈蚣藻Grateloupia filicina大型褐藻鼠尾藻Sargassum thunbergii、海黍子Sargassum pallidum为实验材料,研究了在10~25℃不同温度下这几种海藻对硝氮(NO3-N)的吸收和生长情况。结果表明,几种大型海藻对水体中NO3-N的吸收效果明显,其中真江蓠和脆江蓠的吸收速率15℃时最高,为0.507±0.136和0.448±0.095μmol/g·h,蜈蚣藻和鼠尾藻在20℃时最高,为0.614±0.033和0.289±0.019μmol/g·h,海黍子在25℃时吸收速率最高,为0.748±0.015μmol/g·h。结合去除效率常数来看,海黍子对NO3-N有更好的去除效果。温度变化对大型海藻的生长具有显著的影响,在20℃下大部分海藻相对生长速率达到最高,其中以脆江蓠最高,达到4.79%±0.45%/d。  相似文献   

2.
在20、40、80、120、200μmol/m2·s光照强度下,研究了光照梯度对海黍子Sargassum muticum的生长及藻体部分生化指标的影响。结果表明,在80~200μmol/m2·s光照范围内时,海黍子的特定生长率都比较高,且无显著差异,光照低于80μmol/m2·s后,生长率下降,显示了海黍子适宜较高光强的特性。叶绿素a、可溶性蛋白、可溶性糖在光照20μmol/m2·s下含量最高。褐藻多酚含量在光照200μmol/m2时比其余光照条件下增加明显。此特性对于从海黍子中提取褐藻多酚天然产物具有一定的指导意义。  相似文献   

3.
为研究充气和光强变化对大型海藻生长的影响,选择了常见的经济海藻龙须菜(Gracilaria lemaneiformis)为实验材料,将静止和充气培养的藻体暴露在 50 μmol/(m2 s)(低光)、100 μmol/(m2 s)(中光)和200 μmol/(m2 s)(高光)下,测定其生长、光合作用以及光合色素含量。结果表明,中光处理的龙须菜相对生长速率最大,光强过低或者过高均会抑制其生长。充气促进低光、中光和高光处理藻体的生长,相对生长速率分别提高26.85%、31.82%和40.56%。充气可使低光处理的藻体光合作用速率和光合效率分别提高8.14%和4.26%,可使高光处理的藻体呼吸作用速率降低20.70%、有效光化学效率(Yield)升高44.16%。这些结果说明,低光对生长的影响主要是由于藻体光合作用受到光限制,而高光对生长的影响是因为藻体呼吸作用增强。充气可以缓解因为光线不足或者高光损伤而对龙须菜生长造成的负面影响。  相似文献   

4.
比较了低CO_2浓度(充无CO_2空气,low CO_2,简称LC)、正常CO_2浓度(充正常空气,normal CO_2,简称NC)、高CO_2浓度(充正常空气+0.2%CO_2,high CO_2,简称HC)3种条件下细基江蓠繁枝变型(Gracilaria tenuistipitata var.liui Zhang et Xia)的特定生长率、光合色素含量、光合放氧速率和叶绿素荧光参数。结果表明:培养6 d后,与NC组相比,LC组细基江蓠繁枝变型特定生长率(SGR)、100μmol·(m~2·s)~(-1)光强净光合放氧速率及PSII最大光量子产率(Fv/Fm)均显著降低(P0.05);类胡萝卜素含量显著增加(P0.05);而藻红素、叶绿素a含量、PSII实际光量子产率(Fv/Fo)、快速光响应曲线初始斜率(α)、最大电子传递效率(ETR_(max))及半饱和光强(I_k)均无显著差异(P0.05)。与NC组相比,HC组细基江蓠繁枝变型的SGR、Fv/Fm及α显著增加(P0.05),藻红素含量显著下降(P0.05),而叶绿素a、类胡萝卜素含量、600μmol·(m~2·s)~(-1)光强净光合放氧速率、Fv/Fo、α、ETR_(max)及I_k均无显著差异(P0.05)。与LC组相比,HC组细基江蓠繁枝变型的100μmol·(m~2·s)~(-1)光强净光合放氧速率、SGR、Fv/Fm、Fv/Fo、α均显著增加(P0.05),而藻红素、叶绿素a、类胡萝卜素含量却显著下降(P0.05),600μmol·(m~2·s)~(-1)光强净光合放氧速率、ETR_(max)、I_k无显著变化(P0.05)。对于细基江蓠繁枝变型,CO_2浓度升高降低了光合色素含量,同时提高了光系统光能转换效率,而对藻体饱和光强下净光合放氧速率的促进作用不显著。但是CO_2浓度升高却仍然可能通过降低无机碳利用的能量消耗及提高营养盐吸收利用而显著促进藻体的生长。比较不同CO_2浓度下细基江蓠繁枝变型生长和光合特性的差异,有助于初步揭示其对大气CO_2浓度变化的响应特征。  相似文献   

5.
在实验室条件下,以3种大型红藻真江蓠(Gracilaria asiatica)、脆江蓠(Gracilaria chouae)和蜈蚣藻(Grateloupiafilicina)为实验材料,研究不同营养盐浓度下这3种海藻对氮、磷的吸收和生长情况。结果表明,3种大型海藻对水体中硝酸盐和磷酸盐的吸收效果明显,并符合一级动力学方程。比较前24 h对氮的平均吸收速率,真江蓠和脆江蓠在50μmol/L组出现最大值,分别为0.739μmol/(g.h)和0.648μmol/(g.h),蜈蚣藻在20μmol/L组出现最大值0.614μmol/(g.h);比较前24 h对磷的吸收速率,真江蓠和脆江蓠在1.0μmol/L组出现最大值,分别为0.015μmol/(g.h)和0.018μmol/(g.h),蜈蚣藻在0.7μmol/L组出现最大值0.016μmol/(g.h)。结合去除速率常数来看,脆江蓠对硝酸盐和磷酸盐有更好的去除效果。营养盐的起始浓度对脆江蓠、真江蓠和蜈蚣藻的生长具有明显的影响。在所有的实验浓度下,8 d后的湿重均为脆江蓠增加最大,蜈蚣藻增加最小;并且改变硝酸盐的浓度比改变磷酸盐的浓度更能刺激蜈蚣藻的生长。  相似文献   

6.
为了从生理生态学角度解答温度和光照对海带孢子体生长过程的影响,探索海带孢子体对温度和光环境的生理响应机制,实验在测定养殖海域海带孢子体生长参数的基础上,设定了6、10、14和18°C 4个水温梯度的海带孢子体暂养实验,以及它们在0、25、70、133、230、317、421、582、786μmol photons/(m2·s) 9个光合有效辐射(PAR)梯度下的光合活性荧光参数测定。结果显示:①在6°C水温条件下,海带孢子体荧光参数Fv/Fm和Fv/F0最大,分别为0.71和2.40;在18°C水温条件下,其Fv/Fm和Fv/F0最小,分别为0.65和1.85;②暂养海带孢子体的光化学淬灭(qP)和非光化学淬灭(qN或NPQ)在18°C水温条件下达到最大,分别为0.92和3.29;③海带孢子体的快速光曲线随着光合有效辐射(PAR)的增强呈现先上升后下降的趋势;④海域养殖海带孢子体的最大叶长增长速率、叶宽增长速率和干重增重率分别为1.34 cm/d、0.33 cm/d和1.01 g/d。研究表明,海带孢子体干重生长率变化与不同水温条件下的快速光曲线变化一致,高温抑制了海带孢子体光合效率;当环境光合有效辐射大于样品光饱和点(Em)后,海带孢子体相对电子传递速率下降,光合作用受到抑制。  相似文献   

7.
研究了不同温度(5℃、10℃、15℃、20℃、25℃)和光照[50、100、200 、300μmol/(m^2·s)]对铜藻(Sargassum horneri)生长、光合色素和生化组分的影响。结果显示,温度和光照对这3个方面均有显著影响(P<0.05)。铜藻在5℃~20℃、50~300μmol/(m^2·s)时均可生长,且最适生长条件为20℃、200~300μmol/(m^2·s),特定生长率较高。温度高于25℃,藻体基本停止生长并出现腐烂现象。25℃、50μmol/(m^2·s)时,铜藻色素积累较多。可溶性蛋白和可溶性糖的含量分别在10℃、20℃时最高,不同光照间无显著性差异(P>0.05)。灰分和粗蛋白含量在5℃~10℃、50μmol/(m^2·s)时最高。粗脂肪含量在10℃和25℃时最低,不同光照间无显著性差异(P>0.05)。褐藻胶含量在10℃、100μmol/(m^2·s)时最高,岩藻黄素含量在10℃、50μmol/(m^2·s)时达到最大。褐藻多酚含量在低温为 5℃或高温25℃、200~300μmol/(m^2·s)高光下达到最大。研究表明,室内培养铜藻在20℃左右、200~300μmol/(m^2·s)时,生长速率最快,而铜藻在10℃、100μmol/(m^2·s)环境条件下,藻体色泽及健壮程度更好,铜藻个体大,生长速度快,可进行大规模的养殖生产。本研究结果对铜藻养殖及其活性物质提取具有重要的参考价值。  相似文献   

8.
在不同温度(14℃、17℃、20℃、23℃和26℃)和不同盐度(5、10、15、20、25、30和35)条件下培养脆江蓠(Gracilaria chouae),观察测定其生长及藻体生化组分的变化。试验结果显示,脆江蓠生长的适宜温度为14~26℃,最适温度为17~20℃,在此温度条件下藻体可以保持最快相对生长速率(relative growth rate,RGR);温度高于20℃时脆江蓠的生长受到抑制。在生长状态、光合色素和抗氧化等方面,脆江蓠对低温的耐受能力要比高温强。脆江蓠生长的适宜盐度为20~35,最适盐度为30,在此盐度条件下藻体可以保持最快RGR,盐度低于20时脆江蓠的生长受到抑制。高盐度培养条件下脆江蓠在生长状态、光合色素和抗氧化等方面强于低盐度培养条件。  相似文献   

9.
为探讨适宜大型海藻芋根江蓠(Gracilaria blodgettii)栽培的生态条件,分别测定了在不同总无机氮浓度(48μmol·L^-1、96μmol·L^-1、144μmol·L^-1、192μmol·L^-1、240μmol·L^-1、288μmol·L^-1和336μmol·L^-1)和不同氮磷比(N/P)(1/1、5/1、10/1、50/1和100/1)的培养条件下,芋根江蓠藻体的相对生长速率(RGR)和生化组分的变化。结果表明,最适总无机氮浓度为192μmol·L^-1,最适N/P为10/1。芋根江蓠适宜在氨氯(NH4^+-N)比例较高的海水中生长,3种无机氮最适合质量比值是m[硝氮(NO3^--N)]∶m(NH4^+-N)∶m[亚硝氮(NO-2-N)]=1∶10∶5和m(NO3^--N)∶m(NH4^+-N)∶m(NO-2-N)=5∶10∶1。在最适宜的营养盐因子环境条件下,芋根江蓠在生化组分(光合色素及可溶性蛋白)和抗氧化能力等方面都表现较好;而在海水总无机氮浓度过低、N/P过高以及NH4^+-N在总无机氮中所占比例较低等条件下,都不利于藻体正常生长,会导致藻体营养不良、生长缓慢。  相似文献   

10.
脆江蓠(Gracilaria chouae)藻体脆性大,短时间高盐海水浸泡可使其软化,有利于规模夹苗生产。采用实验生态学方法研究短期高盐胁迫对脆江蓠光合生理及生化组成的影响,以探讨高盐对其光合系统的损伤及其恢复效果。实验设置 5 个盐度梯度(40、45、50、55、60),自然海水作为对照(盐度 33),分析盐度处理 1 h 内脆江蓠的失水率及藻体软化程度;同时研究了高盐处理 0.5 h 及不同恢复时间(12 h、24 h)对脆江蓠 pH 补偿点、光合作用荧光特性、光合作用产氧量(RO)和光合色素组成等光合生理生化指标的影响。结果表明,脆江蓠在盐度 50~55 的海水中浸泡 0.5 h 效果较好,此时藻体软化,并且经过 24 h 恢复后,藻体光合作用参数可恢复到对照组水平,该处理条件可以用于脆江蓠生产。高盐(盐度 40~60)处理脆江蓠 0.5 h,随盐度增加,脆江蓠 RO 值呈波动下降(P<0.01)、pH补偿点和光合效率 Y(II)值逐渐降低(P<0.05)。PE 含量随盐度增加而增加(P<0.01);恢复 24 h 后最大光合效率 Fv/Fm和 Y(II)值基本恢复正常水平(P>0.05), Chl a、Car、PE 和 PC 含量均恢复到与对照组无显著性差异水平(P>0.05)。本研究旨在为提高脆江蓠规模化养殖夹苗效率提供理论依据。  相似文献   

11.
The variation of virulence of Renibacterium salmoninarum , the causative agent of bacterial kidney disease (BKD) in salmonid fish, was studied by infecting rainbow trout, Oncorhynchus mykiss (Walbaum), with two isolates (strains 325 and 932) from diseased Atlantic salmon, Salmo salar L., and one isolate (strain 4366) from an apparently healthy Atlantic salmon. Coho salmon, Oncorhynchus kisutch (Walbaum), were injected with the strain 932 to estimate difference in fish species resistance. Fish were removed by random sampling for other study purposes, a study design possible with analysis of lifetime distributions incorporating both sampling-, death- and survival-times. At the end of the experiment, the rainbow trout infected with strains 325, 932 and 4366 had a survival probability of 33%, 51% and 72%, respectively. The coho salmon infected with strain 932 had a 26% survival probability. The strain differences were significant according to the log-rank test, and the risk ratio between the strains ranged from 1·8 to 5·4. The strain from the apparently healthy fish was least virulent. The survival of the fish species was different over time. Rainbow trout were more likely to die early in the time course, but high numbers of coho died later, resulting in an overall risk of mortality of 1·4 in favour of rainbow trout. Differences in virulence may reflect changed selective pressure on R. salmoninarum when introduced from feral stocks into the environment of fish farms.  相似文献   

12.
《水生生物资源》2003,16(5):461-465
Anti-proteinase activity was demonstrated in the seminal plasma of cyprinid fish species (bream, chub, ide, dace, asp, goldfish, roach, common carp) using electrophoretic techniques combined with a detection method based on inhibition of bovine trypsin. We found species-specific protease inhibitors in the seminal plasma of cyprinids. At least three bands of protease inhibitors with different migration rates could be identified by native PAGE. Higher variability was characterized for bands with slower migration rates. Visualization of inhibitors after SDS-PAGE under non-reducing conditions allowed estimation of their molecular weights. Apparent molecular weights were within the range of 51–59 and 47–54 kDa for the bands with slower and moderate migration rates, respectively. The molecular weight of fast migration bands for roach and common carp were estimated to 23 and 30 kDa, respectively. Inhibitors of common carp seminal plasma differed in their affinity toward serine proteases. Three inhibitors in common carp seminal plasma could be visualized using cod and bovine trypsin, but only two inhibitors (of high molecular weight) were recognized with chymotrypsin. There were differences in anti-proteinase activity and seminal plasma protein concentration in relation to the origin of common carp seminal plasma (breeding lines) and time of milt collection (spawning vs. post-spawning season).  相似文献   

13.
水硬度对七彩神仙鱼幼鱼发育的影响   总被引:4,自引:0,他引:4  
采用不同硬度的水对七彩神仙鱼幼鱼进行饲养。6周龄幼鱼在硬度为7.94°dH±0.30°dH时饲养84d后,比在硬度为14.71°dH±0.23°dH水中的幼鱼个体大,生长速度快。表明较高硬度的水有利于七彩神仙鱼幼鱼的生长发育。  相似文献   

14.
猪的胎盘属于弥散型胎盘,这种胎盘的结构特点和饲养管理的不当,常常导致母猪胎衣不下发生,给生猪的生产繁殖带来极大损失。本文针对母猪胎衣不下发生病因、综合防治进行详细阐述,旨在对预防和治疗胎衣不下能有所帮助。  相似文献   

15.
牙鲆刺激隐核虫病的防治   总被引:1,自引:0,他引:1  
2005年七、八月份,乐亭、滦南一带多家工厂化牙鲆养殖场发生刺激隐核虫病,此种病虫害发病急、传染快、死亡率高。发生过该病的养殖场牙鲆死亡率一般都在50%~80%之间,这种病害给牙鲆养殖业带来很大损失。  相似文献   

16.
头足类耳石微化学研究进展   总被引:3,自引:1,他引:2  
耳石是位于平衡囊内起平衡作用的一对钙化组织,它是头足类的加速度感应器,记录其生命周期内的生物和生态信息。随着鱼类耳石微化学研究及应用的日趋成熟与完善,头足类耳石的相应研究也逐渐兴起。目前头足类耳石微化学的研究内容主要包括无机和有机大分子、微量元素、同位素、微化学标记等方面,其中微量元素是应用研究的重点,在头足类种群识别、生活史分析及栖息环境重建等方面发挥了重要作用。分析认为,头足类微量元素在与栖息环境尤其水温关系的研究中取得了很好的结果,被认为是测定头足类生活水温的温度计。然而,涉及种群识别、生活史分析以及与盐度和食物关系的研究还不够充分,且多集中于Sr/Ca的研究。因此,建议在今后的研究中要综合多种研究方法按时间和空间序列从日轮水平分析多种微量元素的含量与变化。  相似文献   

17.
不同品系盐生杜氏藻培养技术的研究   总被引:2,自引:0,他引:2  
孙灵毅  赵强 《齐鲁渔业》1999,16(3):35-37
4种不同品系盐生杜氏藻培养结果表明:常温下,A33是最适宜培养的藻种,经4天培养,藻细胞密度可达到114×104cell/ml,细胞生长率达到0.369;其次是A23、A140、A5藻种,细胞生长率分别为0.317、0.314、0.234。控温条件下,4种品系杜氏藻细胞生长速度明显增高,是常温条件下的1.2倍。  相似文献   

18.
该研究通过肉眼观察、镜检,进行干露、饥饿、盐度突降、福尔马林等抗性试验,并采用病毒检测等方法,以期建立评估斑节对虾(Penaeus monodon)虾苗活力和质量标准。结果表明,斑节对虾健康虾苗具有趋光性、集群性,体表光洁,肌肉透亮,肠胃食物充盈等特性。测试虾苗干露时间以15min为宜,健康虾苗干露后能立即恢复活力,而病弱虾苗多出现死亡、昏迷现象;虾苗的成活率随饥饿时间的延长而降低,随福尔马林浓度升高和时间延长而降低,随盐度突降幅度增加而降低。健康虾苗能忍受100~200μL·L^-1福尔马林溶液30min,成活率近100%;在盐度20~30下虾苗的成活情况较好,而其在淡水中仅能存活1h。对虾苗进行病毒检测,可以避免养殖中因虾苗携带病毒而可能导致的病毒性疾病的暴发。  相似文献   

19.
鳟鱼发眼卵和旨种运输是养鳟生产的重要环节。发眼卵多在冬季和早春运输,苗种多在晚春和夏季运输。苗种运输大多以鱼篓充氧进行短距离汽车运输,长途运输冷水性鱼苗种的实例很少。本文总结了金鳟和虹鳟苗种长途运输方法,以期与养鳟业界共同交流提高。一、包装材料和方法内包装材料是苗种运输专用塑料袋,规格54×104cm,外包装是泡沫塑料箱,规格63.5×45.5×30.5cm,纸箱规格64×46×32.5cm。塑料袋采取双层式,内装苗种和水共12.5kg,其中苗种0.5-1.3kg,100-2000尾。起运前苗种停食1-2天。运鱼用水水温调至6℃,鱼、水入袋后袋内…  相似文献   

20.
近几年.在唐山沿海发生的渔船海难、海损事故经统计表明呈增多趋势。这与出海作业渔民的安全意识不强有很大关系.渔民为了挣取更多的效益,在海上,超抗风浪等级作业且人为地增加船的不规范载荷.造成船的储备浮力损失,酿成恶果。笔者认为.在渔船设计建造中,留取的干舷对渔船作业的安全性起相当重要的作用,必不可少。 一、储备浮力的重要性 所谓储备浮力就是自船舶设计水线至水密甲板的水密部分体积,其大小与干舷相关.于舷大则储备浮力大,干舷的重要性就在于能够使船在海中保持正常的浮性和安全。再者,在设计建造渔船时,为了改善…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号