首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The use of hexaploid triticale as a crop for human consumption has been limited by its inferior bread-making quality. To ameliorate this problem, a segment of chromosome ID of breadwheat with the Glu-D1d allele encoding for high molecular weight glutenin subunits 5 7plus; 10 was translocated to chromosome 1R of the hexaploid triticale ‘Rhino’ through a combination of a centric break-fusion translocation followed by 5D(5B)-induced homoeologous pairing. The resulting recombinant chromosome 1R has a small interstitial segment of ID with the Glu-D1d allele. The maximum physical length of the translocated segment is estimated at about 16.5 % of 1DL. Frequency of translocations involving the long arms of homoeologous group-1 chromosomes in the analyzed progeny suggested that homoeologous recombination in triticale was substantially higher than that previously reported in hexaploid wheat.  相似文献   

2.
Summary A study was undertaken to evaluate the breeding behaviour and to identify a spontaneously produced putative chromosomal deletion in the winter wheat (Triticum aestivum L. em. Thell.) cv Norstar. Male and female transmission studies of plants heterozygous for the deletion chromosome indicated 9.5% and 48.8% transmission through the pollen and the egg, respectively. Meiotic analyses of progeny from deletion heterozygotes indicated that the deletion chromosome was eliminated from half of the plants, which agreed with the male and female transmission frequencies. Testcrosses of the deletion chromosome with telocentrics and nullisomic-tetrasomic combinations suggested that the deletion involved the long arm of chromosome 5D. This was confirmed by restriction fragment length polymorphism (RFLP) analysis. Also, monosomic plants obtained in progeny of deletion heterozygotes were shown to be monosomic for 5D. Studies of plants homozygous for the deletion showed relatively normal pairing between the deletion chromosomes, and with the short arm (5DS), but not the long arm (5DL). Deletion homozygotes were self-sterile, and morphologically similar to plants nullisomic for 5D, but plants that also contained 5DL, or a homoeologous chromosome were self-fertile and had normal morphology. Studies of chromosome morphology indicated that the deletion chromosome was metacentric, and the length of the long arm was reduced by approximately 60%. RFLP studies showed that, in terms of genetic distance, 90% of the arm was missing.  相似文献   

3.
Differential chromosome staining by using the Giemsa C- banding technique and test crosses have revealed rye chroma tin in the hexaploid wheat variety ‘Amigo’ which resulted from wheat crosses with the octoploid triticale ‘Gaucho’. The results demonstrated a pair of translocated wheat chromosomes involving the short arm of rye chromosome 1R and the long arm of the homoeologous wheat chromosome 1A (1Aq/1Rp translocation). The localization of the translocation breakpoint is supposed 10 be within the centromeric region.  相似文献   

4.
H. Li    X. Chen    Z. Y. Xin    Y. Z. Ma    H. J. Xu    X. Y. Chen  X. Jia 《Plant Breeding》2005,124(2):203-205
Three lines conferring resistance to powdery mildew, Pm97033, Pm97034 and Pm97035, were developed from the cross of Triticum durum-Haynaldia villosa amphidiploid TH3 and wheat cv.'Wan7107' via backcrosses, immature embryo and anther culture. Genomic in situ hybridization analysis showed that these lines were disomic translocation lines. Cytogenetic analysis indicated that the F1 plants of crosses between the three translocation lines and 'Wan7107' and crosses between the three translocation lines and substitution line 6V(6D) formed 21 bivalents at meiotic metaphase I. Aneuploid analysis with 'Chinese Spring' double ditelocentric stocks indicated that the translocated chromosomes were related to chromosome 6D. Biochemical and restriction fragment-length polymorphism (RFLP) analyses showed that the translocation lines lacked a specific band of 6VL of H. villosa compared with the substitution and addition lines but possessed specific markers on the short arm of the 6V chromosome of H. villosa. The three translocation lines lacked specific biochemical loci and RFLP markers located on chromosome 6DS. The results confirmed that Pm97033, Pm97034 and Pm97035 were T6DL.6VS translocation lines.  相似文献   

5.
S. J. Xu  L. R. Joppa 《Plant Breeding》2000,119(3):223-226
The formation of unreduced gametes in some hybrids between disomic D‐genome substitutions (DS) of durum wheat cv.‘Langdon’ and rye provides a convenient approach for the rapid introduction of D‐genome chromosomes into hexaploid triticale. Meiotic pairing at metaphase I and seed fertility in spontaneous and colchicine‐induced amphidiploids derived from F1 hybrids between a set of ‘Langdon’ DS and ‘Gazelle’ rye were analysed. The purpose was to determine the effects of the substitution of D‐genome chromosomes for their A‐ and B‐genome homoeologues on hexaploid triticale and to select stable disomic D‐genome substitutions of hexaploid triticale. The results showed that the disomic substitutions with D‐genome slightly increased the frequency of univalents (1.0‐3.13) compared with the ‘Langdon’ control primary hexaploid triticale (0.76). Substitutions 2D(2A) and 3D(3B) were partly desynaptic. The substitutions 1D(1A), 1D(1B) and 7D(7B) exhibited high seed fertility but the others had decreased fertility. Except for 2D(2A), 5D(5A), 3D(3B) and 5D(5B), 10 of the 14 possible hexaploid triticale D‐genome disomic substitutions have been obtained. The results suggest that the poor compensation ability of some D‐genome chromosomes for their homoeologous A‐ and B‐genome chromosomes is a major factor affecting meiotic stability and fertility in the hexaploid triticale D‐genome substitutions.  相似文献   

6.
用小麦族7个部分同源群的40个RFLP探针对小麦——纤毛鹅观草二体附加系进行分析,在证实了原有细胞学鉴定结果的基础上,又进一步提供了纤毛鹅观草染色体部分同源群的分子证据。即96K025,96K026中添加的一对纤毛鹅观草染色体B属于第2部分同源群;96K012, 96K013中添加的一对染色体E属于第5部分同源群。对以上株系的衍生株系  相似文献   

7.
Summary The tolerance of aluminum (Al) of disomic substitution lines having the chromosomes of the D genome of Triticum aestivum L. cv. Chinese Spring individually substituted for their homoeologues in T. turgidum L. cv. Langdon was investigated by the hematoxylin method. The disomic substitution lines involving chromosome 4D were more Al tolerant than Langdon. The tolerance was found to be controlled by a single dominant gene, designated Alt2, that is in the proximal region of the long arm of chromosome 4D. The locus was mapped relative to molecular markers utilizing a population of recombinant chromosomes from homoeologous recombination between Chinese Spring chromosome 4D and T. turgidum chromosome 4B. Comparison of the location of Alt2 in this map with a consensus map of chromosomes 4B and 4D based on homologous recombination indicated that Alt2 is in a vicinity of a 4 cM interval delineated by markers Xpsr914 and Xpsr1051. The Alt2 locus is distal to marker Xpsr39 and proximal to XksuC2. The Altw locus is also proximal to the Knal locus on chromosome 4D that controls K+/Na+ selectivity and salt tolerance. In two lines, Alt 2 and Knal were transferred on a single 4D segment into the long arm of T. turgidum chromosome 4B.  相似文献   

8.
To complement previously developed recombinant chromosomes 1R.1D, two series of translocations involving the Glu-D1 gene from chromosome ID to chromosome 1A were produced in hexaploid triticale. These series involve seven independent transfers of allele d encoding for high molecular weight glutenin subunits 5+10 and ten independent transfers involving allele a encoding for HMW glutenin subunits 2 + 12. The frequency of homoeologous recombination between chromosomes 1A and 1D was within the range observed for pairs of homologues in wheat, supporting earlier observations that homoeologous recombination in triticale is frequent. Recombined chromosomes 1A.1D can be used to introduce the Glu-D1 gene to durum wheats, and to manipulate the dosage of Glu-D1 in hexaploid triticale and bread wheat.  相似文献   

9.
Chromosomal location of aluminium tolerance genes in rye   总被引:4,自引:0,他引:4  
A. Aniol 《Plant Breeding》2004,123(2):132-136
Rye is known for its high tolerance of aluminium in the soils in comparison with wheat and other cereals. To localize the major gene/ genes controlling aluminium tolerance on the rye chromosomes, four series of wheat‐rye addition lines, two sets of triticale D(R) substitution lines and several wheat/rye translocation lines were tested in experiments on seedlings grown in nutrient solutions with various concentrations of aluminium. The results indicate that the major locus responsible for Al tolerance in rye is located on the short arm of chromosome 3R. The importance of these results for controlled introgressions into cereals is discussed.  相似文献   

10.
Complete chromosomes 1R and 1B were reconstructed in wheat from the centric wheat-rye translocation 1RS.1BL. Three substitutions: 1R(1A), 1R(1B), 1R(1D), and three new centric translocations: 1RS.1AL, 1RS.1BL, 1RS.1DL were produced from the reconstructed chromosome 1R. Each one of these has the same rye chromosome arm 1RS which was present in the original translocation 1RS.1BL of ‘Kavkaz’ wheat. Reconstructed chromosome 1B and a normal chromosome 1R were used to produce a new 1RS.1BL translocation. This translocation has the long arm from the original 1RS.1BL translocation of ‘Kavkaz’, but a different 1RS arm. The third generation centric translocations were mitotically stable and were normally transmitted to progeny. Misdivision frequency of the reconstructed chromosomes 1R did not change relative to normal 1R, whereas the misdivision frequency of the two reconstructed chromosomes 1B tested was significantly higher relative to normal 1B. These experiments demonstrate that repeated cycles of centric breakage and fusion do not impair the function of centromeres in wheat and rye but may change chromosome's susceptibility to misdivision. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Previous studies showed that a T. aestivum-H. villosa disomic substitution line DS4V(4D) showed a high level of resistance to wheat spindle streak mosaic virus (WSSMV). By crossing DS4V(4D) with the common wheat variety Yangmai #5, plants were obtained that were double monosomic for chromosomes 4V and 4D. Univalents are prone to misdivision at the centromere, and fusion of the derived telocentric chromosomes leads to the production of Robertsonian whole-arm translocations. We screened the progenies of such double monosomic plants by C-banding and genomic in situ hybridization and identified one compensating translocation where the short arm of 4V was translocated to the long arm of 4D of wheat, T4VS⋅4DL. RFLP analysis using the group-4 specific probe BCD110 was used to confirm the translocation. The T4VS⋅4DL translocation stock, accessioned as NAU413, is highly resistant to WSSMV and is also of good agronomic type. The WSSMV resistance gene located on 4VS was designated Wss1.  相似文献   

12.
小麦-黑麦二体代换系间杂交诱导染色体易位的研究   总被引:2,自引:1,他引:1  
摘 要:小麦-黑麦二体代换系间杂交,是诱导小麦-黑麦染色体易位的重要途径,有理论与应用价值。本研究利用DS1R/1D与DS5R/5A、DS6R/6A杂交,结果表明,F1减数分裂有19个二价体、4个单价体,有部分同源染色体配对和染色体易位现象;F2 对带有黑麦性状的24株普通小麦类型植株进行原位杂交检测,共检测出10株有染色体易位,易位频率为41.6%。易位株系为:06-16-7、06-16-3、06-16-5、06-16-7、06-16-8、06-17-7、0617-11、06-17-15、06-17-16、06-18-5。由于亲本选配、检测植株有一定的目的性,易位植株均表现有一定的应用价值。  相似文献   

13.
Chromosome 5A of wheat carries several major genes of agronomic importance, including Vrn1 controlling spring/winter wheat difference, Q determining spike morphology and B1 inhibiting awn development. A population of single-chromosome recombinant lines from the cross between two chromosome substitution lines, 'Chinese Spring' (Cappelle-Desprez 5A) and 'Chinese Spring' (Triticum spelta 5A) was developed to map these genes on the long arm of chromosome 5A relative to RFLP markers. Using 120 recombinant lines, a map of approximately 230 cM in length was constructed. The gene order was centromere– Vrn1– Q– B1. The Vrn1 locus was tightly linked to two RFLP markers, Xbcd450 and Xrz395 with 0.8 cM, and to Xpsr426 with 5.0 cM. The Vrn1-adjacent region was located in the central of the long arm, approximately 90 cM from the centromere. The chromosome region around Q and the 5A/4A translocation break-point were mapped by three RFLP markers, and their order was found to be Q– Xpsr370– Xcdo457–4A/5A break-point– Xpsr164. The B1 locus was located on the most distal portion of the long arm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
This study used cytogenetic stocks to investigate the chromosomal location of genes responsible for polyphenol oxidase (PPO) activity in common and durum wheat seeds. Substitution lines of chromosome 2A of hexaploid varieties ‘Cheyenne’, ‘Thatcher’ and ‘Timstein’ in ‘Chinese Spring’ showed significantly higher PPO activity than all other substitution lines of the same variety, with the exception of substitutions of ‘Cheyenne’ chromosome 3A and ‘Thatcher’ chromosome 4B. Substitution lines of chromosome 2A of Triticum turgidum var. dicoccoides and of chromosome 2D of ‘Chinese Spring’ into the tetraploid variety ‘Langdon’ showed a significant increase in PPO activity relative to all other substitution lines in Langdon. The gene(s) responsible for high PPO activity in chromosome 2D from ‘Chinese Spring’ was mapped on the long arm within a deletion that represents 24% of the distal part of the arm. This study shows that genes located in homoeologous group 2 play a major role in the activity of PPO in wheat.  相似文献   

15.
单倍体小黑麦的不正常减数分裂将使 A、B、D、R4个染色体组的28条染色体进行随机分配,形成一系列具有不同大小、不同生活力、不同染色体数目和不同染色体组合的小孢子。对单倍体小黑麦花药培养的预备试验已经说明,如果选用具有高诱导率和绿苗高分化率的单倍体小黑麦品系或细胞系作为花药供体,由此获得大量愈伤组织和花粉植株  相似文献   

16.
Leaf and stripe rusts are severe foliar diseases of bread wheat. Recently, chromosomes 5Mg from the related species Aegilops geniculata that confers resistance to both leaf and stripe rust and 5Ut from Ae. triuncialis conferring resistance to leaf rust have been transferred to bread wheat in the form of disomic DS5Mg(5D) and DS5Ut(5A) chromosome substitution lines. The objective of this study was to shorten the alien segments in these lines using Ph I-mediated, induced homoeologous recombination. Putativerecombinants were evaluated for their rust resistance, and by genomic in situ hybridization and microsatellite analyses. One agronomically useful wheat-Ae. geniculata recombinant resistant to leaf and stripe rust was identified that had only a small terminal segment of the 5MgL arm transferred to the long arm of an unidentified wheat chromosome. This germplasm can be used directly in breeding programs. Only one leaf rust-resistant wheat-Ae. triuncialis recombinant, which consists of most of the complete 5Ut chromosome with a small terminal segment derived from 5AS, was identified. This germplasm will need further chromosome engineering before it can be used in wheat improvement. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
A rye-cytoplasmic tetraploid triticale was found in Fs progenies of crosses between tetraploid rye‘No 1323’and hexaploid triticale‘KT 77′. In the tetraploid triticale, two complete rye genomes and two mixed wheat genomes, consisting of the chromosomes 1A. 2A, 4A, 7A, 3B, 5B, and 6B are present. The rye cytoplasm did not affect stability of rye chromosome pairing during metaphase 1, since rye chromosomes participated in pairing irregularities just as did wheat chramosomes, even on a larger scale. The fertility of F0, plants ranged from 0 to 75.6 %, always associated with high grain shrivelling. The analyzed pairing behaviour of induced triploid hybrids from crosses between the tetraploid triticale and diploid rye indicates the presence of at least one wheat-rye translocation in one of the investigated triploid plants.  相似文献   

18.
Grain protein compositions of 106 advanced generation backcross lines from crosses involving ‘Amigo’ (1AL.1RS), ‘Aurora’, ‘Kavkaz’, ‘Skorospelka-35’ and ‘Sunbird’ (all 1BL.1RS) and ‘Gabo’ 1DL.1RS parents and 152 cultivars with unknown pedigree were analysed by one-dimensional SDS-PAGE. Eighty seven backcross lines and 16 cultivars carried one or other of these translocations, 2 cultivars had a 1R (1B) substitution, whereas 5 backcross lines were found to be heterogeneous for the 1BL.1RS translocation. The translocation lines were easily identified by the presence of secalins (Sec-1) controlled by rye chromosome arm IRS and a simultaneous loss of the gliadin (Gli-1) and/or triticin (Tri-1) protein bands controlled by the replaced wheat chromosome arm (1AS, 1BS or 1DS). Certain gliadins, showing no allelic variation among the genotypes analysed, were identified as markers for chromosome arms 1AS (Mr= 34 kd) and IBS (Mr= 42,33 kd). The whole chromosome substitutions 1R (1B) were recognized by scoring for the presence of Sec-1 and HMW secalin bands, Sec-3 (controlled by rye chromosome arm 1RL) and the absence of Gli-B1 and HMW glutenin subunits, Glu-B1 (controlled by wheat chromosome arm 1BL). The results have shown that protein electrophoresis provides a rapid and reliable technique for screening genotypes for these translocations and substitutions in a breeding programme.  相似文献   

19.
Two series of progenies were developed from hybrids between octoploid (AABBDDRR) and tetraploid triticale ((AB)(AB)RR). One arose from the successive selfing of the F1s, while the second was established after one backcross of the F1 hybrids with the respective 8 × triticale parent. Altogether, 250 F3 and BC1F2 lines were developed, of which 112 were karyotyped in the F4/F5 or in BC1F3/BC1F4 generations using C-banding and SDS-PAGE. The 112 lines represented 61 different karyotypes, of which 39 appeared to be stabilized, having pairs of homologous wheat chromosomes only, while 22 karyotypes exhibited 1—3 heterologous pairs. The frequency of karyotypically stabilized lines originating from the series with one backcrossing was much higher (79.5 %) than those derived from the successive selfing of the F1 hybrids (51.7%). Six lines had the pure hexaploid triticale chromosome constitution. The frequency of disomic substitutions of D genome chromosomes for their homoeologous A and/or B genome chromosomes ranged from one to six per line with an average of 1.7. Except for 3B and 6B all possible D(A/B) substitutions were obtained. Chromosomes ID and 3D substituted for their homoeologues with the highest frequency, while the substitution of chromosome 4D for 4A or for 4B was the least frequent. D(R) substitutions were found in eight lines only. A complete set of 6x triticale lines was established in which chromosome ID was present in all possible combinations, i.e. single 1D(1A/1B/1R) disomic substitutions as well as disomic ID addition.  相似文献   

20.
The tendency of unpaired meiotic chromosomes to undergo centric misdivision was exploited to translocate leaf rust and stripe rust resistance genes from an Aegilops kotschyi addition chromosome to a group 2 chromosome of wheat. Monosomic and telosomic analyses showed that the translocation occurred to wheat chromosome arm 2DL. The introgressed region did not pair with the corresponding wheat 2DL telosome during meiosis suggesting that a whole arm may have been transferred. Female transmission of the resistance was about 55% whereas male transmission was strongly preferential (96%). The symbols Lr54 and Yr37 are proposed to designate the new resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号