首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation tillage crop production systems have become common in the central Great Plains because they reduce soil erosion and increase water‐use efficiency. The high residue levels associated with no‐tillage systems can cause soils to be cool and wet which can reduce nutrient uptake and growth of crops. Starter fertilizer applications have been effective in improving nutrient uptake even on soils high in available nutrient elements. Resent research indicates that corn (Zea mays L.) hybrids differ in their responses to starter fertilizer. No information is currently available concerning grain sorghum [Sorghum bicolor (L.) Moench] hybrid response to starter fertilizer. The objective of this study was to evaluate grain sorghum hybrid responses to starter fertilizer in a no‐tillage environment on a soil high in available phosphorus (P). This field experiment was conducted from 1995 to 1997 at the North Central Kansas Experiment Field, located near Belleville, on a Crete silt loam soil (fine, montmorillonitic, mesic, Pachic Arguistoll). Treatments consisted of 12 grain sorghum hybrids and two starter fertilizer treatments. Fertilizer treatments were starter fertilizer [34 kg nitrogen (N) and 34 kg P2O5 ha‐1] or no starter fertilizer. Starter fertilizer was applied 5 cm to the side and 5 cm below the seed at planting. Immediately after planting, N was balanced on all plots to give a total of 168 kg N ha‐1. In all three years of the experiment, grain yield, total P uptake (grain plus stover), grain moisture content at harvest, and days to mid‐bloom were affected by a hybrid x starter fertilizer interaction. Starter fertilizer consistently increased yields, reduced harvest grain moisture, improved total P uptake, and reduced the number of days needed from emergence to mid‐bloom of Pioneer 8505, Pioneer 8522Y, Pioneer 8310, Dekalb 40Y, Dekalb 48, Dekalb 51, Dekalb 55, and Northrup King 524, buthadno effect on Pioneer 8699, Dekalb 39Y, Northrup King 383Y, and Northrup King 735. When averaged over the three years, starter fertilizer increased grain yield of responding hybrids (hybrids in which the 3‐year average grain yield was significantly increased by the application of starter fertilizer) by 920 kg ha‐1. In responding hybrids, starter fertilizer reduced grain moisture at harvest by 54 g kg1 and also shortened the period from emergence to mid‐bloom by five days. Starter fertilizer increased V6 stage aboveground dry matter production and N and P uptake of all hybrids tested. Results of this work show that in high residue production systems even on soils high in available P, starter fertilizer can consistently increase yield of some hybrids, whereas other hybrids are not affected.  相似文献   

2.
ABSTRACT

Research has shown that some corn (Zea mays L.) hybrids grown under reduced tillage conditions respond to starter fertilizer containing nitrogen (N) and phosphorus (P), while others do not. This research studied variability of responsiveness among corn hybrids to starter fertilizer containing a more complete complement of nutrients. The experiment was conducted from 1996 to 1998 on a producer's field near Scandia, KS, on a Carr sandy-loam soil (coarse-loamy, mixed, superactive calcareous, mesic Typic Udifluvents). The response of four corn hybrids (Pioneer 3563, Pioneer 3346, DeKalb 591, and DeKalb 646) to starter fertilizer combinations containing N, P, potassium (K), sulfur (S), and zinc (Zn) was evaluated. In all three years of the experiment, starter fertilizer containing N and P consistently increased grain yield, reduced the number of thermal units needed from emergence to maturity, decreased grain-moisture content at harvest, and increased total P uptake (grain plus stover at maturity) of Pioneer 3346 and DeKalb 591, but had no effect on Pioneer 3563 and DeKalb 646. Addition of S to the starter mix produced additional yield increases for Pioneer 3346 and DeKalb 591, whereas addition of K and Zn to the starter did not show any additional yield benefit for these two hybrids. Grain yield of Pioneer 3563 and DeKalb 646 was not improved by starter fertilizer, regardless of the elemental composition. When no starter fertilizer was applied, early-season root development was greater in Pioneer 3563 and DeKalb 646 than in the other two hybrids. However, the addition of starter fertilizer increased numbers of roots and depth of rooting in Pioneer 3346 and DeKalb 591 but had no effect on Pioneer 3563 and DeKalb 636. Results showed starter fertilizer benefited grain yield for two hybrids. Grain yield of the other two hybrids, however, was not influenced by starter, regardless of which nutrients were supplied. This response may be attributed to differences in root-growth characteristics of the hybrids. The two responsive hybrids did, however, yield an average of 0.75 mg ha?1 greater than the two non-responsive hybrids. This result indicates it is unlikely that all of the yield loss from not using a starter can be avoided by hybrid selection.  相似文献   

3.
Corn (Zea mays L.) is an important source of protein for humans and animals. Because dent corn is highly responsive to nitrogen (N) fertilization, substantial amounts of N are used for corn production. Application of N fertilizer may reduce protein quality of corn kernels through an increase in zein content. The objective of this study was to determine if corn endosperm characteristics influence the effect of N fertilization on protein quality. In 1988, six corn hybrids differing for endosperm characteristics were grown at two locations in Ohio and with two N rates, 34 and 200 kg/ha. The waxy hybrid had a greater concentration of fraction I protein than the non‐wary hybrid. These two hybrids did not differ for other fractions except fraction III at Columbus. The soft endosperm hybrid had a higher concentration of fraction I protein than the hard endosperms hybrids. Soft and hard endosperm hybrids differed for fraction II protein for the 34 kg N/ha fertilizer rate but not the 200 kg N/ha fertilizer rate. These two classes of hybrids did not differ for fraction III protein. Increasing N fertilizer increased fraction II concentration for all hybrids. Concentrations of the other two protein fractions did not respond to fertilizer rate. The increase in fraction II concentration with N fertilization may result in a decrease of protem quality and feed value. Although all hybrids responded to N fertilizer, some hybrids had bigger increases in fraction II proteins than other hybrids.  相似文献   

4.
Conservation tillage systems, including ridge‐tillage, have become increasing popular with producers in the central Great Plains because of their effectiveness in controlling soil erosion and conserving water. A major disadvantage of the ridge system is that nutrient placement options are limited by lack of any primary tillage options. The objective of this research was to investigate the effects of method of phosphorus (P) placement and rate on irrigated grain sorghum [Sorghum bicolor (L.) Moench] grown in a ridge‐tillage system on a soil low in available P. This experiment was conducted from 1993 to 1995 on a producer's field near the North Central Kansas Experiment Field at Scandia, Kansas on a Carr sandy loam soil (course, loamy, mixed, calcareous, mesic, Typic Udifuvents). Treatments consisted of fertilizer application methods, surface broadcast, single band starter (5 cm to the side and 5 cm below seed), dual band starter (one band on each side of the row), and knifed in the center of the row middle (38 cm from each adjacent row). Each of these treatments was made at either 22 or 44 kg P2O5 ha‐1, and nitrogen (N) also was included at the rate of 13 kg ha‐1. Additional treatments were, a combination of 13 kg N and 44 kg P2O5 ha‐1 applied half broadcast and half as a single band starter, a 1:1 N:P2O5 ratio (44 kg N and 44 kg P2O5 ha‐1) applied as a single band starter, and a 3:1 ratio (134 kg N and 44 kg P2O5 ha‐1) applied as a single band starter. A no‐P check plot also was included. Broadcast and center‐of‐row middle knife applications were made approximately 1 week before planting. After planting, N was balanced on all plots to give a total of 180 kg ha‐1. Applied P treatments improved grain yield and nutrient uptake and consistently shortened the time from emergence to mid‐bloom in all 3 years of the experiment. On this low soil test P soil, treatments that subsurface banded P increased grain yield by 1.27 Mg ha‐1 compared to broadcast treatments. Placing N and P in a single starter band 5 cm to the side and 5 cm below the seed was as effective as placing a band on each side of the row. Knife applying N and P in the center of the row was not as effective as placement beside the row. Single band starter application of N and P in a 1:1 and or 3:1 N:P2O5 ratio consistently increased yields and nutrient uptake and shortened the time to mid‐bloom as compared to the single band starter treatment that provided only 13 kg N ha‐1. Over the 3 years of the study, these 1:1 and 3:1 N:P2O5 ratio starters were clearly superior to an other treatments.  相似文献   

5.
Abstract

When in‐row subsoilers are used to plant crops in no‐tillage systems, starter fertilizers are often applied in the in‐row subsoil track. Although rates applied are small, the actual concentration within the rooting zone can be excessive, and injury to germinating seed and young plants can be severe. The purpose of this greenhouse study was to determine the effect of starter fertilizer placement, rate, and source on germination, growth, and nutrient uptake ef corn (Zea mays L.) seedlings. Fertilizers were surface applied, mixed with the upper 7.5‐cm, 7.5‐ to 15‐cm and the 0‐ to 15‐cm soil depths. Fertilizer rates were equivalent to 15 and 30 kg/ha of field applied P. Sources were diammonium phosphate (DAP, 18–46–0) and ammonium polyphosphate (APP, 10–34–0). Treatments did not affect germination, but the surface application resulted in severe crust formation which had to be mechanically broken. Plant heights and weights and root weights were increased by fertilizer. Nitrogen was primarily responsible for increased plant growth 2 weeks after emergence, but P appeared to have the greatest effect at 4 and 6 weeks. Although seedling death or severe damage to plants did not result from any source, rate, or application zone, some damage did occur. Optimum treatments varied with sampling dates, but after 6 weeks, optimum treatments in terms of greatest root and shoot weights and plant heights were the low rate of APP mixed with the 0‐ to 7.5‐ or the 0‐ to 15‐cm soil depths.  相似文献   

6.
《Journal of plant nutrition》2013,36(7):1383-1402
Abstract

Narrow‐row soybean [Glycine max (L.) Merr.] production in corn [Zea mays L.]–soybean rotations results in various distances of soybean rows from previous corn rows, yet little is known about soybean responses to proximity to prior corn rows in no‐till systems. The objective of this study was to evaluate the impacts of preceding corn rows on potassium (K) nutrition and yield of subsequent no‐till soybeans. Four field experiments involving a corn–soybean rotation were conducted on long‐term no‐till fields with low to medium K levels from 1998 to 2000 near Paris and Kirkton, Ontario, Canada. In the corn year, treatments included K application rate and placement in conjunction with tillage systems or corn hybrids. Before soybean flowering, soil exchangeable K concentrations (0–20 cm depth) in previous corn rows were significantly higher than those between corn rows. At the initial flowering stage, trifoliate leaf K concentrations of soybeans in preceding corn rows were 2.0 to 5.3 g kg?1 higher than those from corresponding plants between corn rows. Yield of no‐till soybeans in previous corn rows increased 10 to 44% compared to those between previous corn rows. Positive impacts of prior corn rows on soil K fertility, soybean leaf K, and soybean yield occurred even when K fertilizer was not applied in the prior corn season. Deep banding of K fertilizer tended to accentuate row vs. between‐row effects on soybean leaf K concentrations in low‐testing soils. Corn row effects on soybeans were generally not affected by either tillage system or corn hybrid employed in the prior corn crop. Potassium management strategies for narrow‐row no‐till soybeans should take the potential preceding corn row impacts on soil K distribution into account; adjustments to current soil sampling protocols may be warranted when narrow‐row no‐till soybeans follow corn on soils with low to medium levels of exchangeable K.  相似文献   

7.
Abstract

The northern portion of the Great Plains has environmental conditions that require unique management practices to ensure optimum corn (Zea mays L.) yield and quality. The objective was to investigate the effect of starter fertilizer on corn yield and quality under different soil management. A field experiment was established within a 2‐year corn/soybean [Glycine max (L.) Merrill] rotation. Whole‐plot treatments were tillage with split‐plot treatments of starter fertilizer. Starter fertilizer treatments consisted of two nitrogen (N) sources, each at four rates, all contained phosphorus (P) and potassium (K). An additional treatment of no starter fertilizer was also incorporated into the experiment. There was a significant increase in yield with application of starter‐N for all years except 2002. The most dramatic yield increase was obtained with the comparison between the no starter (no N, P, or K) treatment and the P and K treatment (no N+P and K). Starter fertilizer with only P and K also increased yield, oil production, and N removal in all years compared with no starter fertilizer treatment. Application of starter fertilizer can have a significant positive impact on yield and quality of corn grown in the northern Great Plains.  相似文献   

8.
Abstract

Legumes have a unique ability to obtain a significant portion of atmospheric nitrogen (N2) through a symbiotic relationship with Rhizobia spp of bacteria but it takes time, thus, an early supply of N to the plant may positively influence growth and development. However, too much fertilizer in close proximity to the seed can damage the seedling. Therefore, this study was conducted to determine the maximum safe rates for starter seed-row fertilizer application under low seedbed utilization conditions (15%). Emergence, biomass yield and nitrogen (N), phosphorus (P) and sulfur (S) uptake responses to starter fertilizer products and blends applied at 0, 10, 20 and 30?kg?N?ha?1 in the seed-row were investigated for six different pulse crops: soybean, pea, faba bean, black bean, lentil and chickpea. The general sensitivity (injury potential) for starter N, P, S fertilizer was lentil?≥?pea?≥?chickpea?>?soybean?≥?black bean?>?faba bean. Lentil, pea and chickpea could generally only tolerate the 10?kg?N?ha?1 rates while soybean and black bean could tolerate 10–20?kg?N?ha?1. Faba bean emergence appeared relatively unaffected by all three rates of N and showed least sensitivity to seed row placed fertilizer. In terms of 30-day biomass response, soybean and black bean were most responsive to fertilization, while pea, faba bean, lentil and chickpea were least responsive to the starter fertilizer applications, with no benefit increasing above the 10?kg?N?ha?1 rate.  相似文献   

9.
Abstract

Field experiments were conducted on calcareous and non‐calcareous Orthic Black Chemozemic soils over a five year period to study the effect of rates and placements of P‐fertilizer on Canadian rape (Brassica napus L. cv Tower) production. Six rates of P as mono‐ammonium phosphate (MAP) were applied at seeding using four placement methods: i) broadcast and cultivated 10 cm into the soil (BC); ii) banded in the seed row with the seed (PWS); iii) banded 2.5 below and 2.5 cm to the side of the seed (PSS); iv) banded 2.5 cm directly below the seed (PBS). Soil type had no significant effect on rape growth, seed yield and P‐uptake. Rape responded best to P‐fertilizer banded with (PWS) or near (PSS, PBS) the seed. But, placing 15 kg/ha P or greater with the seed reduced seedling emergence; with 25 kg P/ha insufficient plants emerged to justify harvesting. The reduced seedling emergence resulted in reduced seed yield and P‐uptake. Maximum yields were obtained when the fertilizer was banded 2.5 cm away from the seed (PSS, PBS). The BC method produced the least growth, yield and P‐uptake responses of the four methods. Only when broadcast rates of P were in excess of 10 kg/ha did rape dry matter, seed and P‐uptake increase. Banding 10 kg/ha with or near to the seed was equivalent to broadcasting 25 kg/ha in terms of seed yield and P‐uptake. Application of P fertilizer also increased seed protein and oil concentrations.  相似文献   

10.
Abstract

Nitrogen (N) fertilizer is a key factor of yield increase but also an environmental pollution hazard. The sustainable agriculture system should have an acceptable level of productivity and profitability and an adequate environmental protection. The objectives of this study were to determine the relationships between N rate, DM yield, plant N concentration (NC) and residual soil nitrate‐nitrogen in order to improve the predicted N rate in corn (Zea mays L.) silage. The experiment was conducted over a period of three years in the province of Quebec on three soil series in a continuous corn crop sequence. Treatments consisted of six rates of N: O, 40, 80, 120, 160, and 200 kg N ha‐1 as ammonium nitrate applied at planting: broadcast and side banded. Four optimum N rates were calculated using different models: (i) economic rate base on fertilizer and corn price using the quadratic model (E); (ii) economic rate based on fertilizer and corn price using the quadratic‐plus‐plateau model (QP); (iii) critical rate based on linear‐plus‐plateau model (P); (iv) lower than maximum rate (L) corresponding to 95% of maximum yield. The optimum plant NC at all growing stages and the N uptake at harvest were calculated depending on these N rates and yields.

The NC of whole plant at 8‐leaf stage (25–30 cm plant height) of ear leaf at tasselling and of whole plant at harvest stage, the N rate, the N uptake at harvest and the DM yield were all significantly intercorrelated and affected by soils and years, but not affected by N fertilizer application method. The DM yield was linearly and significantly related to NC of whole plant at 8‐leaf stage (rv = 0.932**). At this stage, the average NC corresponding to the optimum N rate and yield was of 3.71, 3.68, and 3.66% as calculated with E, L, and P model, respectively. Our data suggest that the NC of whole plant at 8‐leaf stage may be used to evaluate the N nutrition status of plant and the required optimum N fertilizer rate. The NC of ear leaf at tassel stage was also significantly correlated to corn yield (r = 0.994**). It may be used as an indicator to evaluate the near‐optimum N rate in the subsequent years.

The N uptake by whole above‐ground plant at harvest was quadratically related to corn yield. Data show that at high fertilizer N rate, the N uptake still increased without significantly increasing yield. The N uptake was of 176.5, 163.0, and 155.0 kg N ha‐1 using the E, L and P rates of 146, 126, and 115 kg N applied ha‐1, respectively. The optimum N rate and yield were affected by soil type and year, but not by the method of N fertilizer application. The yield increased rapidly up to a N rate of about 120 kg N ha‐1 and then quite slightly to a maximum N rate of 192 kg N ha‐1. The optimum N rate was of 115 and 126 kg N ha‐1 using the P and L model respectively and as high as 146.8 kg N ha‐1 using the E model. The L model, using a much smaller N rate, gave a reasonably high yield compared to E rate (12.2 and 12.5 Mg ha‐1, respectively). The data show that a relatively much lower N rate than maximum did not proportionally diminish the yield. Thus, for a difference of 40.4% between maximum N rate and P rate a difference of only 7.4% in yield was observed. Using the L model the differences in rate and yield were of 34.4% and 4.7%, respectively. The QP model gave no significant difference compared to E model.

At harvest the residual soil NO3‐N increased significantly with increasing N fertilizer rate in whole of the 100 cm soil profile, but mainly in the top 40 cm soil layer. The total NO3‐N found in 0–100 cm profile at rate of 0, 120 and 200 kg applied N ha‐1 at planting was as high as 33.7, 60.5, and 74.5 kg N ha‐1 respectively in a light soil and 37.5, 97.5, and 145.5 kg N ha‐1 in a heavy clay soil. The difference in NO3‐N content in the 60–100 cm layer between different applied N rate suggests that at harvest, part of fertilizer N applied at planting was already leached below the 100 cm soil layer. Results, thus, show that reasonably high corn yields can be obtained using more adequate N fertilizer rates which avoid the overfertilization and are likely to reduce the air and ground water pollution.  相似文献   

11.
Abstract

Field experiments were conducted in central Alberta to determine the yield response of barley and rapeseed to KCl on soils varying in soil test K levels and to evaluate three methods of K placement for effectiveness. The soil test K extractant was 1M ammonium acetate solution. Placement methods were incorporation, banding with the seed and banding beside the seed row. The percentage of sites that responded to K fertilizer significantly and yield increase of barley from K fertilizer decreased with increasing soil test K in the soil. Rapeseed responded less often to K than barley and K placement was more critical for barley than for rapeseed. Barley yields were greatest when the K fertilizer was banded in the seed row and least when incorporated into the soil. Rapeseed yields on K‐responsive sites were same when the K fertilizer was incorporated or banded beside the seed row, but tended to be greater when banded with the seed.  相似文献   

12.
A greenhouse pot experiment was carried out to assess the effects of fermented coffee mucilage applied as mulch together with maize leaves on the growth of young coffee plants of two different varieties and on soil microbial biomass indices. The coffee variety Catuai required 32% more water per g plant biomass than the variety Yellow Caturra, but had a 49% lower leaf area, 34% less shoot and 46% less root biomass. Maize and mucilage amendments did not affect leaf area, shoot and root yield, or the N concentration in shoot and root dry matter. The amendments always reduced the water use efficiency values, but this reduction was only significant in the maize+mucilage‐14 (= 14 g mucilage pot?1) treatment. Soil pH significantly increased from 4.30 in the control to 4.63 in the maize+mucilage‐14 treatment. Microbial biomass C increased by 18.5 µg g?1 soil, microbial biomass N by 3.1 µg g?1 soil, and ergosterol by 0.21 µg g?1 soil per g mucilage added pot?1. The presence of mucilage significantly reduced the microbial biomass‐C/N ratio from a mean of 13.4 in the control and maize treatments to 9.3, without addition rate and coffee variety effects. The application of non‐composted mucilage is recommended in areas where drought leads to economic losses and in coffee plantations on low fertility soils like Oxisols, where Al toxicity is a major constraint.  相似文献   

13.
Abstract

Field and greenhouse studies were conducted to identify starter fertilizers which would enhance cotton seedling survival, growth, and yield in legume residues. Field studies were initiated in the fall of 1982 on a Norfolk sandy loam (Typic Paleudult) in the Upper Coastal Plain of Alabama. Winter annual legumes, crimson clover (Trifolium incarnatum L.) and hairy vetch (Vicia villosa Roth) were established as whole plots along with a winter fallow area. Split plot treatments consisted of O, N, P, K, NP, NK, and NPK starter fertilizers. The cotton (Gossypium hirsutum L.) was planted with a conservation tillage planting unit with in‐row subsoilers. The starter fertilizers were applied deep (8 to 10 inches) in the subsoil track. Greenhouse studies were also conducted with soil from whole plot areas top dressed with corresponding legume tissue at a rate of .9 g tissue/500 g soil. Seedlings in the greenhouse were rated for disease and emergence, and dry weights were recorded.

Cotton populations in field studies were lower in legume mulched than fallow soils in 1984. Application of starter fertilizers generally increased harvest populations, particularly the NK combination. In 1983, cotton growth was greater in vetch than other soils, but responses to starter fertilizers varied with analyses and years. Seed cotton yields were consistently high with P starter, although P did not always improve cotton stands and growth. When averaged across years and cover crops, yields were 3151, 3031, 2865, 2790, 2753, 2741, 2512, and 2364 for P, NP, P, NP, K, NPK, N and O, starter treatments respectively.

Greenhouse studies indicated that starter fertilizer improved cotton emergence in legume soils, but decreased emergence in fallow soils. Disease ratings of emerged seedlings were more severe when starter fertilizer was used than when it was not used. Thus, starter fertilizer increased emergence and survival, despite high disease ratings. Cotton seedling growth generally increased when poor emergence reduced cotton seedling competition.  相似文献   

14.
为了探索启动磷肥不同施用方式对玉米生长和产量的影响,设置启动磷肥大田滴施(T1)、穴施(T2)和不施启动磷肥(CK)3个施肥处理,其中启动肥磷肥用量为P2O5 30 kg·hm-2,探究启动磷肥不同施用方式对玉米生长、养分分配和产量构成的影响;设置启动磷肥根箱土壤滴施(P1)、穴施(P2)和不施启动肥(CF)3个处理,其中启动肥磷肥用量为P2O5 0.2 g·kg-1土,探究启动磷肥施用后土壤中磷素的空间分布与迁移效果。结果表明,玉米四叶期和六叶期,T1和T2处理均显著增加了苗期玉米总根长,根表面积,地上、地下部生物量和N、P、K养分积累量。在六叶期,T1和T2处理玉米总根长较CK分别增加了21.10%和30.35%,根系表面积分别增加了23.48%和29.20%,地上和地下部生物量分别增加了31.24%和52.38%、33.61%和57.81%。与CK相比,T1和T2处理促进了玉米N、P、K养分的积累,同时促进了养分由营养器官向生殖器官的转移。在玉米吐丝期至成熟期,T1和T2处理玉米N、P、K养分转移量较CK分别增加了29.75和44.73 kg·hm-2、10.76和14.65 kg·hm-2、2.20和24.67 kg·hm-2。玉米穗长、行粒数、产量和磷肥偏生产力均表现为T2>T1>CK,玉米穗秃尖长度表现为T2相似文献   

15.
Residual effects on soybeans (Glycine max L.) from phosphrous (P) fertilizer bands applied 5 cm to the side and 5 cm below the seeds of a preceding corn (Zea mays L.) crop on a Brandt silt loam soil (fine‐silty, mixed Udic Haploboroll) were studied after an intervening no‐till fallow period. The P rates applied were 0, 12, 24, and 49 kg P ha‐1. Soybean rows were planted as close as possible to the preceding corn rows. Soybean tissue was sampled at the early bloom stage in each row of the paired‐row design. Twenty soil column (2.5x3 cm) samples were collected from the 0–15 cm depth along a 50‐cm‐long trench that bisected a soybean row. The distance of the previous P band (column with the highest extractable Bray‐I P level) from the soybean row became a variable in this experiment with category range distances of <6 cm, 6–9 cm, and >9 cm from band to row. Residual P from all application rates increased shoot dry matter weight, shoot P uptake, and to a lesser extent grain yield in comparison to the unfertilized soybeans. Distance of the P band from the row was more important than the P concentration in the band. Shoot P uptake and grain yield were significantly larger for fertilized compared to unfertilized soybeans when the band distance was less than 9 cm from the row. Residual P band distance of greater than 9 cm from the row had little effect on soybean growth and yield.  相似文献   

16.
Abstract

A corn‐small grain cropping sequence resulted in a greater total grain yield than corn or small grain alone or grain sorghum double cropped with small grain. Drought restricted yield responses to N, P and K in non‐irrigated plots but under irrigation grain yield for each cropping sequence was directly related to fertilizer applied. All fertilizer treatments increased soil acidity. Phosphorus and K applied at 26 and 50 kg/ha, respectively for each crop in the sequence maintained P and K levels in the soil. After three years, the high rate of fertilizer (87 and 166 kg/ha of P and K, respectively) resulted in greater soil P and K values than the low rate of fertilizer.  相似文献   

17.
Abstract

The volume of soil treated with P fertilizer affects P uptake by the crop. Earlier studies have shown that the stimulation of root growth in P‐fertilized soil was similar for both corn (Zea mays L.) and soybean (Glycine max L. Merr). The objective of this research was to determine the effect of fertilizer P placement on P uptake and shoot and root growth of spring wheat (Triticum vulgare L.). Wheat was grown for 34 days in Raub silt loam (Aquic Argiudolls) in a controlled climate chamber. One rate of phosphate per pot, 150 mg P per three kg of soil, was mixed with 2, 5, 10, 20, 40 and 100% of the soil in the pot. The P was equilibrated with moist soil for 5 days at 70°C followed by 21 days at 25° C before transplanting 8‐day‐old wheat plants into each 3 L pot. The P stimulation of root growth in the P‐treated soil was similar to that for corn and soybeans. The effect could be described by the equation y = x0.7 where y is the fraction of the root system in the P‐fertilized soil where P is mixed with x fraction of the soil. The greatest P uptake and plant growth occurred when added P was mixed with 20% of the soil.  相似文献   

18.
Abstract

Excessive soil erosion and use of nitrogen fertilizer are costly to the Atlantic Coastal Plain corn (zea mays L., ’Funks G 4507') producer and both may serve to create environmental hazards. An in‐row chisel (36 cm deep) tillage method was compared with the standard 5 cm fluted coulter method for planting corn in premature wheat (Triticim aestivum L.) residues grown on an Orangeburg sandy loam (Typic Paleudult). Five orthogonal N levels ranging up to 440 kg of N/ha were used to determine an economic N optimum for each tillage method.

The in‐row chisel tillage method provides a possible yield advantage in the Atlantic Coastal Plain because of observed restricting soil layers within the normal corn rooting zone. The estimated profit‐maximizing quantities of N fertilizer were 262 and 295 kg of N/ha (234 and 263 1b of N/acre) for the fluted coulter and in‐row tillage procedures, respectively. Corn grain yields associated with these inputs were 9.6 × 103 and 12.6 × 103 kg/ha (153 and 200 bu/acre), respectively. The yield increase associated with in‐row chiseling through a 2.5 metric ton mulched surface is attributed to potentially improved rooting and more efficient water storage and use.  相似文献   

19.
Abstract

Field experiments were carried out on three representative soils, to evaluate the effect of various starter fertilizers, together with different rates of band placed phosphorus (P), on nutrient uptake and yield of spring barley (Hordeum vulgare L.) and spring wheat (Triticum aestivum L.). The starter fertilizers were placed in the immediate vicinity of the seed, while the band placed P was placed at about 5 cm below the seeds and spaced at 25 cm between alternate seed rows. As starter fertilizer, monoammonium phosphate (MAP), calcium nitrate (CAN), ammonium nitrate (AN) and triple superphosphate (P20) were compared. In both species, effects of starter fertilizer on P uptake were most marked early in the growing season. At GS 13 application of 20 kg P ha?1 as MAP increased the P uptake by 50% in barley and by 35% in wheat, compared to no seed-placed nutrients. For grain, the increase in P content was 8% for both species. The higher P uptake at GS 13 was supported by observations of higher plant vigour in the treatments with either P20 or MAP as starter fertilizer. The use of N only as starter fertilizer did not increase the vigour of the plants. Band placement of P also gave more vigorous plants in spring barley. The grain yield increased on the silty clay loam and on the silt soil when starter fertilizer was applied, especially with the use of MAP. Smaller and non-significant yield differences were found when starter fertilizer was used on the loam soil. No delay or reduction of emergence was observed with starter fertilizer. Therefore, on soils where root growth or nutrient uptake becomes limited during the first weeks after sowing, application of starter fertilizer is recommended in Norway for both spring barley and spring wheat. Crops grown on silty soils seem to have an especially high demand for easily available P given as starter fertilizer.  相似文献   

20.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号