共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Zn deficiency in wheat (Triticum aestivum L. cv. Ares) on the release of Zn mobilizing root exudates was studied in nutrient solution. Compared to Zn sufficient plants, Zn deficient plants had higher root and lower shoot dry weights. After visual Zn deficiency symptoms in leaves appeared (15–17 day old plants) there was a severalfold increase in the release of root exudates efficient at mobilizing Zn from either a selective cation exchanger (Zn-chelite) or a calcareous soil. The release of these root exudates by Zn deficient plants followed a distinct diurnal rhythm with a maximum between 2 and 8 h after the onset of light. Re-supply of Zn to deficient plants depressed the release of Zn mobilizing root exudates within 12 h to about 50%-, and after 72 h to the level of the control plants (Zn sufficient plants). The root exudates of Zn deficient wheat plants were equally effective at mobilizing Fe from freshly precipitated FeIII hydroxide as Zn from Zn-chelite. Furthermore, root exudates from Fe deficient wheat plants mobilized Zn from Zn-chelite, as well as Fe from FeIII hydroxide. Purification of the root exudates and identification by HPLC indicated that under Zn as well as under Fe deficiency, wheat roots of the cv. Ares released the phytosiderophore 2′-deoxymugineic acid. Additional experiments with barley (Hordeum vulgare L. cv. Europa) showed that in this species another phytosiderophore (epi-3-hydroxymugineic acid) was released under both Zn and Fe deficiencies. These results demonstrate that the enhanced release of phytosiderophores by roots of grasses is not a response mechanism specific for Fe deficiency, but also occurs under Zn deficiency. The ecological relevance of enhanced release of phytosiderophore also under Zn deficiency is discussed. 相似文献
2.
3.
分层供水和表层施锌对玉米植株生长和锌吸收的影响 总被引:1,自引:0,他引:1
进行分层水分隔离盆栽试验,模拟田间不同层次土壤中水分含量分布不均条件,研究表层土壤施锌情况下,玉米植株生长和锌吸收以及根系在表层和底层土壤中的分配。结果表明,施锌明显促进了玉米地上部生长。在土壤表层水分充足时,施锌对植株增长效果较明显,有利于玉米利用土壤水分。缺锌条件下,改善土壤水分并未显著提高玉米生物量。表层土壤干旱时,上下层土壤中根系干物重之比减小,底层土壤中根系分布相对增加,当表层土壤水分增加时,根系在表层土壤中干物重显著增加,分布相对增多。施锌并没有影响根系在不同层次土壤中的分配。表层土壤水分对苗期玉米植株锌吸收总量有显著影响,干旱条件下,玉米植株锌吸收总量下降;底层土壤水分供应状况对玉米锌浓度影响不大,但植株中锌向地上部运转增加。尽管施锌没有提高生长早期玉米根系生长和对底层土壤水分的利用,但本研究表明缺锌旱地土壤上如通过灌溉等措施增加了耕层土壤水分,应该注意施用锌肥,否则严重影响玉米生物量和玉米对土壤水分的利用效率。 相似文献
4.
5.
Piyawan Phuphong Ismail Cakmak Atilla Yazici Benjavan Rerkasem 《Journal of plant nutrition》2020,43(9):1259-1267
AbstractThe present study investigated how foliar zinc (Zn) application affects seedling growth and Zn concentration of rice grown in a Zn-deficient calcareous soil with different soil Zn treatments. Seeds were sown in soil with five rates of Zn (0, 0.02, 0.1, 0.5 and 5.0?mg kg?1 soil) with and without foliar application of 0.5% ZnSO4. Seedlings were harvested at 35?days and separated into (i) the youngest leaves, (ii) the remaining shoot parts and (iii) roots. In soil with no Zn supply, shoot and root dry weight of the rice seedlings were significantly increased by foliar and soil Zn treatments. Plant growth was not clearly increased in low soil Zn treatments, while at each soil Zn treatment, foliar Zn application promoted growth of plants. Plants with adequate Zn supply had the highest Zn concentrations in the youngest leaf. Foliar Zn spray improved Zn concentration of the new growth formed after foliar spraying which shows that Zn is phloem mobile and moved from treated leaves into youngest new leaves. The results indicate clearly in rice seedlings that shoot growth shows more responsive to low Zn than the root growth. The results obtained in the present study are of great interest for proper rice growth in Zn-deficient calcareous soils but needs to be confirmed in other rice genotypes. 相似文献
6.
The composition of root‐derived substances is of great importance for the understanding of processes in the rhizosphere. Therefore, methods allowing a comprehensive collection and chemical analysis of the organic root exudates are necessary. In this study, we compare different methods with regard to their suitability to collect and characterize root exudates. Because the percolation or water logging method failed to quantitatively extract root exudates, a dipping method was developed which allowed an almost complete sampling of coldwater‐soluble root exudates. By 14CO2 labeling of the shoots the composition of root exudates was found to be influenced by plant species and growth stage. In comparison to pea plants maize plants had a higher share of carboxylic acids and a lower share of sugars. Younger maize plants exuded considerably higher amounts of 14C labeled organic substances per g root dry matter than older ones. During plant development the relative amount of sugars decreased at the expense of carboxylic acids. The described methods are well suited for the elucidation of the influence of growth factors on root exudation. 相似文献
7.
Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover 总被引:1,自引:0,他引:1
The Mediterranean area of Southern Italy is characterized by different natural plant covers that mainly reflect different successional stages (i.e. low maquis, high maquis, Quercus ilex wood) and managed areas with introduced plant species (such as Pinus species). Soil properties could be affected by plant cover types as well as by plant species. Our objective was to determine the relationships of plant cover types and plant species with the chemical and biological characteristics of the soil. In four neighbouring areas with different plant cover types (low maquis, pure high maquis, high maquis with pines and pinewood, with pines planted by foresters in both cases), soil samples were collected under different plant species in order to evaluate the effect of plant cover types and plant species on soil properties. Soil samples were analyzed for nutrient content, microbial biomass, soil potential respiration and enzymatic activity (phosphatase, arylsulphatase, β-glucosidase and hydrolase activities) as well as for pH, water holding capacity (WHC) and cation exchange capacity (CEC). Application of cluster analysis and principal component analysis to the data revealed that the plant cover type was the key factor influencing soil properties more than plant species. In fact, the largest differences were observed between pure high maquis soils and all other soils, with pure high maquis soils generally showing the highest values of WHC, CEC, nutrient content, organic and microbial C, soil respiration, phosphatase, arylsulphatase and β-glucosidase activities. The significantly lower values of these variables in the low maquis relative to the pure high maquis probably reflect the effect of ecological succession on soil. The high maquis with pine, differing from the pure high maquis only for the presence or absence of pine, showed values of soil physical, chemical and biological characteristics similar to those found in the low maquis, thus suggesting that the presence of pine retards soil development. 相似文献
8.
氮素对不同大豆品种根系分泌物中有机酸的影响 总被引:4,自引:0,他引:4
采用室内溶液培养方法,分别研究了接种根瘤菌处理下,两种氮源和两种氮浓度对两个大豆品种根系分泌物中有机酸的影响。结果表明,合丰25号根系分泌的有机酸种类和数量无论苗期或花期,接种或不接种根瘤菌,均表现为硝态氮处理高于酰胺态氮处理,表明合丰25号大豆更喜硝态氮,硝态氮促进了有机酸的分泌。绥农10号在酰胺态氮下的有机酸种类和数量均高于硝态氮处理,表明其更喜酰胺态氮,酰胺态氮下根瘤菌的存在增加其根系分泌物中有机酸种类和数量。可见,大豆根系分泌物中有机酸的种类和数量因品种而异,因品种对氮源的喜好而变化;根瘤菌在不同程度上增强或减弱根系有机酸的分泌作用。柠檬酸受氮素供应浓度影响很大,当氮素供应浓度较低时,大豆根系分泌物中可检测到柠檬酸,供氮浓度升高则检测不到。 相似文献
9.
10.
Yuan Liu Zhong-yi Li Kai-ying Deng Qin Zhou 《Archives of Agronomy and Soil Science》2017,63(12):1725-1735
Reductive dissolution of soil manganese (Mn) oxides increases potential toxicity of Mn2+ to plants. In order to examine the effect of nitrogen forms on reduction of Mn oxides in rhizosphere soil, a rhizobox experiment was employed to investigate the reduction of Mn oxides due to the growth of soybean and maize in an Oxisol with various contents of NO3–-N and NH4+-N and a total N of 200 mg kg?1. The results showed that exchangeable Mn2+ in rhizosphere soil was 9.6–32.7 mg kg?1 higher than that in bulk soil after cultivation of soybean and maize for 80 days, which suggested that plant root exudates increased reduction of soil Mn oxides. Application of ammonium-N promoted reduction of Mn oxides in rhizosphere soil compared to application of nitrate and nitrate together with ammonium. Soybean cultivation led to a higher reduction in soil Mn oxides than maize cultivation. Application of single ammonium enhanced Mn uptake by the plants and led to more Mn accumulating in plant leaves, especially for soybean. Therefore, application of ammonium-based fertilizer can promote reduction of soil Mn oxides, while application of nitrate-based fertilizer can inhibit reduction of soil Mn oxides and thus reduce Mn2+ toxicity to plants. 相似文献
11.
Industrial crops provide a possibility for utilization of heavy metal polluted soils. Knowledge of the factors which affect metal uptake by crops is therefore essential in order to develop concepts for the management of such soils. In pot experiments the uptake of Zn by oilseed rape increased considerably with the Zn supply. The increase of Zn uptake was counteracted partly by S. This protective effect of S was, however, not related to Zn retention in the roots. 相似文献
12.
一种新型根系分泌物收集装置与收集方法的介绍 总被引:2,自引:0,他引:2
根系分泌物在养分活化、改善环境胁迫方面具有重要作用,很多科技工作者对根系分泌物的研究表现出极大兴趣,取得了一系列进展。但土壤栽培条件下,根系分泌物收集是一个难点。本文介绍了一种新型根系分泌物的收集装置与收集方法。该装置由根系生长箱和分泌物收集箱组成,植物在生长箱土壤中生长,通过定向引导作用,根系从生长箱穿过琼脂层进入收集箱中生长,待收集箱内积累一定根系后,通过淋洗收集箱内的介质,实现根系分泌物收集。研究发现,利用该装置收集分泌物,植物总根尖数的90%分布在收集箱。外源有机酸加样回收率可达70%以上。土壤栽培条件下,随生长时期延长,大豆有机酸分泌量逐渐增加,苹果酸分泌量高于柠檬酸。而且土壤栽培条件下大豆柠檬酸和苹果酸分泌量是溶液栽培时的11.4倍和6.7倍。上述研究表明,该装置可以用于土壤栽培条件下根系有机酸的分泌研究。 相似文献
13.
Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review 总被引:3,自引:0,他引:3
Valerie Vranova Klement Rejsek Keith R. Skene Dalibor Janous Pavel Formanek 《植物养料与土壤学杂志》2013,176(2):175-199
The aim of this work is to review the current knowledge on the effects of plant metabolism (C3, C4, and CAM) on root exudation and on the methods of exudate collection as well as the use of such exudates for analyses, testing of microbial response, degradation of pollutants, enzymatic activities, and occurrence of allelochemicals. We examine the advantages and disadvantages of each method as related to the downstream use of the exudates. The use of continuous percolation of solid cultivation medium with adjustment of nutrient‐solution strength appears to be a promising methodology for the determination of root exudation rates and qualitative composition of exuded compounds. The method mimics rhizosphere conditions, minimizing the artificial accumulation of compounds, alteration of plasma‐membrane permeability, ATPase activity, and the impacts of inhibitors or stimulators of root enzymes. Of particular significance is the fact that the adjustment of strength of nutrient solution and percolation enables universal and also long‐term use of the method, allowing high exudation yield by minimizing influx and maximizing efflux rates of exuded compounds at high nutrient‐solution strength. Furthermore, it facilitates assessment of the effect on soil microbial populations and their ability to degrade pollutants. Enzymatic activities can be assessed when a low strength of nutrient solution is used, with percolation of the exudates directly into tested soils. Composition of root exudates, regulation of root enzymes, and plant response to nutrient deficiency can be assessed by measuring net efflux or influx rates. The impact of heavy metals and other type of mechanical, chemical, and biological stresses differs according to the type of plant metabolism. This has significant consequences on transformations in plant communities, both structurally and functionally, and impacts upon crop nutrition, with respect to global climate change, and the use of plants for phytoremediation purposes. Understanding the effects of different types of plant metabolism on root exudation with respect to genetic regulation of synthetic pathways through root enzymes and transport systems presents an important direction for future research. 相似文献
14.
《Communications in Soil Science and Plant Analysis》2012,43(17-18):2507-2516
Abstract Heightened environmental consciousness has increased the perceived need to improve nitrogen (N) use efficiency by crops. Synchronizing fertilizer N availability with maximum crop N uptake has been proposed as a way to improve N‐use efficiency and protect ground water quality. Chlorophyll meters (Minolta SPAD 502) have the potential to conveniently evaluate the N status of corn (Zea mays L.) and help improve N management. A potential problem with the use of chlorophyll meters is the effect of within‐row plant spacing on meter reading variability. Chlorophyll meter readings and leaf N concentration of irrigated corn at anthesis and grain yield at harvest were measured on plants grouped into eight within‐row plant spacing categories. Leaf N concentration was not affected by plant spacings, but chlorophyll meter readings and grain yield per plant increased as plant competition decreased and N fertilizer rate increased. These data indicate that avoiding plants having extreme spacings can greatly increase precision when using chlorophyll meters to evaluate the N status of corn. 相似文献
15.
Release and fixation of potassium by a loamy soil as affected by initial water content and potassium status of soil samples 总被引:2,自引:0,他引:2
A. SCHNEIDER 《European Journal of Soil Science》1997,48(2):263-271
To understand the contribution of non exchangeable potassium to plant nutrition the release and fixation of K was studied on a range of soil samples of varying K status, obtained from a long-term fertilizer trial. The soil samples were either air-dried or not prior to use so as to determine the influence of pretreatment on release and fixation of K. Sorption and desorption of K were measured by following the changes in solution K and exchangeable K, and calculating the relative contributions of exchangeable and non exchangeable K to K dynamics in the soil-solution systems. The change in the amount of non exchangeable K is proportional to the difference between the initially imposed concentration and the concentration for which neither sorption nor desorption occurred. Whether release or fixation occurs depends on the sign of this difference. Soils containing much K release more K than those containing little K at the same initial or final concentration in solution. The threshold exchangeable potassium and the threshold K concentration for which release becomes large increase when K content increases in the soil. For air-dried soils K-enriched soils fixed less K than those containing little K. But when kept moist the soils fixed no K. The threshold exchangeable potassium of release and the minimal exchangeable potassium, i.e. that part of exchangeable potassium extracted by ammonium acetate but which is not in exchange equilibrium with Ca, are useful criteria to assess the meaning of the exchangeable potassium when used as a fertility indicator. 相似文献
16.
We studied the decomposition of shoot and root tissues of four plant species from central Argentina belonging to contrasting functional types: a deciduous shrub (Acacia caven), a perennial forb (Hyptis mutabilis), an annual forb (Bidens pilosa) and a tussock grass (Jarava pseudoichu). They were grown from seed in a greenhouse in isolation or in 2- or 4-species mixtures, with and without arbuscular mycorrhizal fungi (AMF), and then placed to decompose under natural conditions in the field. AMF significantly enhanced decomposition of shoots, but not that of roots, independently of species identity and species-mixture composition. Our results suggest that AMF may be significantly affecting ecosystem functioning through the observed plant-mediated effects on decomposition. 相似文献
17.
Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes 总被引:15,自引:0,他引:15
A pot experiment was conducted to test the effect of three microbial regimes on the time course of heavy metal uptake in clover and maize from an industrially polluted soil. The three treatments included: (1) an intact flora of bacteria and fungi, including indigenous arbuscular mycorrhizal (AM) fungi together with soil microfauna; (2) the indigenous bacterial/fungal flora except AM fungi, reintroduced into sterilized soil; or (3) the same bacterial/fungal flora plus an AM fungus. For the final harvest, two pot sizes were included to assess the effect of root density. Plant uptake of P and heavy metals varied according to plant species, harvest time and soil treatment. For both plant species, shoot concentration of Zn, Cd and Cu decreased and Ni increased with plant age. Plants growing in sterilized soil with reintroduced AM fungi generally grew better, but contained higher concentrations of heavy metals than those colonized by indigenous AM fungi. Plants with mycorrhiza frequently contained more P, Zn, Cd, Cu and Pb in roots and shoots compared to nonmycorrhizal plants. Elevated root/shoot concentration ratios of P and metals indicate a sequestration of metal phosphates in mycorrhizal roots. Mycorrhizal performance was influenced by root density. At low root densities, metal concentrations in mycorrhizal plants were reduced, whereas it had no effect at high root densities when the entire soil volume was efficiently exploited by roots. We conclude that root density data are essential for interpretations of the influence of AM on metal uptake in plants. 相似文献
18.
《Applied soil ecology》2011,48(3):167-175
Nitrogen deposition and contamination with anthropogenic substances such as polycyclic aromatic hydrocarbons (PAHs) increasingly threaten ecosystems, in particular, urban systems. We planted different plant communities (Holcus lanatus, Lotus corniculatus, Picea abies, Calluna vulgaris) in N-deficient urban soil to test whether the divergent plant–soil systems differ in their ability to affect the fate of phenanthrene and pyrene in the soil, and whether the ability of the system to sequester external N would differ between the plant and soil systems. Importantly, the influence of the N input as affecting PAH dynamics under the plant communities was explored. The effects of plants on soil microbial biomass (PLFA) and microbial activity (basal respiration) were studied. Although plant type did not affect the dynamics of phenanthrene and pyrene in the soil, N addition had a positive effect on phenanthrene retention in each plant–soil treatment. The content of soil extractable phenanthrene decreased due to N addition especially in soils growing P. abies. This conifer also sequestered the added N to its shoots most efficiently suggesting restoration success of urban soils to be plant trait dependent. 相似文献
19.
水分状况及硼素营养对油菜苗期根系生长及硼营养效率的影响 总被引:7,自引:1,他引:7
采用温室盆栽试验 ,研究了不同土壤水分条件下施硼对油菜苗期根系生长、硼吸收、利用及其移动性的影响。结果表明 ,随土壤含水量、施硼量的下降 ,油菜根长、根体积、根系生长速率、根 /冠比减小 ,根系及地上部干物质积累降低 ,植株地上部硼浓度及含硼量下降。而硼利用效率、硼运移指数则随土壤含水量、施硼量的下降而升高。不同油菜品种的根系形态参数 (包括根长、根体积、根干重、根冠比及根系生长速率 )、硼利用效率及运移指数存在明显差异 ,即在相同条件下 ,V1根系较发达 ,硼利用效率、运移指数均高于V4 。研究认为 ,根系发达程度、硼利用效率及硼移动性大小是不同基因型油菜耐缺硼差异的重要因素。 相似文献