首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was conducted to evaluate shoot and root mineral composition of salt-stressed Selva strawberry under application timing of salicylic acid (SA). Treatments included plants sprayed with 0.5 or 1 mM SA, plants exposed to 40 mM sodium chloride (NaCl), and plants sprayed with 0.5 or 1 mM SA 1 week before, simultaneously, or after initiation of 40 mM salinity. Results indicated that under saline conditions, sodium (Na) and chloride (Cl) contents increased along with decrease in nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) in shoot and root of plants. In plants treated with SA at 1 mM concentration, 1 week before salinity application, root Mg and shoot Ca were greater in comparison to salt-stressed plants treated with the same SA concentration 1 week after their exposure to salt stress. Thus, earlier SA application appears to be a better strategy for optimized protection against deleterious influence of salinity.  相似文献   

2.
Annual vinca (Catharanthus roseus (L.) G. Don ‘Pink Carpet'), geranium (Pelargonium x hortorum L. H. Bailey ‘Jackpot'), and marigold (Tagetes erecta L. ‘First Lady') were grown in a sphagnum peat moss and perlite medium. Plants were irrigated with solutions of different salinity by the addition of 0.0, 1.0, 2.0, 4.0, and 8.0 g/1 of a NaCl and CaCl2 mixture resulting in solution electrical conductivity (EC) values of about 1.3, 3.0, 4.5, 7.9, and 13.9 ds/m, respectively. In another experiment marigold and geranium were grown in solution culture containing the same salt mixture at 0.0, 1.0, 4.0, and 8.0 g/1 with EC values of 1.4, 3.0, 7.4, and 12.5 ds/m, respectively. All species showed some salinity tolerance up to 2.0 g/1 in peat‐perlite and 1.0 g/1 in solution culture as growth reductions were below 10% and no foliar injury occurred. Foliar injury occurred on marigold and geranium, but not annual vinca, at 4.0 and 8.0 g/1 in both growing media. On a concentration basis, recently mature leaves sampled from marigold grown in peat‐perlite contained more chloride (Cl) but less sodium (Na) than geranium and annual vinca. However results of the solution culture experiment showed that, with the exception of 1.0 g/1 treatment, geranium and marigold plants absorbed the same amount of Cl and Na when content was expressed on a mg/g dry weight basis. The low Na concentration in marigold leaves was a reflection of restricted translocation of Na from the roots to the shoots.  相似文献   

3.
The effect of salinity on growth response, nitrogen (N) fixation and tissue mineral content was investigated for four legumes: faba bean (Vicia faba L), pea (Pisum sativum L), soybean (Glycine max L), and common bean (Phaseolus vulgaris L). Plants were grown in a vermiculite culture system supplied with a N‐free nutrient solution with the addition of 0, 50, and 100 mM NaCl. Plants were harvested at the beginning of the flowering period and the dry weights of shoots and roots and acetylene reduction activity (ARA) were evaluated at the same time plant tissues were analysed for N, potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) contents.

The depressive effect of saline stress on ARA of nodules was directely related to the salt induced decline in dry weight and N content in shoots. Growth inhibition by NaCl treatments was greater for the pea than for other legumes, whereas the soybean was the most salt‐tolerant Saline stress also affected the N content in shoots and roots. In general the N content accumulated in the shoot and Na in the roots of the four legumes tested, while K accumulated both organs. The acquisition of other macronutrients differed according to the legume species. The legumes most sensitive were P. sativum and V. faba which accumulated Ca in shoot and Mg both in the shoot and the roots. On the contrary, in G. max and P. vulgaris, the two most salt tolerant legumes, accumulated Mg in the roots and Ca in both vegetative organs. Our results suggest a relationship between the salt‐tolerant range in legumes and the macronutrient accumulation in vegetative organs.  相似文献   

4.
A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.  相似文献   

5.
In this research work,the authors,using the recently developed method of fractionating the forms of inorganic phosphorus in calcareous soils,have studied the transformation processes of inorgnic phosphorus in three different phosphate fertilizers,i.e.,superphosphate,diammonium phosphate and calcium magnesium phyosphate,being commonly used in China,during a period of 3 years after their application to calcareous soils,and based on the experimental results obtained,some problems in current use of phosphate fertilizers are discussed.  相似文献   

6.
Quinoa (Chenopodium quinoa Willd.) is a high-nutrient halophyte suitable for ?cultivating in semi-arid climates and saline soils. The current study investigated the ?effect of various water salinities (ECi) (i.e., 0.3, 10, 15, 20, and 25 dS m?1) and different ?irrigation methods (IMs) on accumulation of calcium (Ca), magnesium (Mg), ?sodium (Na), and chloride (Cl) ions in shoot (stem+leaves) of quinoa at the end of vegetation (onset of flowering) and seed at the end of seed-filling. Therefore, 30 pots (five ECi and two IM in three replications) were prepared with similar conditions. Considering that the salinity threshold value (STV) of quinoa varies during growth and is 8, 20 and 15 dSm?1 at each of ?establishment, flowering, and seed-filling growth stages, the two IMs consisted of considering STV at each growth stage (T) and permanent irrigation by ?constant levels of ECi(P). Results indicated that by increasing the ECi from 0.3 to 25 dSm?1 the amount of Na, Cl, and Mg in shoot increased 82.2%, 75.8%, and 8.7%, respectively, while Ca decreased 37.2%. In seeds, Na and Cl increased 43.3% and 50%, respectively, while Mg increased 8% and Ca did not change significantly. An increase in ECi ?significantly changed ion accumulation content, especially at ECi higher than STV, ?because it is the onset of damage due to salinity stress and particularly in? ??shoot compared to seed due to the halophytic properties of quinoa. The T ?method of irrigation was preferred due to less accumulation of Na and Cl in ?shoot and seed, and therefore less damage and loss, especially at higher ?salinities.?  相似文献   

7.
Nitrogen (N) metabolism is of great economic importance because it provides proteins and nucleic acids which in turn control many cellular activities in plants. Salinity affects different steps of N metabolism including N uptake, NO3? reduction, and NH4+ assimilation, leading to a severe decline in crop yield. Major mechanisms of salinity effects on N metabolism are salinity-induced reductions in water availability and absorption, disruption of root membrane integrity, an inhibition of NO3? uptake by Cl?, low NO3? loading into root xylem, alteration in the activities of N assimilating enzymes, decrease in transpiration, and reduction in relative growth rate which results in a lower N demand. However, the effects of salinity on N metabolism are multifaceted and may vary depending on many plant and soil factors. The present review deals with salinity effects on N metabolism in plants, emphasizing on the activities of N metabolizing enzymes in a saline environment.  相似文献   

8.
A laboratory incubation experiment was conducted to evaluate the effect of magnesium chloride–induced salinity on carbon dioxide (CO2) evolution and nitrogen (N) mineralization in a silty loam nonsaline alkaline soil. Magnesium chloride (MgCl2) salinity was induced at 0, 4, 8, 12, 16, 20, 30, and 40.0 dS m?1 and measured CO2 evolution and N mineralization during 30 days of incubation. Both CO2 evolution and N mineralization decreased significantly with increasing salinity. The cumulative CO2 evolution decreased from 235 mg kg?1 soil at electrical conductivity (EC) 0.65 dS m?1 to 11.9 mg kg?1 soil at 40 dS m?1 during 30 days of incubation. Similarly, N mineralization decreased from 185.4 mg kg?1 at EC 0.65 dS m?1 to 34.45 mg kg?1 at EC 40.0 dS m?1 during the same period. These results suggested that increasing magnesium chloride salinity from 4 dS m?1 adversely affect microbial activity in terms of carbon dioxide evolution and N mineralization.  相似文献   

9.
This study assesses the effect of salinity in bioavailability and toxicity of Zn by means of laboratory bioassays by observing contamination in both sediment and water, accumulation of Zn in biological tissues, and histopathological damage in the gills and guts tissues of Ruditapes philippinarum clams, which were exposed to different types of sediments from the Gulf of Cádiz (SW Spain) as well as two dilutions of toxic mud coming from an accidental mining spill. With this objective, the coefficients of distribution (K D) for Zn between overlying water and sediments were calculated, the histopathological frequencies in the tissues of the gills and guts of clams were determined, and the biota-sediment bioaccumulation factors as well as the bioaccumulation factors were quantified in the different stations. Results showed that the greatest histopathological damages appeared when the salinity values decreased. Statistical results showed that salinity was inversely correlated with histopathological damage (p?<?0.01) for the lesion index for gills. The most outstanding results were observed in the two dilutions of toxic mud (0.3% and 7.9%) at a salinity value of 10. Salinity was inversely correlated with the concentration of Zn in biological tissues (p?<?0.05) and inversely correlated with the concentration of Zn in water and sediment. Zn mobilization to the overlying water is produced when salinity values decrease.  相似文献   

10.
Abstract

A study was conducted to investigate the chemical speciation of added cadmium (Cd) and lead (Pb) and their availability as influenced by fresh organic matter (OM) and sodium chloride (NaCl) in three agricultural soils. The soils were treated with 20 mg Cd/kg as cadmium nitrate [Cd(NO3)2 · 4H2O], 150 mg Pb/kg as lead nitrate [Pb(NO3)2], 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl and then incubated for 3 months at 60% water‐holding capacity (WHC) and constant temperature (25 °C). Subsamples were taken after 1, 3, 6, and 12 weeks of incubation, and electrical conductivity (EC), pH, dissolved organic carbon (DOC), and concentrations of cations and anions were determined in the 1:2.5 soil/water extract. Available Cd and Pb were determined in 0.05 M ethylenediaminetetraacetic acid (EDTA) extract. Concentrations of organic and inorganic species of Cd and Pb in soil solution were also predicted using Visual Minteq speciation program. The most prevalent species of dissolved Pb and Cd in the soils were Pb‐DOC and Cd2+ species, respectively. Salinity application increased the available and soluble Cd significantly in the acid and calcareous soils. It, however, had little effect on soluble Pb and no effect on available Pb. Organic‐matter application decreased availability of added Pb significantly in all soils. In contrast, it raised soluble Pb in all soils except for the acid one and approximated gradually to the added Pb with time. Impact of OM on available Cd was somewhat similar to that of Pb. Soluble Cd increased by OM application in the calcareous soil, whereas it decreased initially and then increased with time in the other soils.  相似文献   

11.
12.
Effects of different lead compounds, PbCl2, Pb(NO3)2 and Pb(OAc)2, on the rice growth and uptake of lead and some microelements by wetland rice were studied. The results showed that the seed germination, rice seedling growth, chlorophyl content, grain yield and uptake of Pb, Cu, Zn, Fe and Mn by rice plant were affected by the chemical forms of Pb compounds added in soil to a certain degree. The germination rate and the amount of chlorophyl decreased remarkably with increasing Pb concentration, the root extension was restrained obviously by the presence of Pb, and the effect of PbCl2 was more evident than that of Pb(NO3)2 or Pb(OAc)2.  相似文献   

13.
Soil organic matter (SOM) is an important index of soil quality because of its relationship with crop yield. The application of organic matter to soil is a significant method for increasing SOM. Different organic materials have varying effects in increasing SOM. This study investigates the effects of combining different sources of organic matter (i.e., compost, leguminous green manure, and peat) with a chemical nitrogen (N) fertilizer on the growth and N accumulation in corn and rice plants. This study examines seven treatments, including a no-fertilization check and a conventional chemical fertilizer treatment. Shoots of corn and rice were sampled at the tasseling (panicle initiation for rice) and maturity stages. The biomass yield was measured and the total N was analyzed. At the maturity stage, the soil samples were collected to determine the chemical properties. The results showed that a small percentage of the N in the compost and peat, after their application, was available to the crop during the growth season; the production of biomass and N absorption among rice and corn plants was minimal compared to that treated with chemical N fertilizer. The application of compost and peat resulted in SOM accumulation, particularly with peat. However, the application of compost combined with chemical fertilizer not only produced sufficient nutrients for crop growth but also resulted in an accumulation of SOM, which is vital for enhancing the soil quality. Most of the N in green manure (GM) was mineralized shortly after application, causing excessive growth of rice and corn plants during the early stage, but reducing their reproductive growth and grain yield.  相似文献   

14.
A sandy soil was amended with different types of sewage sludge (digested, dried, and composted) and pig slurry. The composted sludges displayed higher organic‐matter stability (39–45%) than only digested sludge (26–39%) or digested + dried sludge (23–32%). The microbial biomass of the dried sludge was undetectable. Digested and composted sludges and pig slurry displayed microbial biomasses (12492–13887 µg g?1, 1221–2050 µg g?1, and 5511 µg g?1, respectively) greater than the soil (108 µg g?1). The wastes were applied at seven doses, ranging from 10 to 900 g kg?1. Soils were incubated for 28 days. Substrate‐induced respiration (SIR) was measured for 12 consecutive hours on day 1 and on day 28. The results showed that SIR increased with the dose of organic amendment. However, SIR decreased when moderate doses of pig slurry or high doses of digested + dried sludge were tested. The possibility of using this inhibition as an ecotoxicological indicator is discussed.  相似文献   

15.
Abstract

The large variation in phosphorus acquisition efficiency of different crops provides opportunities for screening crop species that perform well on low phosphorus (P) soil. To explain the differences in P efficiency of winter maize (Zea mays L.), wheat (Triticum aestivum L.), and chickpea (Cicer arietinum L.), a green house pot experiment was conducted by using P‐deficient Typic ustochrept loamy sand soil (0.5 M NaHCO3‐extractable P 4.9 mg kg?1, pH 7.5, and organic carbon 2.7 g kg?1) treated with 0, 30, and 60 mg P kg?1 soil. Under P deficiency conditions, winter maize produced 76% of its maximum shoot dry weight (SDW) with 0.2% P in shoot, whereas chickpea and wheat produced about 30% of their maximum SDW with more than 0.25% P in shoot. Root length (RL) of winter maize, wheat, and chickpea were 83, 48, and 19% of their maximum RL, respectively. Considering relative shoot yield as a measure of efficiency, winter maize was more P efficient than wheat and chickpea. Winter maize had lower RL/SDW ratio than that of wheat, but it was more P efficient because it could maintain 2.2 times higher P influx even under P deficiency conditions. In addition, winter maize had low internal P requirement and 3.3 times higher shoot demand (i.e., higher amount of shoot produced per cm of root per second). Even though chickpea had 1.2 times higher P influx than winter maize, it was less P efficient because of few roots (i.e., less RL per unit SDW). Nutrient uptake model (NST 3.0) calculations satisfactorily predicted P influxes by all the three crops under sufficient P supply conditions (CLi 48 µM), and the calculated values of P influx were 81–99% of the measured values. However, in no‐P treatment (CLi 3.9 µM), under prediction of measured P influx indicated the importance of root exudates and/or mycorrhizae that increase P solubility in the rhizosphere. Sensitivity analysis showed that in low P soils, the initial soil solution P concentration (CLi) was the most sensitive factor controlling P influx in all the three crops.  相似文献   

16.
Abstract

The present study was conducted in a dry region in southern Iran to evaluate the effects of different Atriplex species on the salinity, soluble ions, and some of the other chemical properties of under‐ and intercanopy soils. The research region was divided into five separate sites with vegetation cover of the range plants Atriplex lentiformis, A. nummularia, and A. halimus (all newly introduced species) and A. leucoclada and Salsola rigida (both native species). Four 1‐kg soil samples (from under‐ and interspaces of the canopy of tested plants, each in two depths of 0–10 and 10–40 cm, were taken from each of the plant sites and analyzed for different determinations. The study was conducted as a factorial experiment in a complete random design with six replicates.

Regardless of distance and depth, different plant species resulted in different salinity (based on the EC values of saturation paste) and soluble cation contents in the tested soils. The results showed that the increase in EC values were associated with decreases in pH values of the tested soils.

The SAR values followed exactly the same pattern as EC values and Na+ concentrations. In the case of soluble anions, the Cl? contents followed exactly the same pattern as the EC values of the tested soils, which indicates that the salts are predominantly chlorides of various cations (especially Na+). The OM and total nitrogen (N) contents of the undercanopy were greater than those of the interspace and those of the surface layer were greater than those of the sublayer. Moreover, although the phosphorus (P) and potassium (K) contents of undercanopy and interspace were not significantly different from each other, the P and K contents of the surface layer were greater than those of the subsurface layer. As seen from the results, except for the effect of depth of Mn contents and the interactive effect of distance and depth on Fe contents, neither the single effects (other than plant species) nor the interactive effects were significant on microminerals of the tested soils.

Moreover, copper (Cu) was particularly antagonistic toward iron (Fe), manganese (Mn), and zinc (Zn).  相似文献   

17.
Eurasian Soil Science - A comparative assessment of the carbon stock in loamy soils (Albic Retisols) of coniferous–broadleaved forests on the Moskvoretsko-Oksky Plain and sandy soils (Albic...  相似文献   

18.
Soil salinity is one of the most severe environmental problems worldwide. It is necessary to develop a soil-salinity-estimation model to project the spatial distribution of soil salinity. The aims of this study were to use remote sensed images and digital elevation model (DEM) to develop quantitative models for estimating soil salinity and to investigate the influence of vegetation on soil salinity estimation. Digital bands of Landsat Thematic Mapper (TM) images, vegetation indices, and terrain indices were selected as predictive variables for the estimation. The generalized additive model (GAM) was used to analyze the quantitative relationship between soil salt content, spectral properties, and terrain indices. Akaike’s information criterion (AIC) was used to select relevant predictive variables for fitted GAMs. A correlation analysis and root mean square error between predicted and observed soil salt contents were used to validate the fitted GAMs. A high ratio of explained deviance suggests that an integrated approach using spectral and terrain indices with GAM was practical and efficient for estimating soil salinity. The performance of the fitted GAMs varied with changes in vegetation cover. Salinity in sparsely vegetated areas was estimated better than in densely vegetated areas. Red, near-infrared, and mid-infrared bands, and the second and third components of the tasseled cap transformation were the most important spectral variables for the estimation. Variable combinations in the fitted GAMs and their contribution varied with changes in vegetation cover. The contribution of terrain indices was smaller than that of spectral indices, possibly due to the low spatial resolution of DEM. This research may provide some beneficial references for regional soil salinity estimation.  相似文献   

19.
20.
Being divided into three groups-strong,moderate and weak-according to the different kinetic parameters (Fmax,km,Cmin) of potassium uptake by crops,21 cultivars of rice have been studied to find out the relationships between their potassium nutrition and the oxidation-reduction status in the rhizosphere soils. Results show that,with no application of K fertilizer,there were higher contents of active reducing substances and ferrous iron in rhizosphere soils planted with cultivars,such as Zhongguo 91,week in absorbing potassium than in soils cropped with cultivars,Shanyou 64,stronger in absorbing potassium.As a result of K application,however,these toxic substances were decreased appreciably in the soil,particularly in the root zone where weakly K-absorbing sultivars were growing,and the parameter of soil redox (pH pE) was increased,the most striking example of this being found in the rhizosphere soil where the more strongly K-absorbing sultivars were growing.On and close to the root surface in soils where rice plants were supplied with potassium fertilizer,rather more iron oxide had been accumulated compared with rice receiving no potash,and even greater amounts of red iron oxide precipitated on the rice root in neutral paddy soils.As shown by the concentration distribution of active reducing substances and ferrous iron in a microzone of the profile,the redox range of rice roots supplied with potassium may extend as far as several centimeters from the root surface.It can thus be seen that potassium nutrition exerts its effect first on the morphological properties of rice roots and their exudation of oxygen,then on the content of soluble oxygen and the count and species of oxygen-consuming microbes in the rhizosphere soil,and finally on the redox status of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号