首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙胜  张智  卢敏敏  邢国明 《核农学报》2010,24(2):389-393
通过盆栽试验,研究了土壤中Cd2+对西瓜(Citrullus vulgaris)幼苗光合特性及活性氧代谢的影响。结果表明:Cd2+降低了小型西瓜叶绿素总含量,改变了叶绿素a/b的值,其叶绿素总含量与土壤中Cd2+浓度极显著(P0.01)负相关;减弱了西瓜幼苗的净光合速率(Pn),降低了胞间CO2浓度(Ci)、气孔导度(Gs)和蒸腾速率(Tr)。西瓜叶片中超氧阴离子自由基(·O2-)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量随着土壤中Cd2+浓度的升高而增加,且H2O2和MDA含量与Cd2+浓度极显著(P0.01)正相关。在Cd2+胁迫下,过氧化氢酶(CAT)活性变化显著,其活性与H2O2含量、MDA含量极显著(P0.01)负相关。Cd2+胁迫引起叶绿素等光合相关生理因子降低,是导致西瓜幼苗净光合速率降低的直接原因;活性氧代谢失调,脂膜过氧化加重是导致其净光合速率降低的另一重要原因。  相似文献   

2.
The present study investigated the influence of seed priming with silver nanoparticles (Ag NPs), 0, 2, 5 and 10 mM, on growth and biochemical parameters of wheat (Triticum aestivum L.) under salt stress. As expected, 150 mM of NaCl decreased the shoot fresh and dry weights and chlorophyll contents and increased the catalase (CAT) and peroxidase (POD) activities. Salinity enhanced the concentration of proline, soluble sugars, malondialdehyde and hydrogen peroxide. Seed priming with Ag NPs increased the shoot fresh and dry weight of normal and salt-stressed plants. Lower concentration of Ag NPs decreased the total soluble sugars and proline contents, while the higher Ag NPs levels increased these contents compared to the control. The combined application of Ag NPs and salt stress increased the soluble sugars and proline contents, while it decreased CAT activity and increased POD activity compared to the respective Ag NPs treatments alone. Overall, our results demonstrated that Ag NPs enhanced the salt tolerance in wheat, but the long-term response of Ag NPs under salt stress needs further investigation.  相似文献   

3.
酸性磷酸酶活性与大豆耐低磷能力的相关研究   总被引:39,自引:1,他引:39  
在水培条件下研究了11个南方春大豆地方品种和育成品种对低磷胁迫反应的差异及其与酸性磷酸酶活性(APA)的相关关系。结果表明,不同大豆品种的地上部干重、根干重、植株全磷和全氮积累量差异极显著(P<0.01),表现出品种间耐低磷的差异性。大豆品种地上部干重、根干重、植株全磷和全氮量与APA的相关性均达到显著或极显著水平。APA是大豆品种磷效率的一种机制,它可作为耐低磷品种筛选的一个生化指标。  相似文献   

4.
Abstract

Silicon (Si) is the second most abundant element in soil and effectively counteracts the effects of various abiotic stresses, such as drought, heavy metal toxicity and salinity, on plants. In the present study the ameliorating effects of Si nutrition supplied as 2?mmol?L?1 sodium silicate were investigated on hydroponically grown canola (Brassica napus L.) plants under salinity stress (i.e. 150?mmol?L?1 sodium chloride). Salinity decreased plant growth parameters such as tissue fresh and dry weights. These decreases were accompanied by increased lignin contents, Na+ ion accumulation, increased lipid peroxidation and decreased chlorophyll contents in plants. Silicon nutrition, however, enhanced plant growth parameters and led to the prevention of lignin and the Na+ accumulation in shoots, reduced levels of lipid peroxidation in the roots and higher levels of chlorophyll. As a result of salinity, catalase activity in the whole plant and both soluble and cell wall peroxidase activities in the shoots decreased. Silicon nutrition, however, increased the reactive oxygen species scavenging capacity of salt-stressed plants through increased catalase and cell wall peroxidase activities. Thus, silicon nutrition ameliorated the deleterious effects of salinity on the growth of canola plants through lower tissue Na+ contents, maintaining the membrane integrity of root cells as evidenced by reduced lipid peroxidation, increased reactive oxygen species scavenging capacity and reduced lignification.  相似文献   

5.
The important role of salicylic acid in response to different stresses is to modify and decrease the negative effects of stress. The objective of this study was to evaluate the amelioration of heavy-metal (HM) stress in cauliflower cv. Shubra by application of different concentrations of salicylic acid. In heavy-metal (cobalt, nickel, cadmium, chromium, and lead) stress, apart from appearance of visual symptoms, HM toxicity reduced dry weight and specific activity of catalase and increased the concentration of lipid peroxidation, proline, nonprotein thiol, electrolyte leakage percentage, and specific activity of peroxidase and superoxidase dismutase. Application of salicylic acid reverts back all parameters disturbed by HM stress. As opposed to other HMs, salicylic acid enhanced chromium toxicity effects in plants, showing synergism and the plants died. Application of salicylic acid (100 mM) ameliorated toxic effects of HMs to some extent, showing antagonism in cauliflower.  相似文献   

6.
The objective of this study was to determine the effect of foliar salicylic acid (SA) applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. The study was conducted in pot experiments under greenhouse conditions. Cucumber seedlings were treated with foliar SA applications at different concentrations (0.0, 0.25, 0.50, and 1.00 mM). Salinity treatments were established by adding 0, 60, and 120 mM of sodium chloride (NaCl) to a base complete nutrient solution. The SA was applied with spraying two times as before and after transplanting. Salt stress negatively affected the growth, chlorophyll content and mineral uptake of cucumber plants. However, foliar applications of SA resulted in greater shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight as well as higher plants under salt stress. Shoot diameter and leaf number per plant increased with SA treatments under salt stress. The greatest chlorophyll content was obtained with 1.00 mM SA treatment in both saline and non-saline conditions. Leaf water relative content (LWRC) reduced in response to salt stress while SA raised LWRC of salt stressed cucumber plants. Salinity treatments induced significant increases in electrolyte leakage. Plants treated with foliar SA had lower values of electrolyte leakage than non-treated ones. In regard to nutrient content, it can be interfered that foliar SA applications increased almost all nutrient content in leaves and roots of cucumber plants under salt stress. Generally, the greatest values were obtained from 1.00 mM SA application. Based on these findings, the SA treatments may help alleviate the negative effect of salinity on the growth of cucumber.  相似文献   

7.
Soil contamination by heavy metals negatively affects crop productivity, besides representing serious threat to human health. Grafting tomato onto appropriate rootstocks may raise Ni tolerance through limiting heavy metal uptake by roots and/or its translocation to the shoot and by detoxification. A greenhouse experiment was conducted to determine the influence of long‐term Ni exposure (0, 25, or 50 µM) on crop productivity, fruit quality, leaf chlorophyll content, fluorescence, electrolyte leakage, catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) activities in leaf, proline content, membrane lipid peroxidation, and mineral composition of tomato plants cv. Ikram, either self‐grafted or grafted onto three rootstocks: Black Beauty, Unifort, and Maxifort. Significant reduction in yield was observed in response to an increase in Ni concentration with more detrimental effects at 50 µM Ni. The fruit dry matter and total soluble solids content increased under severe Ni stress. The depression of crop performance under Ni toxicity was attributed to a decrease in leaf pigments (SPAD index), efficiency of PSII, macro‐ and microelements, and increase in lipid peroxidation and membrane damage. Plants grafted onto tomato rootstocks Maxifort and Unifort exhibited higher chlorophyll content, photochemical activity of PSII, antioxidant activity of APX and GPX, lower accumulation of MDA, and a better nutritional status (higher Ca and Fe, and lower Ni) in the leaf tissues in comparison with self‐grafted plants and those grafted onto Black Beauty. Plants grafted onto tomato rootstocks Unifort and especially Maxifort could minimize the nickel toxicity by improving nutritional status and detoxification processes.  相似文献   

8.
This study was carried out to evaluate the impact of irrigation regime and potting media on morpho-physiological and biochemical characteristics of pot marigold. The experiment was arranged factorially based on a completely randomized design. The first factor was irrigation regime in three levels of 80, 60 and 40% available water content and the second factor was potting media in five levels of 20% vermicompost, 30% vermicompost, 20% manure compost, 30% manure compost and control (sand and soil in equal proportions). Morpho-physiological traits (plant height, stem diameter, number of flowering stem, root diameter, root length, root dry weight, aerial dry weight, total dry weight, relative water content, ionic stability and water use efficiency) and biochemical traits (malondialdehyde content, catalase and peroxidase activity, chlorophyll and carotenoid contents) were measured. Morpho-physiological parameters, chlorophyll and carotenoid decreased under water deficit, while increased with application of vermicompost and manure compost. Also, lipid peroxidation, catalase and peroxidase activity enhanced under water deficit, while decreased with application of vermicompost and manure compost. In other words, the application of vermicompost and manure compost in potting media reduced the harmful effects of water deficit. Total dry mass and water use efficiency were about 3-fold higher in plants grown in 30% vermicompost or 30% manure compost substrate compared to those in control plants. The results suggest that the application of 30% manure compost could be recommended as suitable potting media due to reducing the negative effects of water shortages, helping to nourish the plant, cheapness and accessibility compared with 30% vermicompost.  相似文献   

9.
A pot culture experiment was performed to study the effect of cadmium stress (Cd stress) on seedling growth, physiological traits, and remediation potency of Avena fatua, Lathyrus sativus, and Lolium temulentum. The seedlings of these native rangeland plant species were treated with 0, 2, 4, and 6 mM cadmium nitrate concentrations. Based on the results of analysis of variance (p < 0.05), the shoot height, shoot dry weight, root length, root dry weight, root: shoot ratio, total chlorophyll content, soluble sugars, and protein contentof A. fatua, L. sativus, and L. temulentum significantly decreased with increased cadmium concentrations. Generally, translocation factor (TF) and tolerance index (TI) decreased significantly as the concentration of cadmium increased. The maximum TF and TI of studied plants in various concentrations of Cd were observed in L. temulentum followed by L. sativus and A. fatua. The root concentration factor (RCF) values of all studied plants were higher than 1 under different cadmium concentrations. Our results indicate that Lolium temulentum could be labeled as an accumulator of Cd asthe values of TF and RCF are greater than 1. A. fatua and L. sativus showed a potential to be used in the phytoremediation of Cd-contaminated soils.  相似文献   

10.
Two cucumber cultivars (Cucumis sativus L.) exposed to three cadmium (Cd) concentrations (0, 1, and 5 μM) were supplemented or un-supplemented with silicon (Si) (1 mM). Exposure to 1 μM Cd had no effect on shoot and root dry mass, whereas exposure to 5 μM Cd significantly reduced plant growth. Addition of Si stimulated the growth of Cd-treated cucumber. Exposure to 5 μM Cd significantly increased shoot Cd concentration and decreased iron (Fe) and zinc (Zn) concentration. Plants supplied with Si had lower Cd and higher Zn and Fe compared with unsupplied plants. Exposure to Cd resulted in a higher production of malondialdehyde (MDA). Si nutrition partly ameliorated lipid peroxidation induced by Cd toxicity. Activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) decreased, whereas ascorbate peroxidase (APX) activity increased in response to 5 μM Cd. Induction of APX activity might play an important role in the response of cucumber to Cd toxicity.  相似文献   

11.
We investigated the effect of exogenously applied silicon (Si) on the growth and physiological attributes of wheat grown under sodium chloride salinity stress in two independent experiments. In the first experiment, two wheat genotypes SARC-3 (salt tolerant) and Auqab 2000 (salt sensitive) were grown in nutrient solution containing 0 and 100 mM sodium chloride supplemented with 2 mM Si or not. Salinity stress substantially reduced shoot and root dry matter in both genotypes; nonetheless, reduction in shoot dry weight was (2.6-fold) lower in SARC-3 than in Auqab 2000 (5-fold). Application of Si increased shoot and root dry weight and plant water contents in both normal and saline conditions. Shoot Na+ and Na+:K+ ratio also decreased with Si application under stress conditions. In the second experiment, both genotypes were grown in normal nutrient solution with and without 2 mM Si. After 12 days, seedlings were transferred to 1-l plastic pots and 150 mM sodium chloride salinity stress was imposed for 10 days to all pots. Shoot growth, chlorophyll content and membrane permeability were improved by Si application. Improved growth of salt-stressed wheat by Si application was mainly attributed to improved plant water contents in shoots, chlorophyll content, decreased Na+ and increased K+ concentrations in shoots as well as maintained membrane permeability.  相似文献   

12.
Exophiala sp. LHL08, a gibberellin-producing strain, was investigated to assess its effects on cucumber plant growth and heat (40°C) stress tolerance. The results reveal that Exophiala sp. associated plants had significantly higher plant growth attributes (shoot length, plant biomass, chlorophyll contents, and leaf area) than control under heat stress. Endophytic association helped the plants to obtain adequate water to reduce the leaf electrolytic leakage under stress. High-temperature-induced oxidative stress was less pronounced in Exophiala sp. associated plants as shown by enhanced levels of total polyphenol and reduced activities of glutathione, superoxide anion, and lipid peroxidation. To tolerate heat stress and rescue plant growth, the endophyte association significantly increased catalase and peroxidase activities of the host plants as compared to control plants. Contents of palmitic, stearic, oleic, and α-linolenic were significantly decreased in the Exophiala sp.-inoculated plants than control plants under heat stress. Contents of flavonoids like genistein and daidzein were produced in higher quantities, while glycitein content was almost same in endophyte-associated plants under heat stress than control plants. Contrarily, stress-responsive endogenous abscisic acid and jasmonic acid were significantly activated in non-inoculated control treatments as compared to endophyte-inoculated plants under heat stress. The findings of the study reveal that association of Exophiala sp. with cucumber host plants can modulate heat stress by influencing physiological and biochemical contents of plants under heat stress.  相似文献   

13.
The purpose of the present work was to evaluate effects of zinc application on growth and uptake and distribution of mineral nutrients under salinity stress [0, 33, 66, and 99 mM sodium chloride (NaCl)] in soybean plants. Results showed that, salinity levels caused a significant decrease in shoot dry and fresh weight in non-zinc application plants. Whereas, zinc application on plants exposed to salinity stress improved the shoot dry and fresh weight. Potassium (K) concentration, K/sodium (Na) and calcium (Ca)/Na ratios significantly decreased, while sodium (Na) concentration increased in root, shoot, and seed as soil salinity increased. Phosphorus (P) concentration significantly decreased in shoot under salinity stress. Moreover, calcium (Ca) significantly decreased in root, but increased in seed with increased salinization. Iron (Fe) concentration significantly decreased in all organs of plant (root, shoot, and seed) in response to salinity levels. Zinc (Zn) concentration of plant was not significantly affected by salinity stress. Copper (Cu) concentration significantly decreased by salinity in root. Nonetheless, manganese (Mn) concentration of root, shoot, and seed was not affected by experimental treatments. Zinc application increased Ca/Na (shoot and seed) ratio and K (shoot and seed), P (shoot), Ca (root and seed), Zn (root, shoot, and seed) and Fe (root and shoot) concentration in soybean plants under salinity stress. Zinc application decreased Na concentration in shoot tissue.  相似文献   

14.
This study was undertaken to determine the effect of potassium (K) on alleviating cadmium (Cd) toxicity in soybean. Two genotypes of soybean, namely ‘Liao 1’ and ‘Zhechun 3’ were used in hydroponics experiment with the following treatments: control without Cd addition; 1μM Cd addition; K supplementation at a rate of 380 mg L?1; and both Cd addition and K supplementation. Plant growth, chlorophyll content, and fluorescence, rate of photosynthesis and stomatal conductance reduced significantly in Cd-stressed plants. Meanwhile, Cd treatment increased malondialdehyde content, and activities of superoxide dismutase and peroxidase enzymes. Concentration of K, calcium (Ca), magnesium (Mg), and zinc (Zn) in shoot and root tissues also reduced in Cd treatment. ‘Liao 1’ had higher, antioxidant enzyme activity than ‘Zhechun 3’. Potassium supplementation alleviated the reduction of growth, photosynthesis and nutrients uptake in Cd-treated plants. It was concluded that Cd toxicity could be alleviated through enhanced K nutrition in soybean.  相似文献   

15.
We aimed to investigate whether sodium chloride seed priming and irrigation at seedling stage enhance response of 5-leaf stage tomato plants (Lycopersium esculentum Mill.) to high salt stress. Three experimental groups were as; non-primed seeds, seeds primed with 0.05M sodium chloride (NaCl), and seeds primed and irrigated with 0.05M NaCl starting from sowing to salt stress application. Sodium chloride solutions (0.1M, 0.2M, 0.4M, and 0.6M) were added to cups under pots in every 2 days for 10 days to treatment groups. Control groups were irrigated with distilled water at the same time intervals. At least two experimental setups contained at least four plants, and two samplings of leaf and root tissues were performed for analysis of each plant to evaluate changes in pigment and proline contents, lipid peroxidation and electrolyte leakage levels, and ascorbate peroxidase and catalase activity. Priming reduced mean germination time, and increased final germination percentage together with energy of germination. Increased root and hypocotyl lengths as well as increases in fresh weights supported enhanced seedling vigor. Considering growth and stress parameters such as chlorophyll content, chlorophyll to carotenoid ratios, and lipid peroxidation and electrolyte leakage were less affected in primed plants. Moreover, improvement of the accumulation of osmoregulating defense molecules, such as proline and anthocyanin, and of the inductions of the antioxidative enzyme system points out to higher adaptive response of these plants against deleterious effects of salt.  相似文献   

16.
Boron (B) is one of the essential nutrients for the growth of plants, but its high concentrations are toxic for plants. Thus, B toxicity is a big challenge in crop cultivation. Nitric oxide (NO) is a small signaling molecule that has cytoprotective roles in plants. We investigated whether exogenous sodium nitroprusside (SNP), which is a NO donor, may succeed to alleviate B-induced toxicity in wheat cultivars. Seedlings were grown for 10 days in a growth chamber at 25°C with 16 hr light–8 hr dark photo cycle. After high B application, the effects of SNP on growth parameters; electrolyte leakage (EL); changes in reactive oxygen species [contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), and proline]; the activities of antioxidant enzymes [glutathione peroxidase (GSHPx), glutathione reductase (GR), and glutathione S-transferase (GST)] and nitrate reductase (NR); and low molecular weight organic acid (LMWOAs) contents and also chlorophyll and total carotenoid contents were investigated in both shoots and roots of two different wheat cultivars. All experiments were carried out in triplicate. 0.2 mM SNP application ameliorated the chlorophyll and total carotenoid contents, and growth parameters such as shoot length, root length, and fresh weight in both wheat cultivars exposed to B stress. SNP reduced the B-induced lipid peroxidation, EL, and proline and H2O2 content in wheat cultivars. SNP application also increased the activities of NR and antioxidant enzymes, including GSHPx, GR, and GST in wheat cultivars exposed to B toxicity. All of the tested LMWOAs including succinic, propionic, butyric, oxalic, formic, malic, malonic, and benzoic acids were increased by SNP treatment in the shoots and roots of both wheat cultivars exposed to B toxicity. In conclusion, results obtained from this study have demonstrated that interactive effects of SNP with B considerably reduced the toxic effects of B in wheat cultivars.  相似文献   

17.
The present study investigated the mediatory effects of salicylic acid (SA) in alleviating nickel (Ni) toxicity in Melissa officinalis L. One-month-old plants were exposed to different levels of Ni and SA concentrations in sand culture under greenhouse conditions. Excess Ni significantly inhibited the growth indices and dramatically increased accumulation of Ni in the leaves and roots. Exogenously SA applications (1.0 mM) led to a substantial improvement in the shoot and root fresh and dry weights. Foliar application of SA mitigated the deleterious effects of Ni and decreased its transport to the shoots. The results showed a significant loss in chlorophylls and carotenoids contents only at 500 µM of Ni. The impact of SA was not significant in terms of chlorophyll contents, while carotenoid contents of the Ni-stressed plants were significantly affected by SA. Exposure to Ni did not modify proline accumulation. Hydrogen peroxide accumulation was observed under Ni stress, while lipid peroxidation significantly decreased at the same conditions. Application of SA caused a significant decrease in electrolyte leakage of Ni-stressed plants. Due to the high potential for Ni accumulation in the roots and translocation factor values lower than 1, M. officinalis could be introduced as an excluder medicinal plant.  相似文献   

18.
Salinity has deleterious effects on plant growth and development through membrane stability, photosynthetic activity, protein content, and ionic composition; however, salicylic acid (SA) could restore these properties in plants. The objective of this study was to determine the ameliorative effects of SA as foliar pre-treatments on membrane permeability, proline and protein contents, chlorophyll a, b and total chlorophyll and ionic composition of strawberry cv. ‘Camarosa’ under saline conditions. Membrane permeability and proline content significantly increased and protein and chlorophyll contents significantly decreased by 6 mS cm?1 application without SA treatment compared with the control (2 mS cm?1) treatment. Membrane permeability decreased from 6.9 in 0 mM SA treatment to 5.2 by application of 1.0 mM SA under saline conditions and same to the control (5.2). Compared with 0 mM SA treatment, the average increases of proline and protein contents were 66.7% in 0.25 mM SA treatment and 62.2% in 0.1 mM SA treatment in 6 mS cm?1 level, respectively. Chlorophyll b and total chlorophyll significantly increased by 0.25 mM SA treatments under saline conditions. The lowest and the highest chlorophyll b and total chlorophyll were obtained from 0 mM SA treatment (19.6 and 44.5 mg L?1) and 0.25 mM SA treatment (28.6 and 52.9 mg L?1) in 6 mS cm?1 salinity level. Ionic compositions of leaves were significantly affected by salinity and SA treatments. Nitrogen in 1.0 mM SA treatment and P contents of leaves in 0.1 mM SA treatment significantly increased but Na and Cl contents of leaves significantly decreased by SA treatments in 6 mS cm?1 salinity level. The results of this study were clearly indicated that the SA application on strawberry plants could ameliorate the deleterious effect of salt stress on membrane permeability, proline, protein, and chlorophyll contents. Therefore, SA treatment could offer an economic and simple application to salinity stress.  相似文献   

19.
Na_2SO_4和NaHCO_3对生菜生长的影响   总被引:1,自引:0,他引:1  
研究了营养液中不同浓度Na2 SO4 和NaHCO3处理对生菜生长的影响。结果表明 ,随着两种盐浓度增加 ,生菜叶面积和地上部干重逐渐减小 ;NaHCO3处理对地上部生长的抑制更显著。Na2 SO4 处理植株吸水量降低 ,表明存在渗透逆境 ;NaHCO3处理植株吸水量不受影响 ,但营养液pH值增加迅速。生菜品种L 2比P对盐胁处理更敏感。  相似文献   

20.
Soil moisture is a principal environmental factor limiting legume productivity in the tropics and sub-tropics. A pot experiment was conducted at the wire house of National Research Centre, Cairo, Egypt to study how potassium (K) fertilizer can mitigate the adverse effect of water stress. Three Japanese soybean (Glycine max L.) genotypes, non-nodulating (NN) (En 1282), nodulating (N) (Eneri) and super-nodulating (SN) (En-b0-1) were grown under two potassium fertilizer levels (25 and 150 mg kg?1 soil as K1 and K2, respectively). The water stress (WS) was conducted for eight days. WS significantly reduced nodules numbers and weights, shoot dry weight, relative water content, seed yield, oil, total carbohydrate contents while protein was significantly increased in the three soybean genotypes compared with well-watered (WW). Water stress and/or K treatments caused significant increase in both free amino acids and proline as well as shoot nitrogen in the three soybean genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号