首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A variety of extractants has been used to assess the availability of molybdenum (Mo) in soils. Most of the extractants have been studied from a deficiency aspect rather than for soils with Mo toxicity, and none of them have been used to extract available Mo from mine spoils. The purpose of this study was to examine the potential of different chemical extractants for assessing the availability of Mo in mine spoils and soils. One mine spoil and three soils were treated with sodium molybdate and then subjected to wetting and drying cycles for two months. These spoil/soils were extracted with ammonium bicarbonate DTPA (AB‐DTPA), ammonium carbonate, and ammonium oxalate solution for available Mo. Crested wheatgrass (Agropyron cristatum) and alfalfa (Medicago sativa) were grown in the spoil/soils in a greenhouse to determine plant uptake of Mo. Additionally, four mine spoils and six soils were extracted and analyzed for available Mo as mentioned above. The results obtained by these three extractants were highly correlated. It was found that ammonium oxalate extracts the greatest amount of Mo among the three extractants from spoil/soils since it dissolves some adsorbed Mo from Fe‐oxide and Al‐oxide. The changes in pH of spoil/soils did not have a significant effect on the amount of Mo extracted by any of these methods. The relationships between Mo uptake and Mo extracted by each method were all significant at 1% level. None of the extractants were clearly better or worse than the others. All three methods can be used to assess Mo availability, and potential toxicity from plant uptake of Mo from reclaimed spoils.  相似文献   

2.
Blueberry plants (Vaccinium ashei Reade cv. Tifblue) and Citrus natsudaidai Hayata were compared in terms of their ability to regulate the uptake of ammonium‐nitrogen (NH4‐N). Plants of both species were grown in N‐free nutrient solutions for three days and then transferred to nutrient solutions that contained various concentrations of NH4‐N. Blueberry plants showed increases in rates of uptake of NH4‐N 8 to 24 h after application of NH4‐N. At concentrations of NH4‐N above 200 (μM, uptake rates decreased to the initial value 24 h after application of NH4‐N and then increased. By contrast, seedlings of Citrus natsudaidai showed constant rates of uptake of NH4‐N during the experiment. These results indicate that blueberry plants are able to repress the uptake of NH4‐N periodically when they are exposed to high concentrations of external NH4‐N, but not seedlings of Citrus natsudaidai.  相似文献   

3.
Five field experiments measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride and sodium nitrate. Compared with the nil N treatment, ammonium nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of the five experiments, while ammonium sulphate topdressed (AStd) reduced the severity in four experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment, whereas ASdr was more effective than ACdr in another experiment. In experiments 1 and 5, the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. Results suggested that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Fertilizers containing chloride are unlikely to control take‐all disease of wheat on soils of southwestern Australia.  相似文献   

4.
Abstract

Rates of substrate disappearance and product formation were compared as measures of urease enzyme activity in an NH4‐fixing and in a non‐fixing soil under tris‐, borate‐ or non‐buffered assay conditions over 4h at 37°C. Tris‐buffered urease activity of the NH4‐fixing soil was 119 μg urea‐N hydrol./g/h or 116 μg (KCl‐extractable) NH4‐N/g/h indicating prevention of NH4 fixation by the buffer; without tris, NH4 production rates amounted to only 35% of coresponding urea hydrolysis rates. Equal rates of urea disappear‐ ance and NH4 formation occurred in the non‐fixing soil irrespective of buffer amendment.

Tris‐inhibition of NH4 fixation during 4h incubation at 37°C, however, depended on NH4 Cl rate and buffer strength. 0.025–0.10 M tris (pH 9.0) reduced NH4 fixation to negligible amounts at < 0.03 M NH4C1 whereas, at 0.06–0.24 M NH4Cl, substantial NH4 fixation occurred in the presence of 0.05 M tris; NH4 fixation in unbuffered soil, however, always exceeded that in tris‐buffered soil. Borate buffer (0.06M, pH 10) did not influence the extent of NH4 fixation.

Tris significantly enhanced urea hydrolysis in the slightly acid, non‐fixing soil but not in the moderately alkaline NH4 ‐fixing soil indicating an effect of soil type on pH optima of urease enzyme activity. The urease activities of both soils in borate were considerably lower than in tris, possibly because of the combined effects of excess alkalinity and high substrate concentration.  相似文献   

5.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

6.
Abstract

A representative grassland soil of the lowland areas of the Flooding Pampa (Argentina) was sampled to study the dynamics of the non‐exchangeable ammonium under waterlogging conditions. Most of the external factors determining fixed ammonium release and fixation were considered. There was no net release of ammonium from the clay fixing‐sites to the soil solution, when this soil was flooded under laboratory conditions. We conclude that the non‐exchangeable ammonium fraction in this soil is very stable and with little importance as a nitrogen source for plants.  相似文献   

7.
Abstract

Tobacco (Nicotiana tabacum L., cv. ‘Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3 or 1.0 mM NH4 + as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3 or NH4 + uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4 + was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3 ‐fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4 + ‐fed plants was increased to pH 4.0, however, specific rate of NH4 + uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4 + ‐fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4 + ‐fed plants to increased root‐zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.  相似文献   

8.
Abstract

Cowpea nodules (Vigna unguiculata [L.] Walp. cv. CB5) were pierced with two opposing optical fibers (280 μm diameter), and absorbance spectra of 0.1 mm of nodule tissue were recorded from 415 to 600 nm using a modified spectrophotometer with a nodule sampling stage.

The nodule spectra exhibited two absorbance bands, a major band in the near‐UV (415–450 nm) and a lesser one in the green‐yellow region (510–585 nm); the latter exhibited a prominent peak at 550 nm. Nodule spectra were consistent with the superposition of the spectra of ferroleghemoglobin (Lb2+), oxyleghemoglobin (Lb2+‐ O2), and cytochrome c (550 nm). The detection of leghemoglobin in vivo was confirmed by demonstrating the reversibility of binding of CO to Lb, and by comparing the spectra of live nodules with those obtained from anaerobic leghemoglobin preparations.

The effects on the nodule spectra of two successive applications (36 and 39 days after planting) of 5 and 10 mM NO3 or NH4 + to the nutrient solution bathing the nodulated roots were determined. The spectra of NO3 ‐ and NH4 +‐treated nodules were indistinguishable; in each case the height of both the near‐UV and green‐yellow absorbance bands decreased with treatment. Treatment with N caused a significant reduction in the area of the green‐yellow absorbance band.

The spectra of green leghemoglobin pigments were obtained from senescent nodules; these exhibited a reduction in the height of the near‐UV absorbance band and a flattening of the green‐yellow band similar to that of nodules treated with N, but the broadening of the near‐UV band was greater in green nodules.  相似文献   

9.
Five field experiments are described which measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride, and sodium nitrate. Compared with the Nil N treatment, ammonium‐nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of five experiments, while ammonium sulphate topdressed (Astd) reduced the severity in four of the five experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment whereas ASdr was more effective than ACdr in another experiment. In these two experiments (1 and 5), the effects of the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. The results suggest that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Chloride containing fertilizers are unlikely to control take‐all disease of wheat on soils of southwestern Australia.  相似文献   

10.
Abstract

The widely used hot‐water extraction method for soil boron was compared with acid ammonium acetate (AAAc) and acid ammonium acetate‐EDTA (AAAc‐EDTA) for boron determination. According to the results AAAc and AAAc‐EDTA were similar in their extracting power but these extracted only about one third of the boron amounts of the hot water extraction method. This sets special requirements for the sensitivity of the method of determination if these extractants are used. There was no significant difference in the correlation between timothy boron and soil boron assessed with studied methods and the coefficient of correlation ranged from 0.34 to 0.37. Interpretation for AAAc and AAAc‐EDTA tests was derived of that of the hot water method in use in Finland. The sensitivity of the ICP method was too poor to accurately separate between most deficient classes but there was no problems in separation between soils in need of boron fertilization and those which are satisfactory with respect to boron.  相似文献   

11.
Abstract

An auto‐analyser method has been developed for the simultaneous determination of NH4 + and Cl in Ca(NO3)2/KNO3 extracts of NH4Cl treated soils for cation exchange capacity measurements. The method gives satisfactory agreement with manual titration procedures.  相似文献   

12.
Ion exchange preferences for NH4+ and K+ by soil exchanger surface can greatly affect the NO3? leaching into groundwater and nitrogen-use efficiency in agricultural production. Since NH4+ and K+ salts are usually applied together as fertilizers, the binary K→NH4 exchange of two benchmark Botswana soils, Pellustert and a Haplustalf, was studied to determine the selectivity coefficients and the thermodynamic exchange constant with special reference to N economy. The Vanselow and the Gaines and Thomas coefficients indicated preference for NH4+ by the Pellustert and K by the Haplustalf across the exchanger phase composition. The equilibrium constant (Kex) was 1.807 for the Pellustert and 0.174 for the Haplustalf. The exchange free energy (ΔGex0) was ?1.467 kJ mol?1 for the Pellustert and 4.334 kJ mol?1 for the Haplustalf. Negative ΔGex0 for the Pellustert is consistent with preference for NH4+ to K+ in contrast to positive ΔGex0 for the Haplustalf. The greater stability of NH4X than KX complex in the Pellustert, and KX than NH4X in the Haplustalf, would mean increased residence time of NH4+ in the Pellustert than the Haplustalf. The implication of short residence time of NH4+ in soil is rapid nitrification, thereby leading to NO3??N leaching losses and possible groundwater contamination.  相似文献   

13.
Plant roots are exposed to a variety of nitrogen forms (e.g., nitrate, ammonium, amino acids) and take up these forms at different rates. Many studies have investigated whether plants prefer nitrate, ammonium, or amino acids; but studies may not be comparable because they used substrate concentrations between 100 and 2000 μmol L–1. This study tests the hypothesis that substrate concentrations from 10 to 1750 μmol L–1 affect plant preference for N forms. Nitrogen uptake by the herb Ocimum basilicum and the evergreen tree Eucalyptus regnans was examined by placing roots of intact seedlings in equimolar mixtures of nitrate, ammonium, and glycine in which one of the N forms was 15N‐labelled (and 13C‐labelled in the case of glycine). In both species, preference for N forms was affected by substrate concentration. At 10 μmol L–1 (O. basilicum) or 10 and 50 μmol L–1 (E. regnans), rates of N uptake did not differ among N forms. At substrate concentrations of 50 μmol L–1 and greater O. basilicum took up ammonium the fastest, glycine the slowest, and nitrate at an intermediate rate. At substrate concentrations from 100 to 1750 μmol L–1, E. regnans took up ammonium the fastest with glycine and nitrate taken up at slower rates. The absence of significant differences at lower concentrations was a true biological effect rather than a function of larger relative errors. This study demonstrates that substrate concentration has a large effect on plant preference for N forms, and sounds a warning for studies of N nutrition that do not consider the concentration‐dependence of plant preference for N forms.  相似文献   

14.
Solution pH, temperature, nitrate (NO3 )/yammonium (NH4 +) ratios, and inhibitors effects on the NO3 and NH4 + uptake rates of coffee (Coffea arabica L.) roots were investigated in short‐term solution culture. At intermediate pH values (4.25 to 5.75) typical of coffee soils, NH4 + and NO3 uptake rates were similar and nearly independent of pH. Nitrate uptake varied more with temperature than did ammonium. Nitrate uptake increased from 0.05 to 1.01 μmol g‐1 FWh‐1 between 4 and 16°C, and increased three‐fold between 16 to 22°C. Between 4 to 22°C, NH4 + uptake rate increased more gradually from 1.00 to 3.25 μmol g‐1 FW h‐1. In the 22–40°C temperature range, NH4 + and NO3 uptake rates were similar (averaging 3.65 and 3.56 umol g‐1 FW h‐1, respectively). At concentrations ranging from 0.5 to 3 mM, NO3 did not influence NH4 + uptake rate. However, NO3 uptake was significantly reduced when NH4 + was present at 3 mM concentration. Most importantly, total uptake (NO3 +NH4 +) at any NO3 /NH4 + ratio was higher than that of plants fed solely with either NH4 + or NO4 . Anaerobic conditions reduced NO3 and NH4 + uptake rate by 50 and 30%, respectively, whereas dinitrophenol almost completely inhibited both NH4 + and NO3 uptake. These results suggest that Arabica coffee is well adapted to acidic soil conditions and can utilize the seasonally prevalent forms of inorganic N. These observations can help optimizing coffee N nutrition by recommending cultural practices maintaining roots in the temperature range optimum for both NH4 + and NO3 uptake, and by advising N fertilization resulting in a balanced soil inorganic N availability.  相似文献   

15.
Abstract

A pot experiment was conducted under natural climatic conditions to study the effect of low doses of gamma irradiation (0, 5, 10, and 20 Gy) on the performance of winter chickpea (Cicer arietinum L.) in the presence of increased supply of 15N labeled ammonium sulfate (0, 20, 50, and 100 kg N ha‐1). Presowing seed irradiation produced a significant increase in dry matter production (up to 3 6%) and total nitrogen yield (up to 45%). The stimulative effect of irradiation was more pronounced with the application of NH4 +‐N fertilizer. Seed irradiation increased the amount of N2‐fixation by 8–61% depending on the dose and level of NH4 +‐N fertilizer rate. A 10 Gy was found to be the optimal irradiation dose for enhancing N2‐fixation. High levels of NH4 +‐N decreased the percentage and the amount of N2‐fixation, but did not affect nodule formation. However, the presowing 10 Gy irradiation dose reduced the negative effect of ammonia‐N fertilizer on N2‐fixation. Therefore, we recommend irradiating chickpea seeds with a 10 Gy dose before planting in soil containing high levels of mineral nitrogen to reduce its negative effect on N2‐fixation.  相似文献   

16.
Abstract

A simple method for determination of ammonium in semimicro‐Kjeldahl analysis of soils and plant materials using a Tecator or Technicon 40‐tube block digester is described. It involves use of an inexpensive steam distillation apparatus that permits direct distillation of ammonium from the tubes used for Kjeldahl digestion in 40‐tube block digesters. The method is rapid and precise, and it gives results that agree closely with those obtained by the customary method of ammonium N analysis involving transfer of the Kjeldahl digest before distillation.  相似文献   

17.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

18.
Most plants can use either nitrate (NO3) or ammonium (NH4) as a source of nitrogen. However, the degree of effectiveness of these two forms on plant growth and nutrient uptake is dependent on plant species and NH4.: NO3 ratio. The 77: 77 ppm NH4: NO3‐N concentration ratio in solution caused the most growth reduction for cabbage, melon, and corn, with corn being least affected. Bean seems to be well adapted to the use of NH4, and was unaffected by equal concentrations of NH4: NO3‐N. The presence of 28 ppm NH4‐N in the mixture reduced only cabbage growth, whereas growth of melon, bean and com was not affected. All of the species studied responded to the NH4 concentration increase by an increase in anion content in their leaf tissues. The K content in melon and corn leaf was increased with NH4‐N up to 28 ppm. The K content in tomato and cabbage tissue was reduced at 28 ppm NH4. The K content in all the species tested was reduced with 77: 77 ppm NH4: NO3‐N concentration treatment. Calcium composition reduction in all the plant species was affected at 28 ppm NH4‐N with reduction to 50% that of all NO3 nutrition at 77 ppm NH4‐N. Magnesium composition of corn tissue was most severely reduced by the 77: 77 ppm NH4: NO3‐N nutrition. Bean Mg composition was not affected by the NH4‐N concentration in the 14 to 77 ppm range. Magnesium was reduced in cabbage, melon, and corn by NH4‐N concentrations above 28 ppm.  相似文献   

19.
Ammonium accumulation and ethylene biosynthesis by plants may be interrelated events that lead to expression of symptoms of environmental stress. Compared to unstressed tissues, foliage of environmentally stressed plants often has accelerated rates of ethylene evolution and enhanced accumulation of uncombined ammonium. The present study assessed the effects of inhibitors of ethylene synthesis or action on ethylene evolution, ammonium accumulation, and symptoms of tomato (Lycopersicon esculentum Mill.) stressed by ammonium toxicity or nutrient (P, K, Ca, Mg) deficiency. ‘Heinz 1350’ and neglecta‐1 tomato were grown in sand culture in greenhouses. Plants receiving ammonium nutrition and (aminooxy)acetic acid (AOA), a purported inhibitor of ethylene synthesis, had no symptoms of ammonium toxicity. Ethylene evolution and ammonium accumulation were suppressed by AOA. Silver thiosulfate (STS), a purported inhibitor of ethylene action, delayed the appearance of ammonium toxicity symptoms and maximum ethylene evolution, but had no effect on maximum ammonium accumulation relative to the plants treated without STS. Ammonium accumulation and ethylene evolution by nutrient‐deficient plants, especially Ca and Mg, were inhibited by AOA. AOA delayed expression of symptoms of nutrient deficiency for several days and elevated elemental concentrations but restricted growth of nutrient‐deficient plants. The results of this study suggest that ammonium accumulation and ethylene biosynthesis are common intermediates in development of symptoms in nutrient‐stressed plants.  相似文献   

20.
Abstract

Determination of soil aluminum (Al), ammonium‐nitrogen (NH4‐N), and nitrate‐nitrogen (NO3‐N) is often needed from the same soil samples for lime and fertilizer recommendations, but Al has to be extracted and quantified separately from NH4‐N and NO3‐N according to present methods. The objective of this study was to develop a reliable method for simultaneous analyses of soil Al, NH4‐N and NO3‐N using a Flow Injection Autoanalyzer. Thirty‐five soil samples from different locations with wide ranges of extractable Al, NH4‐N and NO3‐N were selected for this study. Aluminum, NH4‐N and NO3‐N were extracted by both 1 M and 2 M potassium chloride (KCl), and quantified using a LACHAT Flow Injection Autoanalyzer simultaneously and separately. One molar KCl was found to be a suitable extractant for all three compounds when compared to 2 M KCl. The 1 M KCl extract proposed could aid in decreasing the costs associated with simultaneous NH4‐N, NO3‐N, and Al analyses. Results of those three compounds analyzed simultaneously were not statistically different from those analyzed separately in 1 M KCl solution. This new procedure of simultaneous determination of NH4‐N, NO3‐N, and Al increases efficiency and reduces cost for soil test laboratories and laboratory users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号