首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies on the effects of salinity and nitrogen (N) fertilization on ionic balance, biomass, and organic N production of annual ryegrass (Lolium multiflorum Lam.) were conducted. Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS#lbm‐1, and N in the form of sodium nitrate (NaNO3), ammonium nitrate (NH4NO3), or ammonium sulfate [(NH4)2SO4] ranging from 0.5 to 9.0 mM. Salinity increased the concentration of total inorganic cations (C) in plants and specifically sodium (Na) by more than 3‐fold higher in plants grown at high salinity as compared with plants at low salinity. Sodium (Na) concentration in roots was higher than in shoots irrespective of the salinity level, suggesting a restriction of Na transport from roots to shoots. The concentration of total inorganic anions (A) increased with salinity and when plants were supplied with nitrate (NO3), salinity increased the concentrations of NO3 and chloride (Cl) in plants. Increasing salinity and N concentration in the growth medium increased organic anions concentration in plants, estimated as the difference between C and A. The effect of different N sources on C‐A followed the order: NH4NO3 > NO3 > ammonium (NH4). The base of organic anions and inorganic ions with salinity contributed significantly to the osmotic potential of plants shoots and roots. Changes in C affected N and organic acids metabolism in plants, since C were highly correlated (p=0.0001) with C‐A and organic N (Norg) concentrations regardless of the salinity level or N source in the nutrient solutions. A high and positive linear dependency was found between Norg and C‐A in plants grown at high and low salinity levels and different N sources, pointing out the close relationship between Norg and organic anions on metabolism under these conditions. The amount of biomass produced was correlated positively with organic anion concentration in plants exposed to different salinity levels. Plant biomass increased with N concentration in the nutrient solution regardless of the salinity level applied. Biomass accumulation decreased while Norg concentration increased with salinity. Organic N content remained unaffected in plants exposed to salinity when grown in N less than 9.0 mM.  相似文献   

2.
The effect of various boron levels in the nutrient solution on the growth, boron and chlorophyll content, photosynthesis and chlorophyll fluorescence in the leaves of young sunflower (Helianthus annuus L.) plants was studied under greenhouse conditions. Deficiency of boron decreased the dry matter yield of the roots, shoots and leaves. The content of boron in all analyzed plant parts increased with the increase of boron levels in the nutrient solution, more so in the shoots than in the roots. Leaf area was reduced under boron deficiency as well as the content of chlorophyll in the leaves. The content of analyzed sugars was increased in boron deficient plants, glucose content exhibited the highest increase under boron deficiency. Boron deficiency appreciably decreased photosynthetic oxygen evolution by leaves, the apparent quantum yield and quantum efficiency of photosystem two electron transport. The diminished rate of photosynthesis in boron deficient sunflower leaves could be correlated to the diminished efficiency of electron transport and to the increased content of sugars in the leaves.  相似文献   

3.
The influence of NaCl solutions of decreasing osmotic potentials (¥π = ‐0.44 and ‐0.88 MPa) on seedling growth and on the concentration of the most important macro‐ and micro‐nutrients in the shoots and roots of maize (Zea mays L., cv. Summer II) grown in Hoagland's solution in a growth chamber was studied. Salt stress was imposed on six‐day‐old seedlings for a three day period. Increasing NaCl concentrations induced a reduction in the leaf water potential and a significant decrease in the length and dry weight of the shoots, whereas these two parameters decreased in the roots only at the lowest osmotic potential.

Although the absorption and accumulation of nutrients upon salt stress differed in the two treatments depending on the plant tissue and nutrient, almost all of the macronutrients decreased in the roots and shoots, showing the lowest values at ¥π = ‐0.88 MPa. Sodium and Cl increased continuously, much more in the roots than in the shoots.

A different response was seen in the shoots and roots in terms of micronutrients. In the roots, almost all of the ions reached their maximum concentrations at ¥π = ‐0.88 MPa; whereas in the shoots, they decreased at ¥π = ‐0.44 MPa without undergoing any further decrease at the lowest osmotic potential.  相似文献   

4.
Soil microbial biomass carbon and nitrogen as affected by cropping systems   总被引:12,自引:0,他引:12  
 The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in 1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively. The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively). Received: 9 February 1999  相似文献   

5.
Abstract

Continued introduction of new boron (B) fertilizer materials prompted a second examination of the efficacy of foliar‐applied B materials on B content, B uptake, and dry matter yield of cotton (Gossypium hirsutum L.) and soybean (Glycine max L.). Similar to a previous study, this greenhouse study was conducted at four participating universities using 6‐week‐old cotton (Deltapineland 90) and soybean (Pioneer 9761) plants. Sources and rates of B were 1) boric acid (17.5% B) at 0.22 kg ha‐1,2) sodium borate (Solubor® 20.5% B) at 0.22 kg ha‐1, 3) Smith & Ardussi Liquid B (10% B) at 0.22 kg ha‐1,4) Smith & Ardussi Liquid B at 0.11 kg ha‐1, 5) Borosol 10 (10% B) at 0.22 kg ha‐1, 6) Borosol 10 at 0.11 kg ha‐1, and 7) an untreated control. Control plants that did not receive B were sprayed with water. Four plants were grown in each 15‐cm diam. pot in sandy loam soil. Plants were sprayed at 6 weeks of growth and top growth was harvested at eight weeks. Whole‐plant samples were dried (70°C), ground, and analyzed for B content. Uptake of B, plant B concentration, and plant dry weight varied by state, so results were not combined over all states. In every state there were significant differences in B concentration and B uptake by cotton and soybean as affected by B treatment, but effects were not consistent with any one B source. In two of four cases (Alabama and Georgia) cotton plants receiving any B treatment had greater B concentration and B uptake than the water‐sprayed control. In Virginia and North Carolina, application of B treatments rarely affected B uptake by cotton or soybean. No one B source produced consistently greater B uptake than any other B source.  相似文献   

6.
ABSTRACT

Blends of controlled-release urea (CRU) and conventional urea can be an alternative to conventional fertilization to improve nitrogen use efficiency (NUE) and reduce costs when applied as a single application to agricultural crops. Different indexes of NUE, grain yield, nutrient uptake and partitioning in maize (Zea mays L.) were investigated in field experiments. The treatments consisted of a single rate of 180 kg N ha?1 with different proportions of polymer-sulfur coated urea (PSCU) and conventional urea (U) applied incorporated at sowing (0.05 m below and 0.1 m to the side of the seed row) at two tropical sites (Site 1, Typic Haplustox; Site 2, Rhodic Haplustox) in Brazil. A control treatment (without urea-N) and a treatment with conventional urea management (UCM: 20% of urea-N applied as basal fertilizer and 80% of N applied as top dressing) were also included. This study demonstrates that blends of PSCU and U are efficient in supplying N throughout the maize cycle at a Typic Haplustox site when applied in a single application incorporated at sowing, resulting in high yields and adequate macronutrient uptake. PSCU improved NUE index compared to U and UCM. There was not response for N fertilization in the Rhodic Haplustox site.  相似文献   

7.
8.
在河北衡水潮土上进行田间试验,以当地习惯高氮用量(小麦季施N 300 kg/hm2,玉米季施N 240 kg/hm2)为对照,研究冬小麦-夏玉米轮作体系中减少氮肥用量对玉米季植株生长、氮素吸收及根际土壤中无机氮与微生物量氮的影响。结果表明,两季作物氮肥施用量减少25%和40%,对玉米产量、生物量及植株体内氮累积量未产生明显影响,氮肥利用率提高。不同氮肥施用量对根际和非根际土壤铵态氮含量的影响不显著;减少氮肥施用量,对玉米根际土壤硝态氮含量也没有明显影响。在玉米苗期、抽雄期和成熟期,习惯高施氮量处理的非根际土壤硝态氮含量较高,其中抽雄期,非根际土壤硝态氮含量较氮肥减施40%用量处理高出近一倍,但非根际土壤微生物量氮水平含量明显降低。氮肥减施未影响根际土壤微生物量碳、氮含量,反而增加了非根际土壤微生物量碳、氮水平。在高肥力的潮土上,冬小麦/夏玉米轮作体系中适当减施氮肥并未影响玉米根际土壤氮素水平,可保证玉米稳产,实现减氮增效。  相似文献   

9.
  【目的】  玉米生物量、氮浓度以及氮累积量与籽粒的产量和品质密切相关,本研究利用单片段代换系群体,对高氮和低氮条件下玉米成熟期的生物量、氮浓度和氮累积量进行了QTL定位,旨在为氮高效相关基因的精细定位以及克隆氮高效相关的主效QTL奠定基础。  【方法】  以氮效率具有显著差异的‘许178’和‘综3’为亲本构建的玉米单片段代换系 (SSSL) 群体作为研究材料,设置高氮 (0.15 g/kg) 和低氮 (0.05 g/kg) 两种处理进行盆栽试验。在成熟期取样,测定植株的生物量、氮浓度以及氮累积量。根据代换系与亲本‘许178’表型值的T-test结果, 利用该群体SSR遗传连锁图谱,在P < 0.05条件下定位所测定性状的QTL。  【结果】  在高氮和低氮条件下,共定位到133个QTL (贡献率为 –40.75% ~12.69%)。其中包括49个生物量QTL,在高氮条件下检测到26个、低氮条件下检测到23个;24个氮浓度QTL,其中17个茎秆氮浓度QTL (包括8个高氮条件下检测到的QTL和9个低氮条件下检测到的QTL),7个叶片氮浓度QTL (5个高氮条件下检测到的QTL和2个低氮条件下检测到的QTL);60个氮累积量QTL,包括33个茎秆氮累积量QTL (27个高氮条件下检测到的QTL和6个低氮条件下检测到的QTL),27个叶片氮累积量QTL (11个高氮条件下检测到的QTL和16个低氮条件下检测到的QTL)。上述QTL在玉米的10条染色体上均有分布,其中以第4条染色体上检测到的数量最多 (19个),第5条染色体上检测到的数量最少 (6个)。  【结论】  本研究定位到的生物量和叶片、茎秆氮累积量高氮特异QTL片段有umc1077 ~umc2350 (bin 10.04)、umc2350 ~bnlg1028 (bin 10.04) ,低氮特异QTL片段有umc2377 ~bnlg1647 (bin 3.01)、end ~phi072 (bin 4.00)、bnlg1444 ~umc2041 (bin 4.08)、bnlg1863 ~bnlg2046 (bin 8.03)。这些染色体片段中极可能包含控制玉米氮效率相关的关键基因,在后期的试验中我们将逐步对这些QTL进行精细定位。  相似文献   

10.
Net mineralization of N from a range of shoot and root materials was determined over a period of 6 months following incorporation into a sandy-loam soil under controlled environment conditions. Biochemical “quality” components of the materials showed better correlation with net N mineralization than did gross measures of the respiration and N content of the soil microbial community during decomposition. The quality components controlling net N mineralization changed during decomposition, with water-soluble phenolic content significantly correlated with net N mineralization at early stages, and water-soluble N, followed by cellulose at later stages. C-to-N and total N were correlated with net N mineralization towards the end of the incubation only. Cumulative microbial respiration during the early stages of decomposition was correlated with net N mineralization measured after 2 months, at which time maximum net N mineralization was recorded for most residues. However, there was no relationship between microbial-N and net N mineralization. Biochemical quality factors controlling the C and N content of the residue remaining at the end of the incubation as light fraction organic matter (LFOM) were also investigated. Both C and N content of LFOM derived from the residues were correlated with residue cellulose content, and the chemical characteristics of LFOM were highly correlated with those of the original plant material. Incorporation of low cellulose, high water-soluble N-containing shoot residues resulted in more N becoming mineralized than had been added in the residues, demonstrating that net mineralization of native soil organic matter had occurred. Large amounts of N were lost from the mineral-N pool during the incubation, which could not be accounted for by microbial immobilization.  相似文献   

11.
Low nitrogen (N) supply may change assimilate partitioning between plant organs. We measured the effect of N supply on partitioning of recently assimilated 13C and recently absorbed 15N between generative and vegetative plant organs of two maize genotypes (Zea mays L.) 14 d after silking, i.e., during the lag phase of kernel growth. Furthermore, net partitioning of dry matter and N were assessed during grain filling. Plants were grown in a greenhouse in large containers. Our hypothesis was that N deficiency reduces grain set due to low partitioning of carbon (C) and N to the grains during the lag phase and reduces grain yield also because of excessive remobilization of N from the leaves during grain filling. During the lag phase, low N supply increased partitioning of recently assimilated photosynthates towards stem and roots at the expense of partitioning towards reproductive organs. However, despite of diminished sink strength of the reproductive organs for photosynthates, sugar concentrations in the grains of N‐deficient plants were increased, indicating that kernel set and potential kernel weight were not limited by low C supply at the end of the lag phase. In contrast to C, partitioning of recently absorbed N towards the reproductive organs was increased at low N supply at the expense of partitioning towards the roots. This indicates different mechanisms for the regulation of C and N distribution within the plant. During grain filling, biomass partitioning between plant organs was more affected by genotype than by rate of N supply. Nitrogen accumulation in the grains substantially exceeded total N uptake in the plant after flowering. Excess N accumulation in the grains was covered mainly by depletion of stem N at high N supply and by depletion of leaf N at low N supply. However, high concentrations of nonstructural carbohydrates in the stem at maturity indicated that grain yield of N‐deficient plants was not limited by low source strength of N‐depleted leaves.  相似文献   

12.
In nitrate-fed plants cycling of nitrogen (N) and potassium (K) may serve several functions including supply of the roots with nutrients needed for growth, signalling of the growth-related shoot demand for nutrients to the roots, and removal of excess K from the shoot. In the present study, cycling and recycling of N and K were estimated in plants showing different rates of shoot and root growth. To induce these variations in growth, the plants were cultured with the same optimal nutrient supply but with the root zone temperature (RZT) at 12°C or 24°C. Additionally at both RZT, the plants were grown with their shoot base including apical shoot meristem at high or low temperature (SBT). Decreasing the RZT to 12°C drastically diminished root growth and accumulation of N and K in the roots. Cycling of N and K were less reduced by low RZT. At both RZT, N and K cycling were markedly reduced at low in comparison to high SBT although root growth was not affected by the SBT. Obviously, N and K cycling from shoot to roots were more affected by shoot growth than by the growth related demand of the roots for nutrients. At both RZT, N and K cycling exceeded accumulation in the roots. It was estimated that at least 20—33% of the N, and 24—51% of the K translocated from the roots to the shoot in the xylem is not directly derived from root uptake but from cycling. Plant culture at low shoot base temperature (SBT) drastically diminished shoot growth, and the accumulation of N and K in the shoot to less than 50% of the values measured in plants grown at high SBT. The low SBT-induced decrease of N accumulation in the shoot, at both RZT was associated with a reduction of K circulation and recirculation rates to less than 50% of those found in plants grown at high SBT. These findings are in accordance with the suggested role of K+ for charge balance facilitating the transport of NO3 in the xylem and disposal of the negatively charged products of NO3 assimilation from shoot to roots in the phloem. In plants cultured at low SBT, net uptake and translocation rates of N and K were diminished to less than 50% of those measured in plants grown at high SBT. This repression was associated with reduced rates of N and K cycling from the shoot to the roots. Obviously, low rates of N and K cycling from the shoot to the roots are not necessarily signals to increase uptake in the roots. It is suggested that for plants adequately supplied with N, high rates of N cycling and recycling might be the consequence of an apparent lack in control of phloem loading of amino acids in the leaves.  相似文献   

13.
Root exudates play a major role in the mobilization of sparingly soluble nutrients in the rhizosphere. Since the amount and composition of major metabolites in root exudates from one plant species have not yet been systematically compared under different nutrient deficiencies, relations between exudation patterns and the type of nutrient being deficient remain poorly understood. Comparing root exudates from axenically grown maize plants exposed to N, K, P, or Fe deficiency showed a higher release of glutamate, glucose, ribitol, and citrate from Fe‐deficient plants, while P deficiency stimulated the release of γ‐aminobutyric acid and carbohydrates. Potassium‐starved plants released less sugars, in particular glycerol, ribitol, fructose, and maltose, while under N deficiency lower amounts of amino acids were found in root exudates. Principal‐component analysis revealed a clear separation in the variation of the root‐exudate composition between Fe or P deficiency versus N or K deficiency in the first principal component, which explained 46% of the variation in the data. In addition, a negative correlation was found between the amounts of sugars, organic and amino acids released under deficiency of a certain nutrient and the diffusion coefficient of the respective nutrient in soils. We thus hypothesize that the release of dominant root exudates such as sugars, amino acids, and organic acids by roots may reflect an ancient strategy to cope with limiting nutrient supply.  相似文献   

14.
Phosphorus uptake is often enhanced by ammonium compared to nitrate nitrogen nutrition of plants. A decrease of pH at the soil-root interface is generally assumed as the cause. However, an alteration of root growth and the mobilization of P by processes other than net release of protons induced by the source of nitrogen may also be considered. To study these alternatives a pot experiment was conducted with maize using a fossil Oxisol high in Fe/Al-P with low soil solution P concentration. Three levels of phosphate (0, 50, 200 mg P kg?1) in combination with either ammonium or nitrate nitrogen (100 mg N kg?1) were applied. Plants were harvested 7 and 21 d after sowing, P uptake measured and root and shoot growth determined. To assess the importance of factors involved in the P transfer from soil into plants, calculations were made using a model of Barber and Claassen. In the treatments with no and low P supply NH4-N compared to NO3-N nutrition increased the growth of the plants by 25 % and their shoot P content by 38 % while their root growth increased by 6 % only. The rhizosphere pH decreased in the NH4-N treatments by 0.1 to 0.6 units as compared to the bulk soil while in the NO3-N treatments it increased by 0.1 to 0.5 units. These pH changes had a minor influence on P uptake only, as was demonstrated by artificially altering the soil pH to 4.7 and 6.3 respectively. At the same rhizosphere pH, however, P influx was doubled by the application of NH4-compared to NO3-N. It is concluded that in this soil the enhancement of P uptake of maize plants after ammonium application cannot be attributed to the acidification of the rhizosphere but to effects mobilizing soil phosphate or increasing P uptake efficiency of roots. Model calculation showed that these effects accounted for 53 % of the P influx per unit root length in the NO3-N and 72 % in the NH4-N supplied plants if no P was applied. With high P application the respective figures were only 18 and 19%.  相似文献   

15.
Leucaena leucocephala is a leguminous, deep rooting tree, increasingly utilized in “Low Input” mixed cultures under arid conditions to reduce mineral N requirements and to improve nutrient cycling. This work was carried out to evaluate the growth and N yield of Leucaena and Maize in sand culture with low (0,6 mM) nitrogen supply under saline conditions (NaCl; NaCl + CaCl2; NaCl + CaSO4). While the low N nutrient solution failed to sustain maize growth in monoculture, both Leucaena and maize grew well in mixed culture with considerable N yields suggesting significant transfer of N from Leucaena to maize. NaCl depressed the uptake of Ca and S and reduced growth and N yields of both crop species. CaSO4 counteracted partly the NaCl-effects.  相似文献   

16.
Synthesis of amino acids, proline, and carbohydrates was studied in roots and shoots of 5 maize accessions, differing in aluminum (Al) and manganese (Mn) tolerance, in response to Al and Mn stress at the seedling stage in solution culture. The concentrations of these metabolites increased in roots and shoots of the seedlings in the nutrient solution with added Al (0.22 mM), and Mn (2.0 mM). Both Al and/or Mn tolerant and non‐tolerant accessions accumulated more metabolites under stress than control. Generally, the tolerant accessions accumulated more solutes than the non‐tolerant maize accessions examined.  相似文献   

17.
不同氮效率水稻生育后期氮素积累转运特征   总被引:12,自引:0,他引:12  
以不同氮效率水稻基因型为供试材料,通过15N标记的氮肥盆栽试验精确定量不同氮效率的水稻齐穗后氮素积累和转运量。结果表明,无论在何种施氮水平下,氮高效水稻(南光和武运粳)的籽粒产量均显著高于氮低效水稻Elio;不同氮效率水稻在齐穗期和齐穗后15天时干物质积累量差异不显著,但在成熟期时氮高效水稻的干物质积累量显著高于氮低效水稻,增幅约为16·4%;与干物质积累相对应的是,不同氮效率水稻的氮素积累量在齐穗期和齐穗后15天也没有差异,但在成熟期时氮高效基因型水稻武运粳和南光的氮素积累量较氮低效基因型水稻Elio高约31%和21%,差异显著。15N标记试验结果可以看出,氮低效水稻Elio齐穗时吸收的一部分15N移出了植株体,其占15N转运量的11%。从齐穗至成熟,氮低效水稻Elio从茎叶转移出的15N量(2·75mg穴-1)远远低于氮高效水稻武运粳(3·54mg穴-1)和南光(3·22mg穴-1),差异显著。氮高效水稻武运粳和南光从茎叶转移出的15N量约占籽粒所需N量的91%和85%,而从土壤中吸收的15N量约占9%和15%。综上所述,氮高效、低效水稻氮素积累和转运特征的差异主要表现在齐穗期以后,氮高效水稻具有强的氮素吸收或者转运能力,以满足籽粒形成期植株对氮素的利用。  相似文献   

18.
Two Finnish agricultural soils (peat soil and loamy sand) were exposed to four freeze-thaw cycles (FTC), with a temperature change from −17.3±0.4 °C to +4.1±0.4 °C. Control cores from both soils were kept at constant temperature (+6.6±2.0 °C) without FTCs. Soil N2O and CO2 emissions were monitored during soil thawing, and the effects of FTCs on soil microbes were studied. N2O emissions were extremely low in peat soil, possibly due to low soil water content. Loamy sand had high N2O emission, with the highest emission after the second FTC. Soil freeze-thaw increased anaerobic respiration in both soil types during the first 3-4 FTCs, and this increase was higher in the peat soil. The microbial community structure and biomass analysed with lipid biomarkers (phospholipid fatty acids, 3- and 2- hydroxy fatty acids) were not affected by freezing-thawing cycles, nor was soil microbial biomass carbon (MIB-C). Molecular analysis of the microbial community structure with temperature gradient gel electrophoresis (TGGE) also showed no changes due the FTCs. These results show that freezing and thawing of boreal soils does not have a strong effect on microbial biomass or community structure.  相似文献   

19.
Own rooted Concord grapevines, Vitis labruscana B, planted in 1981, trained to the Geneva Double Curtain training system, were used to investigate their response of levels of total arginine of different vine organ to high rates of soil nitrogen fertilization and the growth regulator daminozide.

Arginine in fruit juice, not in the leaf petiole or maturecanes, is recommended as an indicator of nitrogen status based on the results of this study. Daminozide did not appear to be involved in the nitrogen nutrition of Concord grapes.

Soil nitrogen fertilization increased the total nitrogen content of the leaf petioles both in 1986 and 1987. The arginine content of the fruit juice was not increased in 1986 as a result of nitrogen fertilization, but was increased at three of the four harvest dates in 1987. Daminozide did not affect the arginine content of the fruit juice except at the third harvest date in 1987.

Higher nitrogen rates did not increase the arginine content of the leaf petiole or mature canes, although some trends were evident. Daminozide did not have any effect on arginine content of the leaf petiole or mature canes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号