首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

2.
Maize (Zea mays L.) and sorghum (Sorghum bicolor L.) Moench (local variety called Masakwat) plants were grown in a sterilized low-P soil in the greenhouse for 12 weeks. Each plant species was either mycorrhizal with vesicular-arbuscular mycorrhizal (VAM) fungi, non-mycorrhizal but minimally fertilized with soluble P, or non-mycorrhizal but highly fertilized with soluble P. Drought stress was imposed after 4 weeks at weekly intervals. Under unstressed conditions, leaf area, shoot dry weights, xylem pressure, and soil water potentials were similar for VAM and the two non-mycorrhizal P-fertilized treatments but each of the VAM-infected species had a greater total root length. Total P uptake was similar for the maize treatments but higher for VAM than non-mycorrhizal P-fertilized sorghum treatments. Under drought-stressed conditions, the growth parameters and soil water potential were similar for all maize treatments but they were reduced by mycorrhizal inoculation in sorghum. Greater water extraction occurred in drought-stressed mycorrhizal sorghum. In both plant species, total P uptake and P uptake per unit root length (including unstressed species) were significantly enhanced in non-mycorrhizal P-fertilized treatments compared with the mycorrhizal treatment. Except for the root dry weight of sorghum plants, there were no differences in the growth parameters and P uptake between minimally and highly P-fertilized non-mycorrhizal treatments for either maize or sorghum. The increased total root length in drought-stressed mycorrhizal sorghum plants and the similar infected root lengths in unstressed and drought-stressed sorghum plants may have caused high C partitioning to drought-stressed mycorrhizal roots and therefore caused the reduced growth parameters in mycorrhizal plants compared to the non-mycorrhizal P-fertilized counterparts. The results indicate that P fertilization in addition to mycorrhizal inoculation may improve the drought tolerance of maize and sorghum plants.  相似文献   

3.
Translocation of S by external hyphae of Glomus fascieulatus, a vesicular-arbuscular (VA) mycorrhizal fungus, was demonstrated. When tracers were injected 8 cm from onion roots in soil chambers, both 35S and 32P appeared in roots of mycorrhizal plants. Neither radionuclide was present in non-mycorrhizal plants.In a second soil-chamber experiment, mycorrhizal onions took up more 35S per unit dry weight than non-mycorrhizal controls when 35S was injected into soil chambers in a region 3–6 cm from roots. Severing of external hyphae between the application area and the roots reduced the concentration of 35S in tops of mycorrhizal plants but not in roots. Volatile 35S per unit dry weight collected from all plants in each treatment was highest in the mycorrhizal-hyphae intact treatment, and higher in the mycorrhizal-hyphae severed treatment than the non-mycorrhizal treatment. Movement of 35S in soil from the area of application to roots was similar for all treatments.Increased uptake of S from soil by VA mycorrhizal plants can result from hyphal translocation of S to infected roots by external mycorrhizal hyphae.  相似文献   

4.
Mycorrhizal and non-mycorrhizal onions were grown in pots containing soil at two P concentrations. Following 35S injection into the soil, both mycorrhiza) and non-mycorrhizal plants from high P treatments had significantly higher 35S concentrations in roots compared to non-mycorrhizal, low P controls. Mycorrhizal, low P plants had higher concentrations of 35S in shoots than did non-mycorrhizal, low P plants. In a second experiment detached non-mycorrhizal onion roots from plants given a nutrient solution containing P for 26 days before short-term uptake experiments absorbed at greater rates from solution than roots from plants given a complete minus-P nutrient solution. This occurred at all three concentrations of S tested. 1 mM. 10μM, and 0.1 μM. Increased S uptake by mycorrhizal plants can result from increased S absorbing power of roots with enhanced P status.  相似文献   

5.
To understand the effect of increased soil N supply on tree growth and nutrient uptake, three-year-old Norway spruce seedlings were grown in pots on low-nutrient mineral forest soil supplemented with N in mineral or organic form. Outdoor shaded growth conditions were used, to test the hypothesis that shaded plants are particularly susceptible to high soil N supply. Plants were harvested eleven months after planting. Shoot growth was not affected by the N supply, but N concentrations in needles and roots were increased in plants supplied with mineral N (150 or 300 mg N [kg soil]—1). Root growth was drastically reduced and root/shoot ratios were decreased in plants with higher N uptake. A high supply of mineral N to soil also decreased the concentrations of other essential elements (P, K) in the needles and thus had effects on plant growth which may impair the stress resistance of trees. Organic N in the form of keratin (150 mg N [kg soil]—1) did not influence plant growth significantly. The adverse effects of high mineral N supply were particularly pronounced under shaded conditions in comparison to results from other experiments using higher light intensity and temperature conditions.  相似文献   

6.
Rhizospheric pH changes induced by arbuscular mycorrhiza formation in onion plants fertilized either with NO3? or NH4+ were studied. The pH changes promoted by either mycorrhizal or non-mycorrhizal roots were studied by means of a non-destructive technique using the pH indicator bromocresol purple. Results showed that the pH changes observed depended on i) the symbiotic status of the root and ii) the N form amended to the soil. When growing in a NH4+-supplied soil, mycorrhizal onion roots produced more intense and wider acidification halos than non-mycorrhizal plants did. These differences were maintained throughout the whole experiment (60 days). NO3?-supplied mycorrhizal roots initially promoted a more intense alkalinization on their surface, compared to the control roots (30 days); however, at the end of the experiment (60 days), intense acidification halos were observed in the mycorrhizosphere, whereas this acidification was almost absent in the non-mycorrhizal rhizosphere. The link between these mycorrhiza-induced pH changes in the soil and the higher efficiency in the exploitation of nitrogen in the rhizosphere by the arbuscular-mycorrhizal plants is discussed.  相似文献   

7.
The effects of low temperature and reduced light on a Glycine-Bradyrhizobium-Glomus spp. symbiosis were examined in pot experiments. Soybean plants, Glycine max L. Merr. cv. Tachiyutaka, were grown with N fertilization or inoculation with Bradyrhizobium japonicum plus P fertilization or inoculation with Glomus mosseae in the glasshouse. After the flowering stage, half the pots with soybean plants were subjected to low temperature (15°C 14h/13°C 10 h) with light reduced by shading. At 0, 7, 16, and 28 days after the application of the treatments, the growth, nodulation, vesicular-arbuscular mycorrhizal (VAM) infection and the N and P contents of the soybean plants were measured. In all symbiont-fertilization combinations, the low-temperature treatment reduced the production of dry matter by the soybeans. Nodulation (weight and number) was slightly reduced by this treatment but the proportion of larger nodules was increased. The root length infected by the VAM fungus was little affected by the low-temperature treatment. Both the nodule weight and the infected root length were linearly related to shoot dry weight regardless of treatment and of the symbiont-fertilization combination used. These results suggest that the growth of the symbionts on the root was in balance with the shoot growth of the host, irrespective of climatic conditions, and imply a considerable degree of host control. P inflows to root systems were greatly affected by low-temperature treatment regardless of the symbiont-fertilization combination. This suggests that a simple comparison of P inflows between mycorrhizal and non-mycorrhizal plants may give misleading information on the effects of low temperature or reduced light conditions on P uptake by mycorrhizal plants.  相似文献   

8.
Mineral nutrient uptake can be enhanced in plants inoculated with vesicular‐arbuscular mycorrhizal fungi (VAMF). The effects of the VAMF Glomus fasciculatum on uptake of P and other mineral nutrients in sorghum [Sorghum bicolor (L.) Moench] were determined in greenhouse experiments for plants grown on a low P (3.6 mg kg‐1) soil (Typic Argiudolls) with P added at 0, 12.5, 25.0, and 37.5 mg kg‐1 soil. Enhancements of growth and mineral nutrient uptake because of the VAMF association decreased as soil applications of P increased above 12.5 nig kg‐1 soil. Root colonization with VAMF without added soil P resulted in increased dry matter yield equivalent to 12.5 mg P kg‐1 soil (25 kg P ha‐1). Total root length colonized with VAMF decreased as soil P level increased. Regardless of P added to the soil, mycorrhizal plants had higher leaf P concentrations and contents than did nonmycorrhizal plants. Enhanced contents, but not necessarily concentrations, of the other mineral nutrients were noted in shoots of mycorrhizal compared to nonmycorrhizal plants. Mycorrhizal plants had enhanced shoot contents of P, K, Zn, and Cu which could not be accounted for by increased growth. The VAMF associations with sorghum roots enhanced mineral nutrient uptake when P was sufficiently low in the soil.  相似文献   

9.
In nitrate-fed plants cycling of nitrogen (N) and potassium (K) may serve several functions including supply of the roots with nutrients needed for growth, signalling of the growth-related shoot demand for nutrients to the roots, and removal of excess K from the shoot. In the present study, cycling and recycling of N and K were estimated in plants showing different rates of shoot and root growth. To induce these variations in growth, the plants were cultured with the same optimal nutrient supply but with the root zone temperature (RZT) at 12°C or 24°C. Additionally at both RZT, the plants were grown with their shoot base including apical shoot meristem at high or low temperature (SBT). Decreasing the RZT to 12°C drastically diminished root growth and accumulation of N and K in the roots. Cycling of N and K were less reduced by low RZT. At both RZT, N and K cycling were markedly reduced at low in comparison to high SBT although root growth was not affected by the SBT. Obviously, N and K cycling from shoot to roots were more affected by shoot growth than by the growth related demand of the roots for nutrients. At both RZT, N and K cycling exceeded accumulation in the roots. It was estimated that at least 20—33% of the N, and 24—51% of the K translocated from the roots to the shoot in the xylem is not directly derived from root uptake but from cycling. Plant culture at low shoot base temperature (SBT) drastically diminished shoot growth, and the accumulation of N and K in the shoot to less than 50% of the values measured in plants grown at high SBT. The low SBT-induced decrease of N accumulation in the shoot, at both RZT was associated with a reduction of K circulation and recirculation rates to less than 50% of those found in plants grown at high SBT. These findings are in accordance with the suggested role of K+ for charge balance facilitating the transport of NO3 in the xylem and disposal of the negatively charged products of NO3 assimilation from shoot to roots in the phloem. In plants cultured at low SBT, net uptake and translocation rates of N and K were diminished to less than 50% of those measured in plants grown at high SBT. This repression was associated with reduced rates of N and K cycling from the shoot to the roots. Obviously, low rates of N and K cycling from the shoot to the roots are not necessarily signals to increase uptake in the roots. It is suggested that for plants adequately supplied with N, high rates of N cycling and recycling might be the consequence of an apparent lack in control of phloem loading of amino acids in the leaves.  相似文献   

10.
【目的】探讨接种摩西管柄囊霉 (Funneliformis mosseae,FM) 和不同隔根处理对红壤上间作植株生长、植株氮吸收量和土壤氮的影响。【方法】采用盆栽模拟试验,设不同菌根处理[不接种 (NM)、接种 (FM)]与玉米/大豆不同隔根处理 (根系不分隔、部分分隔、完全分隔)。【结果】接种 FM 的玉米、大豆根系均有一定的侵染,菌根侵染率在部分分隔处理下最低。间作根系的分隔处理对玉米和大豆的菌根依赖性产生了明显影响,大豆的菌根依赖性随间作交互作用强度的加大而增加。无论何种隔根处理,接种 FM 均显著增加了玉米植株生物量,其地上部生物量高出 NM 处理 11.7%~81.4%,根系生物量高出 NM 处理 18.8%~166.7%。根系分隔处理下,接种 FM 均显著降低了大豆生物量。同一隔根方式下,接种 FM 明显提高了玉米的植株氮吸收量和根系氮吸收效率。在不分隔处理下,接种 FM 显著增加了大豆的地上部氮吸收量,但在部分分隔和完全分隔处理下则反而有所下降;在部分分隔处理下,接种 FM 显著降低了大豆根系的氮吸收量,在不分隔和完全分隔处理下亦呈下降趋势。在部分分隔处理下,接种 FM 显著提高了大豆根系氮吸收效率,在完全分隔处理下反而有明显下降,且在 NM–不分隔处理下的大豆根系氮吸收效率最低。相关分析显示,玉米、大豆植株氮吸收量与土壤碱解氮含量呈显著负相关。【结论】接种丛枝菌根真菌 (AMF) 和隔根方式的组合能不同程度地影响玉米和大豆对氮的吸收利用及间作植株的生长,并能对土壤有效氮产生较大影响。所有的复合处理中,AMF和间作根系部分分隔处理组合对玉米和大豆生长及氮素利用的促进作用较好,并能有效降低土壤碱解氮的残留。  相似文献   

11.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

12.
Summary The legume Medicago sativa L. was grown in three calcareous soils supplied with increasing amounts of soluble phosphate, or a vesicular-arbuscular mycorrhizal (VAM) inoculum. The three test soils had high concentrations of extractable Ca. Analyses of dry-matter production and of the concentrations and content of the nutrients N, P, K, Ca, and Mg in plant tissues showed that, for each soil, a particular level of P application was able to match the VAM effects on N, P, and K levels. The Ca concentration and content in the VAM inoculated plants were, however, significantly lower than those in the P-supplied non-mycorrhizal treatments that matched the VAM effects. The N:P and the K:P ratios were about the same for mycorrhizal and non-mycorrhizal P-supplied control plants in all the three soils, but VAM inoculation lowered the Ca:P ratio in all soils. The mycorrhizae decreased Mg uptake in one of the soils, where non-mycorrhizal plants had high Mg concentrations in tissues. It is concluded that VAM depress the excessive acquisition of Ca by plants in calcareous soils.  相似文献   

13.
There is evidence that colonisation by mycorrhizal fungi can protect host plants from toxic concentrations of heavy metals. The mechanism by which protection is provided by the fungus for any particular metal is poorly understood. Rice (Oryza sativa L.) plants were inoculated with Glomus mosseae and grown for 4 weeks to ensure strong colonisation. The plants were then exposed to low to toxic concentrations of copper (Cu) and the uptake and distribution were examined. The effect of mycorrhizal colonisation on the cell wall composition and Cu binding capacity of roots was also investigated. Mycorrhizal plants showed moderate reductions in Cu concentrations in roots but large reductions in shoots. In roots, mycorrhizal plants accumulated more Cu in cell walls but much less in the symplasm compared to non-mycorrhizal plants. The differences in cell wall binding of Cu could be partly explained by changes in the composition of the cell wall. The mechanistic basis for the reduced Cu accumulation and the potential beneficial consequences of mycorrhizal associations on plant growth in Cu toxic soil are discussed.  相似文献   

14.
It is not known why sweet potato (Ipomoea batatas) cultivated in tropical regions tolerates acid soil. Here, we report the involvement of mycorrhizal symbiosis in this tolerance. Plants were grown in root-boxes filled with either acidic soil (pH 4.2) or the same soil amended with lime (pH 5.2) for 30 d in a growth chamber. In the inoculated treatments, the percentage of root length colonized by Gigaspora margarita was not affected by soil pH (23±9% at pH 4.2 vs. 30±12% at pH 5.2). The root and shoot dry weights of the non-mycorrhizal plants at pH 4.2 were 27 and 35%, respectively, of those at pH 5.2. The root and shoot dry weights of the mycorrhizal plants at pH 4.2 were 70 and 51% of those at pH 5.2. Growth promotion in mycorrhizal plants was significant only at pH 4.2 (2-fold increase in whole plant dry weight), but not at pH 5.2. As a result, no significant difference was detected in whole plant dry weight between the mycorrhizal plants at pH 4.2 and non-mycorrhizal plants at pH 5.2. The mycorrhizal plants at pH 4.2 showed reduced toxic symptoms of Mn (brown specks on mature leaves) and Al (poor root growth) compared to non-mycorrhizal ones, but tissue concentrations of P, K and Ca did not increase in mycorrhizal plants. We assume that the mycorrhizal colonization can reduce toxic effects of those elements while the exact mechanisms should be further investigated.  相似文献   

15.
The aim of this work was to study the effect of arbuscular mycorrhizal fungus Glomus mosseae on growth and nitrogen (N) metabolism of durum wheat (Tritcum durum) under various P soil contents. The analyses were extended to macro and micronutrient tissue concentrations, nitrate reductase and glutamine synthetase activities, as well as protein, aminoacids, pyridine dinucleotides and adenine nucleotides. Arbuscular mycorrhiza increased wheat growth in soil in which P availability was low and nitrate was the dominant N form. The root colonization occurred at the highest level in plants grown in limiting soil P and was inversely related to soil P content. The micorrhizal wheat plants contained also the highest concentrations of macro (P, K, Ca, N) and micronutrients (Fe, Zn, Mn) as well as free amino acids, protein, NAD, NADP, AMP, ADP, ATP in roots and leaves. In particular, the micronutrient tissue concentrations (Zn, Mn) supported that mycorrhiza actively modulated their uptake limiting interferences and optimizing growth better than the plant roots, like a very efficient “rootstock”. Control plants grown at the highest soil P did not reach the same concentration as the mycorrhizal plants. Nitrate reductase activities in the roots of mycorrhizal plants were higher than in the control ones, while glutamine synthetase activities were highest in the leaves. Protein and amino acids concentrations, as well as AMP, ADP, ATP, NAD(P), and NAD(P)H were also higher than in the control. Among the free amino acids in the roots, the high levels of glutamine, asparagine, arginine, support the view that ammonium was transferred through the arbuscules to the root cells where it was re‐assimilated in the cortical cells, forming high N : C ratio‐amino acids. They were transferred to the leaves where all the other N compounds could be largely synthesized using the carbon skeletons supplied by photosynthesis.  相似文献   

16.
Associations between vesicular‐arbuscular mycorrhizal (VAM) fungi and manganese (Mn) nutrition/toxicity are not clear. This study was conducted to determine the effects of excess levels of Mn on mineral nutrient uptake in shoots and roots of mycorrhizal (+VAM) and non‐mycorrhizal (‐VAM) sorghum [Sorghum bicolor (L) Moench, cv. NB9040]. Plants colonized with and without two VAM isolates [Glomus intraradices UT143–2 (UT1 43) and Gl. etunicatum UT316A‐2 (UT316)] were grown in sand irrigated with nutrient solution at pH 4.8 containing 0, 270, 540, and 1080 μM of added Mn (as manganese chloride) above the basal solution (18 μM). Shoot and root dry matter followed the sequence of UT316 > UT143 > ‐VAM, and shoots had greater differences than roots. Shoot and root concentrations and contents of Mn, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and copper (Cu were determined. The +VAM plants generally had higher mineral nutrient concentrations and contents than ‐VAM plants, although ‐VAM plants had higher concentrations and contents of some minerals than +VAM plants at some Mn levels. Plants colonized with UT143 had higher concentrations of shoot P, Ca, Zn, and Cu and higher root Mg, Zn, and Cu than UT316 colonized plants, while UT316 colonized plants had higher shoot and root K concentrations than UT143 colonized plants. These results showed that VAM isolates differ in enhancement of mineral nutrient uptake by sorghum.  相似文献   

17.
The importance of using low-quality water, such as saline waters, for food production has been increased in the recent decades. An experiment was conducted to evaluate the effect of diluted seawater (electrical conductivity (EC) of 6 dS m?1) on growth and nutrient uptake of tomato. We examined if surfactant (0, 1, 2, 4 mg L?1) and biological fertilizer (compost tea + arbuscular mycorrhizal fungi propagules) have potential to alleviate the adverse effects of salinity on tomato plant. Salinity stress significantly reduced all plant growth parameters. Under salinity stress, nitrogen (N) and potassium (K) contents in tomato shoot were lower, while phosphorus (P), sodium (Na), and calcium (Ca) contents were higher than non-salinized plants; showing ionic imbalance in this condition. Biological fertilizer improved root weight in saline condition. Under salinity stress surfactant application at the rate of 1 mg L?1 helped tomato plants to maintain their ionic balance, especially declining Na uptake, and improved plant growth.  相似文献   

18.
This paper focuses on the short-term reaction of fine root and mycorrhiza on changes in soil solution chemistry following application of MgSO4 (Kieserite) and (NH4)2SO4 (ammonium sulfate). The experiments were conducted within the ARINUS Experimental Watershed Area near Schluchsee in the Black Forest (SW Germany). Yellowing of the older needles as related to Mg deficiency was the typical symptom observed within this 45 yr old Norway spruce stand. On the N treated plot the relative mycorrhiza frequency declined and the percentage of nonmycorrhizal root tips increased, whereas in the Mg fertilized plot these parameters did not differ from the control. The observed changes cannot be caused by A1, because elevated concentrations of potentially toxic A1 species and extremely low Ca/A1 molar ratios appeared in the soil solution of both treatments and did not result in reduced growth of long roots as reported from solution culture experiments. Moreover, the A1 content of fine roots did not increase. Therefore, it is concluded that the thresholds for A1 toxicity derived from solution culture experiments with nonmycorrhizal seedlings cannot be transferred to forest stands. A direct toxic effect of elevated NH 4 + concentrations on mycorrhiza is unlikely, but cannot be excluded. Enhanced root growth due to a higher uptake of NH 4 + from soil solution may provide a more plausible explanation for the observed increase in the percentage of nonmycorrhizal root tips after N application. Even though the N content of fine roots did not increase, the diminished K content gives some indirect indication for NH 4 + uptake by the roots. This is also consistent with reduced Mg content due to NH 4 + /Mg2+ antagonism. On the MgSO4 treated plot, Mg contents of the fine roots increased thus reflecting Mg uptake by the deficient stand.  相似文献   

19.
Non-inoculated spruce seedlings (Picea abies Karst.) and spruce seedlings colonized with Lactarius rufus Fr., Pisolithus tinctorius Coker & Couch or Paxillus involutus Fr. were grown for 35 or 37 weeks in a microcosm system on two types of natural forest humus differing in Pb content. Using X-ray microanalysis, the distribution and content of Pb in the tissues of mycorrhizal and non-mycorrhizal root tips were compared. No significant difference in the Pb contents of root cortex cell walls of non-mycorrhizal and seedlings colonized by Lactarius rufus, Pisolithus tinctorius, or indigenous mycorrhizal fungi (mainly Tylospora sp.) was found. However, in root tips of seedlings colonized by Paxillus involutus, due to a higher binding capacity for cations, the Pb content in cell walls of the root cortex were higher than in non-mycorrhizal roots. Pb contents in cell walls of the cortex of mycorrhizal and non-mycorrhizal roots were 3 times higher in plants growing in humus with a high Pb content than in plants growing in humus with a low Pb content. It is concluded that increasing contents of Pb in the organic matter may lead to an increased loading of the apoplast with Pb. The mycobionts tested in this investigation did not exclude Pb from root tissues.  相似文献   

20.
This paper focuses on the short-term reaction of fine root and mycorrhiza on changes in soil solution chemistry following application of MgSO4 (Kieserite) and (NH4)2SO4 (ammonium sulfate). The experiments were conducted within the ARINUS Experimental Watershed Area near Schluchsee in the Black Forest (SW Germany). Yellowing of the older needles as related to Mg deficiency was the typical symptom observed within this 45 yr old Norway spruce stand. On the N treated plot the relative mycorrhiza frequency declined and the percentage of nonmycorrhizal root tips increased, whereas in the Mg fertilized plot these parameters did not differ from the control. The observed changes cannot be caused by Al, because elevated concentrations of potentially toxic Al species and extremely low Ca/A1 molar ratios appeared in the soil solution of both treatments and did not result in reduced growth of long roots as reported from solution culture experiments. Moreover, the Al content of fine roots did not increase. Therefore, it is concluded that the thresholds for Al toxicity derived from solution culture experiments with nonmycorrhizal seedlings cannot be transferred to forest stands. A direct toxic effect of elevated NH4 + concentrations on mycorrhiza is unlikely, but cannot be excluded. Enhanced root growth due to a higher uptake of NH4 + from soil solution may provide a more plausible explanation for the observed increase in the percentage of nonmycorrhizal root tips after N application. Even though the N content of fine roots did not increase, the diminished K content gives some indirect indication for NH4 + uptake by the roots. This is also consistent with reduced Mg content due to NH 4 + /Mg2+ antagonism. On the MgSO4 treated plot, Mg contents of the fine roots increased thus reflecting Mg uptake by the deficient stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号