首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of hydroponic nutrient solution composition and pH on growth and mineral content of green onions was evaluated. Three onion varieties [Allium cepa L. (‘Deep Purple’ and ‘Purplette’) and A. fistulosum L. (‘Kinka’)] were propagated in three nutrient solutions (Peter's Hydro-Sol, modified Hoagland's, and half-strength modified Hoagland's) at two pH levels (5.8 and 6.5) in a three-by-two factorial design applied in a randomized block with three replications. Seeds were germinated in Cropking's Oasis Horticubes under greenhouse conditions and irrigated with tap water. Once the seedlings reached the flag stage, the plants were placed into hydroponic units within the greenhouse and grown under ambient conditions. Plants were harvested 30 d after transplanting to the hydroponic units. The results indicated nutrient solution, pH, and variety significantly affected several plant physiological variables. Total biomass and edible biomass production was as high for plants grown in half-strength Hoagland's nutrient solution as for those grown in the other solutions. Total biomass was greatest for plants grown at a solution pH of 6.5. ‘Deep Purple’ produced a significantly greater overall total biomass than did ‘Purplette’ or ‘Kinka.’ Hydro-Sol tended to produce onions with highest mineral content. Due to the fact that biomass production was as great in the half-strength Hoagland's as in the more concentrated solution and that a pH of 6.5 produced greater total biomass, the half-strength Hoagland's solution at pH 6.5 was the preferred nutrient solution evaluated in this research. Selection of an appropriate nutrient solution must consider both edible biomass production and mineral content. In the research reported here, the solution that produced the greatest biomass did not produce plant material with the highest mineral content.  相似文献   

2.
Environmentally stressed plants frequently have elevated rates of ethylene evolution and high accumulation of free ammonium by their foliage. The objective of this study was to investigate ethylene evolution and ammonium accumulation by nutrient‐deficient and ammonium‐stressed tomato plants (Lycopersicon esculentum Mill. ‘Heinz 1350’ and neglecta‐1) grown in a greenhouse. In soil culture, ‘Heinz 1350’ was more sensitive to ammonium toxicity and had higher ethylene evolution than neglecta‐1. High ethylene evolution corresponded with appearance of ammonium toxicity symptoms in both lines. In sand culture, ‘Heinz 1350’ and neglecta‐1 grown with K, Ca, or Mg deficiency in NO3 ‐based nutrient solutions had higher ammonium accumulation and higher ethylene evolution than plants grown with complete nutrition. P‐deficient plants had elevated ammonium accumulation but low ethylene evolution. Plants grown on NH4 +‐based nutrition with pH buffering by CaCO3 had lower ethylene evolution and lower ammonium accumulation than plants grown in unbuffered solutions but had higher values than plants grown with NO3 ‐based nutrition. Adequate K nutrition suppressed ethylene evolution and ammonium accumulation for all plants regardless of nitrogen regimes. Ammonium accumulation and ethylene biosynthesis in plants appear to be related processes. They appear to be indicators of stress and may have roles in development of symptoms of nutritional stresses.  相似文献   

3.
A greenhouse experiment was designed in order to evaluate growth, water relations, and nutrient concentrations of grafted and ungrafted tomato plants grown under varying levels of salinity (0, 30, or 60 mM NaCl). Two cultivars, ‘Fanny’ and ‘Goldmar’, were grafted onto AR‐9704, using the cleft‐grafting method. Growth of grafted ‘Fanny’ plants was higher than that of ungrafted plants. Growth of ‘Goldmar’ plants was not affected by salinity treatments or grafting, but it was slower than for ‘Fanny’. Leaf turgor showed no significant differences between grafted and ungrafted plants or between salinity levels. The stomatal conductance (Gs) was higher for grafted than for ungrafted plants, and salinity decreased it significantly and progressively in both grafted and ungrafted plants and in both varieties. The concentrations of Na+ and Cl were significantly higher in ungrafted than in grafted ‘Fanny’ plants. ‘Fanny’ was more tolerant when grafted, probably due to reduced accumulation of Na+ and/or Cl in the shoot.  相似文献   

4.
Abstract

The efficacy of using various levels of potassium (K) (4, 8, and 16 mM) under saline conditions to alleviate the detrimental effects of salt‐stress were studied using five tomato (Lycopersicon esculentum Mill) cultivars, ‘Strain 19’, ‘Pearson’, ‘Montecarlo’, ‘Maruthuam’, and ‘Pusa Rub’. Results of the study revealed that 50 mM sodium chloride (NaCl) in a Hoagland nutrient solution significantly reduced stem height, fruit weight, and whole plant dry weights, but increased number of fruits/plant and improved fruit quality by increasing total soluble solids. It did not significantly affect leaf count, percent fruit set, or dry weight. The addition of 4, 8 and 16 mM potassium nitrate (KNO3) to the nutrient solution containing 50 mM NaCl resulted in sodium/potassium (Na/K) ratios of 12.5, 6.3, and 3.1, respectively. The Na/K ratios of 12.5 and 6.3 produced significant improvement in stem height, percent fruit set, number of fruits/plant, fruit weight, and whole plant dry weight. The Na/K ratio of 3.1 was found to be detrimental as it resulted in sharp reduction of plant dry weight compared to the control. Percent total soluble solids was not significantly affected by the addition of any level of K to the saline nutrient solution. The performance of the tomatoplant grown under saline conditions supplemented with K in the nutrient solution indicated a higher response at the lowest K concentration used in this study.  相似文献   

5.
The consequences of oxygen deficiency on the root system of tomato plants in soilless culture at the beginning of the flowering stage were assessed over a 72‐hour period. The study of water uptake and oxygen depletion in the medium was conducted using a process of continuous computerized data processing. Fluctuations in composition of the nutrient solution were monitored every two hours through an analysis of samples. Oxygen deficiency of the nutrient solution had immediate effects on the water and nutrient uptake of the whole plant. The root asphyxia of a tomato plant caused a 20 to 30% decrease of water uptake after 48 hours. After 10 hours it also leads to the end of the uptake process of the nutrients except nitrates. Potassium (K) was the nutrient most sensitive to oxygen deprivation since an efflux into the culture medium was observed after only 4 hours of deprivation. Nitrate uptake was the least affected by oxygen deficiency. The persistent appearance of nitrite in the culture medium 12 hours after the beginning of the asphyxia process could be caused by the reduction of nitrates by the root system of the tomato plant. The plant would use the oxygen from the reduction reaction to ensure the water and nitrate uptake processes which are the two most important limiting factors of plant nutrition. Thus it seems that under root asphyxia conditions the plant would adapt to the new condition by relying on a metabolism of the “nitrate respiration”; type.  相似文献   

6.
This study was carried out to evaluate the effect of small additions of ion exchange substrate, Biona‐312, to soil on the yield and mineral composition of cherry tomato cv. ‘Koralik’ and cucumber cv. ‘Hermes F1.’ The test plants were grown under greenhouse conditions and subjected to 0, 2, and 5% (mass) Biona‐312 doses introduced into the soil. The study results showed that Biona‐312 introduced into soil significantly increased the yield of the test species at the flowering and fruiting stage. Soil enrichment with 2 and 5% Biona additions generally increased the nitrogen–phosphorus–potassium (N‐P‐K) content in tomato and cucumber organs at the flowering and fruiting stage with parallel magnesium (Mg) and calcium (Ca) content decrease. Introduction of nutrients together with the ion exchange substrate did not cause negative effects of overfertilization, and thus the ion exchange substrate can be recommended as a fertilizer in tomato and cucumber cultivation.  相似文献   

7.
Abstract

Tomato plants (cv. VF145 B 7879) were grown in a greenhouse by the water culture technique with six levels of K nutrition. The absorptions of Na, Ca, and Mg were not affected greatly by the K nutritional status of the intact tomato plants, except when the plants were extremely K deficient. The rates of absorption by the intact plants were slow initially when the plants were small, and then increased rapidly as the growth rates increased.

At the onset of K deficiency, the rate of growth and water use by the tomato plant decreased. A linear function of water use and plant size was obtained, indicating that water use was a function of plant size and hence a function of the plant's nutritional status.

Waterlogging, simulated by aeration cut‐off of the culture solution for two days, had only a small effect on water use, but concurrently interrupted the absorption of K, Ca, and Mg.  相似文献   

8.
Three cultivars of tomato (Lycopersicon esculentum Mill., cvs. Sera, 898, Rohaba) were grown under different levels of NaCl in nutrient solution to determine effects of salt stress on shoot and root dry matter (DM), plant height, water use efficiency (WUE, g DM kg‐1 water evapotranspired), shoot sodium (Na) and potassium (K) concentrations, and K versus Na selectivity (SK,Na). Increasing NaCl concentration in nutrient solution adversely affected shoot and root DM, plant height, WUE, K concentration, and K/Na ratio of all cultivars. Shoot Na concentrations increased with increasing NaCl concentration in the nutrient solution. Although increasing salt concentration in the solution adversely affected growth of all cultivars, the cultivar Sera had the highest shoot and root DM than the other two cultivars (898 and Rohaba). Shoot and root DM of cultivar 898 was most affected by salt, while cultivar Rohaba had an intermediate salt sensitivity. The cultivar Sera generally had higher WUE values, shoot K concentrations, and SK,Na, but had lower shoot Na concentrations than the other two cultivars when plants were grown under different salt levels. Greater Na exclusion, higher K uptake and shoot SK,Na are suggested as being plant strategies for salt tolerance.  相似文献   

9.
Abstract

The effect of salinity on the growth and yield of tomato plants and mineral composition of tomato leaves was studied. Five tomato (Lycopersicon esculentum Mill) cultivars, Pearson, Strain B, Montecarlo, Tropic, and Marikit, were grown in sand nutrient culture. The nutrient solutions applied consisted of a modified half‐strength Hoagland solution with 50 mM sodium chloride (NaCl), 3 mM potassium sulphate (K2SO4), 1.5 mM orthophosphoric acid (H3PO4), and 10 mM calcium sulphate (CaSO4). Stem height and number of leaves of tomato plants were not found to be significantly different but leaf and stem dry weight were reduced significantly in plants irrigated with saline nutrient solution in contrast with control plants. The total yield was reduced in plants that received saline treatments, but there was no significant difference in fruit number and fruit set percentage. The fruit electrical conductivity and total soluble solids were increased in plants irrigated with saline nutrient solution. Fruit pH was not found to be significantly different among salinity treatments. Mineral composition of tomato leaves were increased by addition of potassium (K), phosphorus (P), and calcium (Ca) to the saline nutrient solution. The addition of K to the solution resulted in an increase in sodium (Na) leaf content. The amounts of K and magnesium (Mg) were not significantly different among salinity treatments. Calcium content was increased when CaSO4 was added. Application of H3PO4 resulted in the highest amount of P in tomato leaves under saline conditions. The present study revealed that application of K, P, and Ca under saline conditions improved fruit electrical conductivity and total soluble solids. Sufficiency levels of the mineral nutrients K and P were obtained in tomato leaves when the appropriate nutrient was used in the saline solution.  相似文献   

10.
A short-term experiment was conducted to investigate whether the effect of rootstock on plant response to salinity depends on the solanaceous species used as scion. Tomato cv. ‘Ikram’ and eggplant cv. ‘Black Bell’ were grafted onto two tomato interspecific hybrids (‘Beaufort’ and ‘He-Man’). Plants were grown in an open soilless cultivation system and supplied with two nutrient solutions: non-saline control and a saline solution (adding 15 mM Na2SO4, 3.7 dS m?1). Plant dry biomass production and partitioning were influenced by salinity, but its effect was depending on the rootstock/scion combination. ‘Beaufort’ eliminated the deleterious effect of salinity when tomato was used as scion, but reduced (?29.6%) the shoot biomass of eggplant. ‘He-Man’ had a different effect on scion growth under saline conditions: shoot biomass was less reduced in eggplant (?20.6%) than in tomato (?26.8%). Under salt stress, ‘Beaufort’ reduced the accumulation of Na+ in tomato leaves more than in eggplant, whereas no differences were observed between tomato and eggplant grafted onto ‘He-Man’. Stem Na+ accumulation followed a different pattern. The increase of Na+ in the stems was similar for tomato and eggplant grafted onto ‘Beaufort’, whereas stems of tomato accumulated more Na+ compared to eggplant grafted onto ‘He-Man’. The opposite response of the tested rootstocks to salt stress when the scion was either tomato or eggplant seems to be partially related to the capacity of the rootstock and scion to exclude Na+ from the shoot. However, the results of nutrient accumulation within plant tissues imply that other mechanisms in addition to ion competition are involved in the salt resistance of grafted plants.  相似文献   

11.
Ammonium accumulation and ethylene biosynthesis by plants may be interrelated events that lead to expression of symptoms of environmental stress. Compared to unstressed tissues, foliage of environmentally stressed plants often has accelerated rates of ethylene evolution and enhanced accumulation of uncombined ammonium. The present study assessed the effects of inhibitors of ethylene synthesis or action on ethylene evolution, ammonium accumulation, and symptoms of tomato (Lycopersicon esculentum Mill.) stressed by ammonium toxicity or nutrient (P, K, Ca, Mg) deficiency. ‘Heinz 1350’ and neglecta‐1 tomato were grown in sand culture in greenhouses. Plants receiving ammonium nutrition and (aminooxy)acetic acid (AOA), a purported inhibitor of ethylene synthesis, had no symptoms of ammonium toxicity. Ethylene evolution and ammonium accumulation were suppressed by AOA. Silver thiosulfate (STS), a purported inhibitor of ethylene action, delayed the appearance of ammonium toxicity symptoms and maximum ethylene evolution, but had no effect on maximum ammonium accumulation relative to the plants treated without STS. Ammonium accumulation and ethylene evolution by nutrient‐deficient plants, especially Ca and Mg, were inhibited by AOA. AOA delayed expression of symptoms of nutrient deficiency for several days and elevated elemental concentrations but restricted growth of nutrient‐deficient plants. The results of this study suggest that ammonium accumulation and ethylene biosynthesis are common intermediates in development of symptoms in nutrient‐stressed plants.  相似文献   

12.
The separate and combined effects of water and Al stress on concentrations of P, K, Ca, Mg, Fe, Mn, Zn, Cu, B, Al, Sr, and Ba were determined in tops of ‘Dayton’ (Al‐tolerant) and ‘Kearney’ (Al‐sensitive) barley (Hordeum vulgäre L.) grown in an acid, Al‐toxic, Tatum subsoil (clayey, mixed, thermic, Typic Hapludult). Plants were grown 4 weeks in a plant growth chamber at high (pH 4.7) or low (pH 6.6) Al stress. During the last 2 weeks they were also subjected to low (‐20 to ‐40 kPa), moderate (‐40 to ‐60 kPa), or high (‐60 to ‐80 kPa) water stress. In general, Al stress had a greater overall effect on mineral element concentration of tops than water stress. Aluminum stress significantly decreased concentrations of P, Ca, and Mg and increased concentrations of Zn, Sr, and Ba, irrespective of the cultivar or water stress treatment. Cultivar differences in Mn concentration were observed with Al stress under all water stress conditions. In each case, Mn concentration was lower in ‘Kearney’ than in ‘Dayton’. Potassium, Ca, and Mg were lower in ‘Kearney’ than in ‘Dayton’ only at low and moderate water stress, under low Al stress, ‘Kearney’ had significantly higher concentrations of K and Ca than did ‘Dayton’ under all water stress conditions. The effects of water stress on mineral element concentration varied greatly with cultivar, Al stress treatment, and severity of water stress. Under high Al stress, increasing drought conditions from low water stress (‐20 to ‐40 kPa) to high water stress (‐60 to ‐80 kPa) significantly increased the concentrations of Ca, K, Zn, Sr, and Ba in Al‐sensitive ‘Kearney’ and reduced the concentrations of Zn, Sr, and Ba in Al‐tolerant ‘Dayton'; P and Mg concentration were unaffected by water stress. In contrast, under low Al stress, a corresponding increase in water stress significantly increased the concentrations of Ca and reduced that of P in ‘Kearney’ and increased Ca and B concentration in ‘Dayton'; Mg concentrations were unaffected in either cultivar. Thus, it appears that Al stress and water stress had opposite effects on Ca accumulation in barley tissue.  相似文献   

13.
During the vegetative period of the biennial chicory plant (Cichorium intybus L., witloof type) nutrient solutions with a constant cationic content but variable proportions of potassium (K), calcium (Ca), and magnesium (Mg) were applied to the plants grown on perlite. This resulted in taproots varying in cation content: K and Mg decreased and Ca increased in the high‐Ca series compared with the control. A forcing experiment of the taproots in darkness with a standard nutrient solution resulted in a low percentage of brown axes (11%), a Ca‐deficiency symptoms in the chicons from high Ca‐treated roots as compared with 45% in the control. Analysis of the cations in chicons and roots after forcing showed a prevalence of K and Mg migration in comparison with sodium (Na) and Ca towards the chicon. During the first days of forcing, mineral nutrition of the chicon relied only on root reserves and competition between Ca and K‐Mg was reduced in the high Ca‐treated roots, therefore limiting brown axis initiation. Later on, the contribution of the external medium was greater in the high‐Ca series, notably for K, thus involving a higher water and Ca‐linked flux towards the chicon which kept it above the critical level of internal browning expression.  相似文献   

14.
The pineapple cultivars ‘Moris’ (Queen cultivar), ‘N‐36’ (‘Sarawak’ × ‘Gandul’ hybrid), ‘Gandul’ (Singapore Spanish cultivars), and ‘Josapine’ (‘Singapore Spanish’ × ‘Smooth Cayenne’ hybrid) are mostly grown on peat soils in Malaysia, whereas ‘Sarawak’ (‘Smooth Cayenne’ cultivar) is more commonly grown on mineral soils. To obtain good yields of fruit of high quality, it is important to understand the differences in nutrient requirements for these cultivars in the different soils in which they are grown. Therefore, the objectives of the study were to determine the biomass and nutrient partitioning of the different pineapple cultivars and to determine the plant variables affecting fruit yield and quality. Plants of each of the pineapple cultivars were randomly sampled from different locations of the major pineapple‐growing areas in Malaysia. Only plants having A‐grade fruit of marketable quality at harvest were selected. The cultivars and respective field sites were as follows: ‘Sarawak,’ Bukit Tandak farm, Kelantan (5° 55.274′ N, 102° 00.608′ E); ‘Moris,’ ‘N‐36,’ and ‘Gandul,’ Peninsula Pineapple Plantations, Simpang Renggam, Johor (1° 49.909′ N, 103° 14.053′ E); and ‘Josapine,’ Goh Swee Eng Pineapple Farm, Simpang Renggam, Johor (1° 48.441′ N, 103° 11.935′ E). Plants were partitioned into roots, stem, leaves, peduncle, fruit, and crown, and fresh and dry weights were recorded. Total biomasses for the different cultivars were 733.46 ± 22.83 g for ‘Gandul,’ 842.34 ± 43.26 g for ‘N‐36,’ 927.38 ± 53.10 g for ‘Moris,’ 434.77 ± 16.82 g for ‘Josapine,’ and 2446.94 ± 156.00 g for ‘Sarawak.’ Leaves accounted for the greatest proportion of dry matter (48.5%), followed by fruit (22.9%) and stem (21.6%), and a smaller proportion (1.2–2.5%) was roots, peduncle, and crown. The proportions of the dry‐matter accumulation in leaves and stem for the cultivars were 53.5 ± 0.7 and 16.7 ± 0.9% for ‘Gandul’; 45.1 ± 0.5 and 17.7 ± 0.7% for ‘N‐36’; 51.9 ± 1.6 and 16.8 ± 0.6% for ‘Moris’; 56.5 ± 1.0 and 12.0 ± 0.9% for ‘Josapine’; and 54.2 ± 5.1 and 27.7 ± 4.4% for ‘Sarawak.’ The proportion of the macro‐ and micronutrients in pineapple parts differed widely between cultivars. Potassium (K) showed the greatest proportion (7.96 ± 0.6 to 29.73 ± 1.17%) in leaves and (4.46 ± 0.70 to 9.35 ± 0.28%) in fruit followed by nitrogen (N) and phosphorus (P) with lower proportions. Most pineapple cultivars grown showed variation in nutrient‐use efficiency (NUE) with respect to the elements measured with values of <1.0 g dry matter g?1 nutrient. The NUE values of >1.0 g dry matter g?1 nutrient were observed for magnesium (Mg) in ‘Gandul’ and ‘N‐36’ and for calcium (Ca) and copper (Cu) in ‘N‐36.’ Total nutrient accumulation in the plant components differed approximately according to their cultivar origins (‘Smooth Cayenne,’ ‘Queen,’ ‘Singapore Spanish’). It is interesting that the results for the ‘Singapore Spanish’ × ‘Smooth Cayenne’ hybrid Josapine were more similar to the ‘Singapore Spanish’ cultivars than being between the parents. Partitioning of biomass and nutrients in pineapple provides a means to categorize them and makes it possible to use a cultivar‐based fertilization program.  相似文献   

15.
《Journal of plant nutrition》2013,36(8):1311-1323
Tomato (Lycopersicon esculentum Mill.) yields are known to decrease for plants grown in saline soils. This study was conducted to determine the effects of arbuscular mycorrhizal fungi (AMF) inoculation on fruit yield and mineral content of salt-tolerant and salt-sensitive tomato cultivars grown with varied levels of salt. NaCl and CaCl2were added to soil in the irrigation water in equal molar ratios to give ECe values of 1.4 (nonstressed) and 4.9 dS m?1 (salt stressed). Plants were grown in a greenhouse using unsterilized, low phosphorus (P) (silty clay) soil-sand mix. Mycorrhizal root colonization occurred whether cultivars were salt stressed or nonstressed, but the extent of AMF root colonization was higher in AMF inoculated than uninoculated plants. The salt tolerant cultivar ‘Pello’ generally had higher AMF root colonization than the salt sensitive cultivar ‘Marriha’. Shoot dry matter (DM) yield, fruit fresh yield, and AMF colonization were higher for plants grown under nonstressed than for plants grown under salt stressed conditions. Shoot DM and fruit fresh yields were higher in AMF inoculated than uninoculated plants grown with or without salt stress. Pello generally had higher fruit fresh yield per plant and fruit weight than Marriha, but these differences were only significant for fruit weight in unioculated plants grown under salt stressed conditions. The enhancement in fruit fresh yield due to AMF inoculation was 26 and 23% under nonstressed and 28 and 46% under salt stressed treatments for Pello and Marriha, respectively. For both cultivars, fruit contents of P, potassium (K), zinc (Zn), copper (Cu), and iron (Fe) were higher in AMF inoculated compared with uninoculated plants grown under nonstressed and salt stressed conditions. Fruit Na concentrations were lower in AMF inoculated than uninoculated plants grown under salt stressed conditions. The enhancement in P, K, Zn, Cu, and Fe acquisition due to AMF inoculation was more pronounced in Marriha than in Pello cultivar under salt stressed conditions. The results of this study indicated that AMF inoculated plants had greater tolerance to salt stress than unioculated plants.  相似文献   

16.
Mineral‐nutrient stress is one of the main factors limiting crop production, especially in arid lands. The mineral requirement of a crop is difficult to determine, and the interpretation of foliar chemistry composition is not easy. This study was conducted to compute the minimum yield target for fresh fruit of yellow pepper (Capsicum annuum L.) and the corresponding Compositional Nutrient Diagnosis (CND) as well as to identify significant nutrient interactions of this crop in desert calcareous soils. Preliminary CND norms were developed using a cumulative variance‐ratio function and the chi‐square distribution function. From a small database, we computed means and standard deviations of row‐centered log ratios, VX, of five nutrients (N, P, K, Ca, and Mg) and a filling value, R, which comprises all nutrients not chemically analyzed and quantified them in 54 foliar samples of the popular yellow pepper cv. ‘Santa Fé’. This cultivar is widely grown in northwest Mexico under arid conditions. These norms are associated to fresh fruit yields higher than 15.04 t ha–1. Principal‐component analyses, performed using estimated CND nutrient indexes, allowed us to identify four interactions: negative P‐Ca, P‐Mg, and N‐K, and positive Ca‐Mg. Pepper plants growing on calcareous soils tend to take up more Ca and Mg than considered as optimum in other soil conditions.  相似文献   

17.
Euonymus kiautschovica Loes. ‘Sieboldiana’ plants were grown in small‐volume (450 cm3) or large‐volume (13,500 cm3) plastic containers in the greenhouse in a medium containing sandy loam, perlite, and compost and harvested at 4‐week intervals from the time of planting until 20 weeks. Plants were irrigated with a nutrient solution 3x ‐ 5x daily to prevent water and nutrient stress. After 8 weeks, leaf number, leaf area, and shoot length of lateral shoots from plants grown in small‐volume containers were significantly less than those of plants grown in large‐volume containers for both lateral shoots and the total plant. These differences persisted for the next 12 weeks. There were no differences, however, in shoot length, leaf number, or leaf area of the main shoot of plants grown in large or small‐volume containers, even after 20 weeks of root restriction. Thus, the reduction in overall growth of root‐restricted plants could be attributed almost entirely to a reduction in growth of the lateral buds. These findings have important implications for researchers and growers involved in container culture, where root confinement frequently occurs.  相似文献   

18.
Leaf chlorophyll content is closely related to leaf nitrogen (N) content, so it is reasonable to assume that ammonium‐N (NH4‐N): nitrate‐N (NO3‐N) ratio in the nutrient solution used to grow tomatoes (Lycopersicon esculentum Mill.) hydroponically may affect leaf greenness, and consequently chlorophyll meter (SPAD) readings. It has also been shown that increasing nutrient solution strength (NSS) increases tomato productivity, but there are no reports regarding how NSS affects SPAD readings under greenhouse conditions. Genotype may also influence SPAD readings, and standardization for cultivar and sampling time may be needed. The objective of this study was to characterize SPAD readings for five tomato cultivars and SPAD reading response to a combination of two NSS (1X and 4X Steiner solution strength daily applied 18 days after transplanting at 7 p.m.) and two concentrations of NH4‐N in solution (0 and 25%) in order to evaluate the potential of SPAD readings as a tomato yield predictor in greenhouse production systems. The SPAD readings were not uniform across tomato varieties tested, being consistently higher for ‘Max’ and lower for the other varieties. Initially, SPAD readings for tomato varieties used in this study were low at the vegetative stage, and increased up to 40 DAT, but subsequently decreased at 49 DAT, or the fruit set of the first and second clusters. After this time, SPAD readings showed no variation. Chlorophyll meter readings for ‘Max’ were higher in the top plant layers, but decreased in the top plant layer of the other tomato varieties. The SPAD readings were higher for plants supplied with 25% NH4‐N than those without NH4‐N in solution, but the use of a nighttime nutrient solution did not affect SPAD readings. None of the possible interactions among tomato variety, NH4‐N: NO3‐N ratio, and NSS were consistently significant.  相似文献   

19.
Iron‐efficient T3238FER tomatoes (Lycopersicon esculentum Mill.) did not respond to Fe‐deficiency stress by releasing hydrogen ions and reductants from their roots when the plants were grown in a K‐deficient nutrient solution with or without sodium. When increments of K were added to the nutrient solution, the plants responded proportionally to Fe‐deficiency stress, Fe was transported to plant tops and the chlorophyll concentration in plant tops increased. As the leaf Fe concentration was increasing, root K concentration was increasing and root Mn concentration was decreasing. The K and Mn in tops did not show the marked differences observed in roots.

In the presence of adequate K, renewing the solutions each time the pH was lowered to near 4 (days 7 and 11) caused an increased concentration of most elements in the plant, especially Mn in both tops and roots. These plants had the same Fe concentration as plants grown in unchanged solutions but they contained much less chlorophyll. Balance of nutrient elements to some degree seems required in order for iron to be made available to function properly in the plant.  相似文献   


20.
Two tomato scions (cvs. ‘Raf’ and ‘Gorety’) were grafted on three different rootstocks: S. torvum, ‘Beaufort’ (Lycopersicum esculentum × Lycopersicum hirsutum) and intermediate grafting of eggplant ‘Cristal’ between tomato and S. torvum (double graft). Plants were grown in Mediterranean greenhouse conditions. The response to grafting was measured through growth parameters, Fv/Fm and leaf macronutrients analysis, and it was compared with non-grafted plants. The scions grafted on S. torvum in simple and double graft showed lower fresh and dry weight of leaves, number of commercial fruits, plant height, Fv/Fm and decreased their capacity to absorb several nutrients resulting in a lower mineral concentration in scions leaves, as a result of a thickened graft union. On the other hand, both scions showed a good response when grafted on the rootstock ‘Beaufort’, with which growth parameters, yield and photosynthetic capacity were similar to non-grafted plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号