首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variation in the seed shape, colour and yield, and content, yield and fatty acid composition of seed oil of 109 accessions of opium poppy Papaver somniferum, (majority of them Indian land races), was investigated. The seeds were white, pale yellow or light brown in colour, reniform or round in shape and varied in size up to three fold. The oil content, seed and the oil yield varied between 26 to 52%, 1.0 to 7.4 g/plant and 0.4 to 2.7 g/plant, respectively. The % content of palmitic, oleic and linoleic acid in the seed oil ranged between 9.3 to 40.0%, 7.5 to 58.4% and 0.7 to 72.7%, respectively. On average basis, the levels of major fatty acids in the seed oil were: oleic (37.1%) > palmitic (27.3%) > linoleic acid (17.2%). The palmitoleic, stearic and linolenic acids were present in the oils of only some of the accessions. Two of the accessions yielded linoleic acid rich seed oil of about the same quality as soybean and maize oils, and in four accessions, the proportion of palmitic, oleic and linoleic acids was roughly equal. The palmitic acid was relatively less and linoleic acid more in the seed oil from accessions rich in oil content. The oil that contained higher amount of oleic acid also contained higher amount of palmitic acid and relatively lower amount of linoleic acid. The correlation analyses revealed a strong positive relationship between seed yield and oil yield (r = +0.81), oil yield and oil content (r = +0.54) and oleic acid and palmitic acid content in the seed oil (r = +0.49), and a weak positive relationship between oil content and linoleic acid content of oil (r = +0.24), and a negative correlation was observed between oil content and palmitic acid content (r = –0.32), palmitic acid and linoleic acid (r = –0.55) and oleic acid and linoleic acid contents of oil (r = –0.68). The observations have permitted selection of accessions that are high seed and oil yielding and/or rich in linoleic, palmitic and oleic acids or containing palmitic, oleic and linoleic acids in about equal amounts.  相似文献   

2.
The opium latex of 1470 individual plant samples of 98 germplasm lines were screened for five major economic alkaloids. The alkaloids profile showed that morphine content ranged from 9.20–20.86% with an average of 15.00 ± 0.267. Codeine ranged from 1.69–6.48% with arithmetic mean of 3.35 ± 0.091, thebaine from 0.52–7.95% with an average of 2.27 ± 0.116. Narcotine ranged from 8.79–17.97% with an average 8.79 ± 0.266 and papaverine content ranged from 0.00–6.07% with an average 1.18 ± 0.167 in over all the germplasm lines. The content of different alkaloids categorized into class interval which exhibited that maximum number of plants and accessions for morphine content fall in group of 10–15% followed by 15–20%, for codeine content in group of 2–4% followed by 4–6%, for thebaine content in 1–2% followed by 2–4%, for narcotine in 5–10% followed by 10–15% and for papaverine content 0–2%. 24 germplasm lines had morphine content above 16.0%. Similarly, 37 germplasm lines for codeine and 13 for thebaine showed consistently high content, i.e., above 3%. 33 germplasm lines had narcotine content above 9% and 20 lines exhibited papaverine content above 2%. Line BR 316 was found unique having thebaine content 6.27–9.33%. The probable reasons of increase or decrease of different alkaloids based on their biosynthetic pathway has been discussed in detail.  相似文献   

3.
A set of 208 Indian and two Thai germplasm accessions of opium poppy Papaver somniferum were assessed for variation in 17 morphological characters, seed yield and content and yield of morphine from capsules and peduncles. The germplasm was found to be highly variable for all the characters evaluated. In the harvested peduncles and capsules, 13% was peduncle straw, 61% seeds and the rest capsule husk. The peduncle and capsule straw yields ranged between 0.6–2.2 and 1.4–5.3 g plant-1, respectively. Morphine content in the peduncle varied between about 0.001–0.24% and that in the capsule from 0.02 to 1.05%. On average basis morphine content in the capsule husk was more than 9-fold higher than the peduncle straw. The plant morphine yields from peduncles and capsules ranged between 1.2 and 28.6 mg plant-1. Four accessions yielded more than 20 mg of morphine plant-1. Among these, in one of the accessions about 13% of the morphine was contributed by the peduncle. The plants of high morphine yielding accessions were generally small in height, and bore white flowers and large sized ungrooved capsules with a small number of seeds, on a large peduncle.  相似文献   

4.
Nineteen bush bean cultivars were screened for tolerance to excess Mn in nutrient solution and sand culture experiments. Seven‐day‐old seedlings were treated with full strength Hoagland No. 2 nutrient solution containing different Mn concentrations for 12 days in the greenhouse.

Cultivars showing the greatest sensitivity to Mn toxicity were ‘Wonder Crop 1’ and ‘Wonder Crop 2'; those showing the greatest tolerance were ‘Green Lord’, ‘Red Kidney’ and ‘Edogawa Black Seeded’.

Leaf Mn concentration of plants grown in sand culture was higher than that for plants grown in solution culture. The lowest leaf Mn concentration at which Mn toxicity symptoms developed, was higher in tolerant than in sensitive cultivars. The Fe/Mn ratio in the leaves at which Mn toxicity symptoms developed, was higher in the sensitive cultivars than in the tolerant ones.

We concluded that Mn tolerance in certain bush bean cultivars is due to a greater ability to tolerate a high level of Mn accumulation in the leaves.  相似文献   


5.
Poppy seed oil (Oleum Papaveris Seminis) is used for culinary and pharmaceutical purposes, as well as for making soaps, paints, and varnishes. Astonishingly, hardly anything was yet known about the volatile compounds of this promising comestible. Likewise, there are no current published data about the triglyceride (TAG) composition of poppy seed oils available. In this investigation solid-phase microextraction (SPME) with DVB/Carboxen/PDMS Stable-Flex fiber was applied to the study of volatile compounds of several seed oil samples from Papaver somniferum L. (Papaveraceae). 1-Pentanol (3.3-4.9%), 1-hexanal (10.9-30.9%), 1-hexanol (5.3-33.7%), 2-pentylfuran (7.2-10.0%), and caproic acid (2.9-11.5%) could be identified as the main volatile compounds in all examined poppy seed oil samples. Furthermore, the TAG composition of these oils was analyzed by MALDI-ReTOF- and ESI-IT-MS/MS. The predominant TAG components were found to be composed of linoleic, oleic, and palmitic acid, comprising approximately 70% of the oils. TAG patterns of the different poppy varieties were found to be very homogeneous, showing also no significant differences in terms of the applied pressing method of the plant seeds.  相似文献   

6.
ABSTRACT

This study aimed to assess the physiological and biochemical responses of cotton plants to manganese (Mn2+) nutrition. Four cotton genotypes (G1 – TMG 47; G2 – FM 975 WS; G3 – TMG 11 WS and G4 – IMA 8405 GLT) were grown in nutrient solution under two Mn2+ concentrations (2 and 200 µmol L?1) for 10 days. No visible symptoms of Mn2+ toxicity were observed in the genotypes tested. All genotypes showed a marked increase in leaf chlorophylls, pheophytins, carotenoids, sucrose and total sugars concentration in response to high Mn2+ in a nutrient solution. However, the net photosynthetic rate, stomatal conductance, internal carbon dioxide concentration and transpiration decreased in genotypes G1 and G2 growing under 200 µmol L?1. Antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) activities increased in genotypes G1, G3 and G4. Cotton genotypes showed an increased leaf antioxidant and sugar metabolism as a possible strategy to mitigate oxidative stress. The decrease in the net photosynthetic rate and stomatal conductance; the increased antioxidant enzymes activities (SOD, APX and GR); and the increase in leaf sucrose and total sugar concentration were the main physiological and biochemical responses in cotton plants to Mn2+ stress.  相似文献   

7.
Manganese tolerant ‘Lee’ and Mn sensitive ‘Forrest’ soybean cultivars were grown in a potting soil with no known Mn toxicity and in Loring soil treated with excess Mn. Manganese toxicity in Loring soil was induced by the addition of Mn at 0, 100, 200 and 400 ug g‐1 as MnSO4.H2O. A preliminary experiment was conducted to determine the appropriate Mn stress levels for Lee and Forrest soybean cultivars in Loring soil. Because the Loring soil produced severe Mn toxicity in both cultivars, even with an intial pH of 4.9 and no added Mn, CaCO3 (2 g kg‐1 ) was added to Increase the pH to 6–6.3. Soil was analysed for extractable and water soluble Mn and plants for Mn, Ca and Fe.

A second experiment was conducted to determine the effect of Mn toxicity on stomatal function. The procedure was the same as in the first experiment except that the CaCO3 treatment was 2.5 g kg‐1 to raise soil pH to 6.2 ‐6.5. Plants were grown in a greenhouse for 10 days and then moved to a growth chamber before making stomatal conductance measurements. A steady state porometer (LI 1600) was used. Results indicated that Mn toxicity closed stomates and decreased transpiration rates. This effect was more pronounced in Mn sensitive Forrest than in Mn tolerant Lee.  相似文献   

8.
Cucumber plants (Cucumis sativus L. cv. Chinese long) were grown in nutrient solution with increasing manganese (Mn) concentrations (0.5, 50, and 100 µM) with (+Si) or without silicon (–Si) supplied as silicic acid at 1.5 mM. High external Mn supply induced both growth inhibition of the whole plant and the appearance of Mn‐toxicity symptoms in the leaves. The application of Si alleviated Mn toxicity by increasing the biomass production. Although the total Mn concentration in the leaves did not differ significantly between +Si and –Si plants, symptoms of Mn toxicity were not observed in Si‐treated plants. The concentrations of phenolic compounds, particularly in the leaf extracts of cucumber plants grown at high external Mn concentrations, differed from those of plants grown without Si. The increased tissue concentrations of phenols (e.g., coniferyl alcohol, coumaric and ferulic acids) were in agreement with enhanced enzymes activities, i.e., peroxidases (PODs) and polyphenol oxidases (PPO) in the tissues of –Si plants. The activities of both enzymes were kept at a lower level in the tissue extracts of +Si plants grown at high external Mn concentrations. These results suggest that Si nutrition modulates the metabolism and utilization of phenolic compounds mainly at the leaf level, most probably as a consequence of the formation of Si‐polyphenol complexes.  相似文献   

9.
Previous studies showed that limpograss, Hemarthria altissima (Poir), Stapf & C. E. Hubb (PI 364344) was tolerant to low temperature and to high concentrations of Al in acid soil, mine spoil and nutrient solution. Additional experiments were conducted to test the tolerance of this limpograss clone to excess Mn, another potential growth‐limiting factor in acid soils.

Cuttings from a single plant were grown in pots of Mn‐toxic Zanesville soil with no lime (pH 5.1) and 1250 ppm CaCO (pH 6.3) and in nutrient solutions containing 0, 4, 8, 16, 32 or 64 ppm Mn at pH 4.0. The grass was highly tolerant to excess Mn in both media. Liming the soil from pH 5.1 to 6.3 did not significantly affect top dry weight of the first harvest and significantly decreased that of the second. In nutrient solutions at pH 4.0 top dry weights were not significantly affected by Mn concentrations up to 64 ppm. Root dry weights were significantly increased by Mn additions of 16, 32 and 64 ppm. Limpograss (PI 364344) was not injured when Mn concentrations were as high as 930 and 9152 ppm in tops and roots, respectively. High Mn tolerance is yet another trait that should enhance the potential use of this grass in revegetating acid mine spoils and other acid sites.  相似文献   


10.
钙盐诱导下土壤锰和铁的释放及其对胡椒的生物有效性   总被引:9,自引:7,他引:9  
Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P< 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.  相似文献   

11.
Two bush bean cultivars [Phaseolus vulgaris L. cv. ‘Wonder Crop 2’ (WC‐2) and ‘Green Lord’ (GL)], differing in Mn toxicity, were grown in a growth chamber for 12 days in Hoagland No. 2 nutrient solution containing 0.05 to 1 ppm Mn as MnCl24H2O with 1 ppm Fe as Fe‐EDTA, at an initial pH 5.00. Concentrations of Zn, K, Ca and Mg in the tissues of two bush bean cultivars were examined in relation to Mn toxicity.

The concentration of Zn in the leaves of Mn‐sensitive WC‐2 increased significantly with increasing Mn concentration in the solution, but such levels were not toxic to the plants.

The percent distribution of Zn and K in Mn‐sensitive WC‐2 plants (% of total uptake) significantly increased in the tops and decreased in the roots with increasing Mn concentration in the nutrient solution; however, Mn treatment had no effect on distribution of either Ca or Mg in WC‐2. External Mn concentration had little or no effect on the K, Ca, or Mg concentration in the tops of Mn‐tolerant GL.  相似文献   


12.
大豆根瘤形成和生长对营养液中供磷的反应   总被引:3,自引:0,他引:3  
A survey was conducted for about 3 years to study the abundance and diversity of ectomycorrhizal fungi (EMF) in Jiangsu Province, China. The identification of the fungal species was based on the microscopic and macroscopic characteristics of their fruiting bodies. About 126 species of EMF were found in Jiangsu Province. These fungi were largely categorized into three orders (of 121 species), four families (of 96 species), and six genera (of about 86 species).  相似文献   

13.
In cowpea (Vigna unguiculata (L.) Walp.) tolerance of manganese (Mn) excess depends on genotype, silicon (Si) nutrition, form of nitrogen (N) supply, and leaf age. The physiological mechanisms for improved Mn leaf-tissue tolerance are still poorly understood. On the basis of the density of brown spots per unit of leaf area and the callose content which are sensitive indicators of Mn toxicity, it was confirmed that cultivar (cv.) TVu 1987 was more Mn-tolerant than cv. TVu 91, young leaves were more Mn-tolerant, Si improved Mn tolerance, and NO3-grown plants were more Mn-tolerant than NH4+-grown plants. A close positive relationship existed between the bulk-leaf Mn content and the vacuolar Mn concentration from the same leaves. Since no clear and consistent differences existed between leaf tissues differing in Mn tolerance, the results suggest that accumulation of Mn in the vacuoles and its complexation by organic anions do not play a role in Mn leaf-tissue tolerance in cowpea. A near linear relationship was found between leaf Mn contents and concentrations of free (H2O-soluble) and exchangeable-bound (BaCl2-extractable) Mn in the apoplastic washing fluid (AWF) extracted from whole leaves by an infiltration and centrifugation technique. There were no differences in apoplastic Mn concentrations owing to genotype and form of nitrogen nutrition. However, Si decreased the Mn concentration in the AWF. With increasing bulk-leaf Mn contents, concentrations of organic anions in the AWF also increased. The results suggest that complexation of Mn by organic anions in the leaf apoplast contribute to Mn tolerance due to genotype and more clearly due to NO3-N nutrition. Cell wall-bound peroxidase activity increased with leaf age and was higher in the Mn-sensitive cv. TVu 91 than in cv. TVu 1987. This was in agreement with a higher H2O2 production rate in cv. TVu 91. Also, a lower ratio of reduced to oxidized ascorbic acid in the AWF revealed that in Mn-sensitive leaf tissue, the apoplastic reduction capacity was lower than in Mn-tolerant leaf tissue when genotypes and leaves of different age were compared. We interpret our results as strong circumstantial evidence that Mn tolerance depends on the control of the free Mn2+concentration and of Mn2+-mediated oxidation/reduction reactions in the leaf apoplast.  相似文献   

14.
杀虫剂对甘蓝蚜与七星瓢虫的毒力及选择性研究   总被引:5,自引:0,他引:5  
试验研究杀虫剂对甘蓝蚜及其天敌七星瓢虫幼虫的毒力及选择性结果表明,15种供试杀虫剂中以吡虫啉对七星瓢虫幼虫和甘蓝蚜的选择性最高,其选择性毒力比值(瓢虫LD50/甘蓝蚜LD50)为174.29。5种有机磷类杀虫剂中以马拉硫磷的选择性最高,其次为敌敌畏,其选择性毒力比值分别为35.73和25.32;7种菊酯类杀虫剂中以氟氯氰菊酯和氯氰菊酯的选择性最高,其选择性毒力比值分别为55.16和30.00。故吡虫啉、氟氯氰菊酯和马拉硫磷等选择性较高的杀虫剂对甘蓝蚜相对毒力高,而对其天敌瓢虫相对安全,为防治菜田甘蓝蚜的理想品种。  相似文献   

15.
The objectives of this study were (1) to investigate effects of soil acidity on the formation of mycorrhizas in ash and sycamore, and (2) to elucidate if mycorrhization can improve the acquisition of Ca, Mg, and P by these tree species. Soil substrates with different Ca, Mg, and Al saturation were used in pot experiments with mycorrhizal ash and sycamore seedlings and various Ca and Mg fertilization treatments. The development of vesicular‐arbuscular‐mycorrhizas (VAM) in both species was considerably affected by the chemical soil properties and by the nutritional status of the plants. Mycorrhizal fungi developed well only in plants growing on basalt‐derived, Ca and Mg rich loam and in substrates fertilized with Ca and Mg carbonate. In these substrates, the pH value, Ca and Mg supply and growth of the plants were optimal. The mycorrhizas degenerated in an acid loam derived from phyllite, in tertiary sand and in all treatments receiving Ca and Mg sulfate. Ash and sycamore suffered from Ca and Mg (P) deficiency, and partly from Al antagonism against Ca and Mg uptake (sycamore) or Al toxicity (ash). The symbiosis between fungi and the plants was disrupted since the tree species and the VAM fungi (from fertile nursery soils) did not adapt to the acidic experimental soil substrates with high Al activity. Consequently, the fungi lost their function of supporting the plants by improved nutrient uptake and the plants likely did not produce enough organic substances for the fungi. In addition, N fertilization possibly suppressed the development of VA mycorrhizas and inhibited new colonization in acid substrates.  相似文献   

16.
Since the fate of nanoparticles after their release in the environment and their possible transfer in plants and subsequent impacts is still largely unknown, this paper evaluates the potential phytotoxic effects of up to 20% w/w TiO2 nanoparticles (nTiO2) on barley cultivated in hydroponics and agar media. The X-ray diffraction analysis confirmed that nTiO2 powder corresponds to anatase phase. On agar medium only high concentrations of nTiO2 (10% and 20% w/w) induced significant inhibition of shoot growth. However, hydroponics treatment with nTiO2 up to 1000?mg?L?1 did not show any adverse effect on the shoot growth. In both experiments, (i) root growth inhibition effects became visible with increasing concentration of nTiO2, (ii) plants treated with nTiO2 showed no change in chlorophyll a and b content, even though the plants absorbed nTiO2, (iii) weight of biomass treated with nTiO2 was not significantly different compared to control. Therefore, we assume that transport of nTiO2 into the aerial parts is limited due to the presence of effective mechanical or physiological barriers in roots. Overall, it appears that early root growth is a relevant indicator of potential effects of nTiO2 exposure. Our results also indicate that synthesized nTiO2 are not significantly toxic to the barley when applied at the concentrations used in this work, even though plants absorb titanium.  相似文献   

17.
Selenite is a form of selenium (Se) commonly found in Se-excessive soils. To regulate the Se content in plants in high-Se areas, a potted soil experiment was performed on oilseed rape (Brassica napus L.) to evaluate the effects of varied amounts of sulfur (S) on the biomass, accumulation and distribution of Se in B. napus under the conditions of different amounts of Se in the soil. The results showed that the seedlings of B. napus were more sensitive to Se than the mature plants were. The addition of S significantly alleviated the growth inhibition in seedlings and facilitated the growth of mature plants under higher Se (15 mg kg?1) conditions. S treatment significantly decreased soil pH within the range of 0.22–0.60. An appropriate moderate amount (150 mg kg?1) of S exerted the strongest inhibition on Se concentration and accumulation in B. napus at the seedling stage, but a higher amount (300 mg kg?1) of S led to a more significant decrease in the mature plants under higher Se conditions, with the maximum reduction in various parts of B. napus reaching 51.3–60.9% and 42.5–53.4%, respectively. The application of S only affected the uptake of Se, and not the translocation of Se; the accumulation of Se in B. napus follows the sequence of pod ≈ stem > rapeseed > root, and the distribution ratio is approximately 1.00:0.97:0.69:0.49. Overall, the application of S alleviated the inhibitory effect on growth caused by excessive Se by reducing the Se concentration in B. napus and facilitating its growth, suggesting that S treatment is a suitable and highly cost-effective method to regulate the content of Se in B. napus.  相似文献   

18.
Manganese efficiency is a term used to describe the ability of plants to obtain higher relative yields at low Mn supply compared to other species. To evaluate Mn efficiency of wheat (Triticum aestivum L.) and raya (Brassica juncea L.), a greenhouse pot experiment was conducted using Mn deficient Typic Ustochrept loamy sand soil, treated with 0, 50, and 100 mg Mn (kg soil)–1. In the no‐Mn treatment, wheat had produced only 30 % of its maximum dry matter yield (DMY) with a shoot concentration of 10.8 mg Mn (kg DM)–1 after 51 days of growth, while raya had produced 65 % of its maximum DMY with 13.0 mg Mn (kg DM)–1. Taking relative shoot yield as a measure of Mn efficiency, raya was more efficient than wheat. Both crops produced the maximum DMY with 50 mg Mn (kg soil)–1. Even though raya had a lower root length : DMY ratio and a higher shoot growth rate, it acquired higher Mn concentrations in the shoot than wheat under similar soil conditions, because of a 2.5 times higher Mn influx. Model calculations were used to calculate the difference of Mn solution concentration (ΔCL) between the bulk soil (CLi) and the root surface (CL0) that is needed to drive the flux by diffusion equal to the measured influx. The results showed that ΔCL was smaller than CLi, which indicates that chemical mobilization of Mn was not needed to explain the observed Mn uptake even for raya. According to these calculations, the higher Mn influx of raya was caused by more efficient uptake kinetics, allowing for a 4.5 times higher Mn influx at the same Mn concentration at the root surface.  相似文献   

19.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   

20.
The seedlings of the soybean ( Glycine max. (L.) Merr.) cv. Polan were investigated by subjecting them to water culture for a period of 14 d. To the Knop nutrient solution, lead was added as PbCl2 at four concentrations: 0, 10, 20 and 40 mg dm−3. Observations of soybean leaf tissues were carried out by light microscopy, transmission electron microscopy and scanning electron microscopy. The Pb levels used in the present study reduced the area of cotyledons and leaf blades of the soybean plants. Pb-induced changes in the leaf epidermis structure involved a reduction in the cell size, more abundant wax coating, and an increase in the number of stomata and trichomes per unit area with simultaneous reduction in the size of the guard cells. The lead treatment resulted in the reduction in the thickness of the leaf blades, reduction in the area of xylem and phloem in the vascular bundles and in the diameter of the xylem vessels. Under Pb stress, the leaf mesophyll cells were characterized by the presence of altered chloroplasts with a reduced lamellar system and multidirectional pattern of the thylakoid system. Burst stroma of the thylakoid system and cracked chloroplast envelopes were also observed. The importance of the increase in the number of stomata and trichomes for plants under the metal stress was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号