首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
The degradation of xanthine was studied in young and aged leaves and in immature and mature fruits of Coffea arabica and Coffea dewevrei, which differ with respect to caffeine catabolism. Radioisotope feeding experiments showed that leaves degraded xanthine more readily than fruits but that mature fruits and aged leaves were less efficient than younger tissues. In all cases, a significant part of the recovered radioactivity was in the ureides. Xanthine dehydrogenase was characterized as the enzyme responsible for xanthine degradation, and its activity and that of uricase were consistent with the results obtained in the radioisotope feeding experiments. Activities of allantoinase and allantoate amidohydrolase could not be detected. Considerable levels of endogenous allantoin and allantoic acid were found in fruits and leaves. Therefore, ureide accumulation might be a consequence of low enzyme activity. There was no positive correlation between urease activity and the data from the radioisotope feeding experiments.  相似文献   

2.
Nontarget injury from glyphosate drift is a concern among growers using non-glyphosate-resistant (non-GR) cultivars. The effects of glyphosate drift on nitrate assimilation and nitrogen fixation potential, nodule mass, and yield of non-GR soybean were assessed in a field trial at Stoneville, MS. A non-GR soybean cultivar 'Delta Pine 4748S' was treated with glyphosate at 12.5% of use rate of 0.84 kg of active ingredient/ha at 3 (V2), 6 (V7), and 8 (R2, full bloom) weeks after planting (WAP) soybean to simulate glyphosate drift. Untreated soybean was used as a control. Soybeans were sampled weekly for 2 weeks after each glyphosate treatment to assess nitrate assimilation and N2 fixation potential. Nitrate assimilation was assessed using in vivo nitrate reductase assay in leaves, stems, roots, and nodules. Nitrogen fixation potential was assessed by measuring nitrogenase activity using the acetylene reduction assay (ARA). Nitrogen content of leaves, shoots, and seed and soybean yield were also determined. In the first sampling date (4 WAP), glyphosate drift caused a significant decrease in NRA in leaves (60%), stems (77%), and nodules (50%), with no decrease in roots. At later growth stages, NRA in leaves was more sensitive to glyphosate drift than stems and roots. Nitrogenase activity was reduced 36-58% by glyphosate treatment at 3 or 6 WAP. However, glyphosate treatment at 8 WAP had no effect on nitrogenase activity. Nitrogen content was affected by glyphosate application only in shoots after the first application. No yield, seed nitrogen, protein, or oil concentration differences were detected. These results suggest that nitrate assimilation and nitrogen fixation potential were significantly reduced by glyphosate drift, with the greatest sensitivity early in vegetative growth. Soybean has the ability to recover from the physiological stress caused by glyphosate drift.  相似文献   

3.
Twelve‐day‐old soybean plants were supplied with 1 mM ammonium chloride (NH4C1) to roots and exposed to 0.2–0.25 μL.L‐1 nitrogen dioxide (NO2) for seven days. Amount and rate of ammonium uptake were decreased by NO2 exposure. However, the ammonium concentration in leaves and leaf pH of exposed plants were increased by NO2 exposure. These results suggest that the decrease in ammonium uptake may be due to the decline in hydrogen (H+) ion concentration in exposed plants which resulted from the reduction of the nitrate and nitrite from NO2 absorption. They also suggest that the decrease in ammonium uptake and the competition for energy between nitrate reduction and ammonium assimilation may limit ammonium assimilation to organic nitrogen (N) which would further inhibit acidity increase in exposed plants and ammonium uptake by roots.  相似文献   

4.
Leguminous plants grown in sewage sludge–amended soils can acquire nitrogen by assimilation of nitrate and ammonium from the soil solution or from atmospheric‐dinitrogen (N2) fixation through association with N2‐fixing bacteria. We proposed that operation of both metabolic processes could contribute to alleviate the impact of drought in sludge‐treated plants. A greenhouse experiment was conducted to evaluate the involvement of nodule metabolism in the use efficiency of water and N in sludge‐treated plants. Treatments comprised (1) plants inoculated with rhizobia and amended with sewage sludge; (2) plants inoculated with rhizobia without any amendment; and (3) noninoculated plants supplied with ammonium nitrate, each under well‐watered and drought conditions. Under drought, sludge‐treated plants had increased plant growth and higher photosynthetic and water‐use efficiencies than untreated plants. Drought stimulated nitrate reductase and GS/GOGAT activities but did not affect the activities of phosphoenolpyruvate carboxylase and malate dehydrogenase or the leghemoglobin concentration. The results suggest that under drought conditions, both N2 fixation and nitrate assimilation in nodules of sludge‐treated plants contributed to improve plant N supply and to increase the drought tolerance of alfalfa.  相似文献   

5.
Previous research has demonstrated that glyphosate can affect nitrogen fixation or nitrogen assimilation in soybean. This 2-year field study investigated the effects of glyphosate application of 1.12 and 3.36 kg of ae ha(-1) on nitrogen metabolism and seed composition in glyphosate-resistant (GR) soybean. There was no effect of glyphosate application on nitrogen fixation as measured by acetylene reduction assay, soybean yield, or seed nitrogen content. However, there were significant effects of glyphosate application on nitrogen assimilation, as measured by in vivo nitrate reductase activity (NRA) in leaves, roots, and nodules, especially at high rate. Transiently lower leaf nitrogen or (15)N natural abundance in high glyphosate application soybean supports the inhibition of NRA. With the higher glyphosate application level protein was significantly higher (10.3%) in treated soybean compared to untreated soybean. Inversely, total oil and linolenic acid were lowest at the high glyphosate application rate, but oleic acid was greatest (22%) in treated soybean. These results suggest that nitrate assimilation in GR soybean was more affected than nitrogen fixation by glyphosate application and that glyphosate application may alter nitrogen and carbon metabolism.  相似文献   

6.
The effect of iron (Fe) on ureide metabolism was examined in 45‐day‐old pigeon pea (Cajanus cajan L.) (ureide plant) and alfalfa (Medicago sativa) (amide plant). Plants were either inoculated with Rhizobium or fertilized with ammonium nitrate (NH4NO3). The ureides, allantoin and allantoate, and allanotinase activity were increased in pigeon pea with Fe supplementation. Specific effect of Fe on ureide metabolism of pigeon pea was indicated by the lack of same effect in alfalfa under similar conditions. Nitrogenase activity was elevated with increasing concentrations of Fe in pigeon pea (ureide) as well as alfalfa (amide) symbiosis. Nitrogen (N2) fixation, ureides, and allantoinase activity were reduced at 10 ppm and above concentration of Fe.  相似文献   

7.
本文主要研究在施用尿素条件下,配加氢醌来延缓尿素的集中水解,以减少氨挥发并抑制其硝化作用,从而有效地缓解尿素对大豆共生固氮体系产生的严重抑制效应。结果表明,在一定的浓度范围内,氢醌对纯培养大豆根瘤菌生长。幼苗生长和初生结瘤无不利影响;对离体活性根瘤的呼吸活性和璃珀酸脱氢酶活性具有显著促进。在盆载或田间条件下,尿素配加HQ施用,同无HQ等量尿素比较,显著提高了大豆结瘤量和单株固氮总活性;提高了大豆木  相似文献   

8.
In nodulated young Inga edulis plants, nodule and plant growth, nitrogen (N) in xylem sap and tissues total contents of amino acid, ureide, and nitrate were determined in response to nutrition with nitrate, ammonium, or no mineral N. Additionally, the amount of soluble sugars in the different plant tissues was quantified. It was found that mineral N improved plant growth in height and diameter especially with ammonium. However, nitrate dramatically reduced nodule dry weight on a root dry weight basis and impaired N organic transport by xylem sap. Additionally, a higher amount of amino acids was observed in the roots and nodules of plants fed with mineral N but sugar levels remained constant. Although nitrate inhibited symbiosis, data support the idea that I. edulis is able to use both molecular and mineral nitrogen during the life cycle.  相似文献   

9.
不同形态氮对掌叶半夏生长及块茎主要化学成分影响研究   总被引:3,自引:1,他引:2  
【目的】本文利用盆栽试验,探讨了不同铵态氮、 硝态氮供应比例对掌叶半夏生长、 相关生理指标及块茎中主要活性成分含量的影响,以期为掌叶半夏的合理施肥、 科学种植提供技术依据。【方法】盆栽试验以蛭石为栽培基质,以掌叶半夏为试验材料,采用不同铵态氮、 硝态氮比例处理,分析不同铵硝比例处理下掌叶半夏叶片中抗氧化保护酶(SOD、 CAT), 叶片、 块茎中氮代谢关键酶(NR)的活性及块茎中次生代谢产物(MDA、 硝酸盐及主要活性成分)的含量变化。【结果】 1)叶片鲜重、 块茎鲜重及总叶绿素含量总体均随铵态氮比例的升高而呈逐渐增加趋势,其中在全铵营养下,块茎鲜重和总叶绿素含量均达到最高值。2)随着铵态氮比例的升高,植株叶片中SOD、 CAT酶活性呈先升高后降低趋势; 当铵硝比为50∶50时,SOD、 CAT酶活性最高,此时,叶片中NO-3-N含量也达到最高。3)在全铵营养或全硝营养下,MDA含量均高于其他处理; 当铵硝比为50∶50时,MDA累积量最低。4)在全硝营养下,叶片、 块茎中的NR活性均达到最高值,同处理水平下叶片中NR活性要高于块茎; 并且随着铵态氮比例的增加叶片中NR活性呈逐渐降低的趋势,而块茎中的NR活性则呈逐渐增加的趋势。5)块茎中主要活性成分的累积更依赖于两种氮素的配施作用,在较高的铵态氮配施处理下(75∶25时),总生物碱、 总有机酸及腺苷的积累量均取得最高值。【结论】适宜比例的铵硝配比可以促进掌叶半夏生长及产量的形成,其促进效果也显著高于全硝营养; 当铵硝比为50∶50时,其植物体内的相关酶活性也达到最高,说明适宜的铵硝配比能减轻膜质过氧化对植株细胞膜造成的损伤; 同时,较高的NH+4-N也有利于块茎中主要活性成分的积累,尤以铵硝比为75∶25时,累积效果最显著。  相似文献   

10.
Exposing 12‐day‐old soybean plants to 0.2 ppm nitrogen dioxide (NO2) for four weeks increased the nitrite concentration and acidity, and decreased the Leghemoglobin (LHb) concentration and the nitrogenase activity of root nodules. The supply of 1 mol.m‐3 nitrate to the roots intensified the nitrite accumulation, decreased the acidity of the nodules, and alleviated the inhibition of nitrogenase activity by NO2 fumigation. These results suggested that the inhibition of nitrogen (N2) fixation by N fertilizer supply might relate to the acid‐alkali balance in nodules.  相似文献   

11.
The pattern of nitrogen assimilation in soybean plants treated with a herbicide that inhibits branched-chain amino acid biosynthesis was evaluated by (15)N isotopic analysis. The herbicide imazethapyr caused a strong decrease in nitrate uptake by roots, partly due to a reduced stomatal conductance. The inhibition of (15)N uptake was accompanied by a decrease in the (15)N content in the plant and, concomitantly, an inhibition of translocation to the shoot. Imazethapyr inhibited nitrate reductase activity in leaves and roots. Among all parameters studied, "de novo" synthesis of proteins was the first parameter of the N assimilation metabolism affected by the herbicide. These results show that this class of herbicides totally damages N metabolism and indicates a regulatory effect on N uptake and translocation that would be mediated by the increase in free amino acid pool provoked by the inhibition of branched-chain amino acid biosynthesis.  相似文献   

12.
The impact of phosphorus (P) deficiency on response of symbiotic N2 fixation and carbohydrate accumulation in soybean (Glycine max [L.] Merr.) to atmospheric CO2 enrichment was examined. Plants inoculated with Bradyrhizobium japonicum MN 110 were grown in growth chambers with controlled atmospheres of 400 and 800 μL CO2 L‐1 and supplied either 1.0 mM‐P (P‐sufficient) or 0.05 mM‐P (P‐deficient) nitrogen (N)‐free nutrient solution. When plants were supplied with sufficient P, CO2 enrichment significantly increased whole plant dry mass (83%), nodule mass (67%), total nitrogenase activity (58%), and N (35%) and P (47%) accumulation at 35 days after transplanting (DAT). Under sufficient P supply, CO2 enrichment significantly increased starch concentrations in nodules compared to the normal atmospheric CO2 treatment. Under normal CO2 levels (400 μL L‐1) nonstructural carbohydrate concentration (starch plus soluble sugar) was significantly higher in leaves of P‐deficient plants than in leaves of P‐sufficient plants in which nonstructural carbohydrate concentration exhibited a strong diurnal pattern. Under deficient P supply whole plant dry mass, symbiotic N2‐fixation parameters, and N and P accumulation were not enhanced by atmospheric CO2 enrichment. Phosphorus deficiency decreased nonstructural carbohydrate accumulation in nodules at the end of a 10‐day period in which functional activity was developing by 86% relative to P‐sufficient controls. While P deficiency elicited significant increases in the nonstructural carbohydrate concentration in leaves, it caused significant decreases in the nonstructural carbohydrate concentration in nodules over the diurnal cycle from 30 to 31 DAT. Collectively, these results indicate that the lack of a symbiotic N2‐fixation response to atmospheric CO2 enrichment by P‐deficient plants may be related to the decreased carbohydrate status of nodules.  相似文献   

13.
A remarkable accumulation and utilization of allantoin are observed in soybean plant bearing modules (Glycine max variety A62-1). To study ita physiological role, changes in activities and distribution of the enzymes concerning the purine catabolism (i.e., xanthine oxidase, uricase, allantoinase and allantoicase) were measured during development.

Uricase activity was found in the radicles in the early stage of seedling development, and no difference of the enzyme activity was detected between the radicles of the nodulating variety (A62-) and non-nodulating variety (A62-2). On maturation the activity disappeared rapidly in radicles and appeared in leaves, pods and nodules. The activity in nodules was much higher than that in the leaves and the pods throughout the culture period.

Xanthine oxidase activity was found in the radicles and nodules.

Allantoinase activity was present in all regions of both varieties, and the specific activity in the nodules Was 2-10 times that in other regions.

Allantoicase activity was detected in the leaves, but not in the nodules.

The distribution of these enzymes suggested that allantoin is formed in the nodules and utilized mainly in the leaves after translocation.

Changes in the allantoin concentration and in the activities of uricase and allantoicase were studied in non-nodulating soybean (A62-2) grown in a culture solution containing various nitrogenous compounds. The allantoin concentration in the leaves increased as the plants were cultured in the solution containing 100 ppm of nitrate-N, urea-N or allantoin-N, whereas no uricase activity in the root was detected. The specific activity of uricase decreased in the process of plant development in all cultures. Allantoicase activity increased in the roots and leaves when the plants were cultured in this solution containing 100 ppm of urea-N or allantoin-N, indicating that allantoin is utilized easily in the soybean plants.

Intracellular localization of uricase in the nodules was studied by the method of linear sucrose density gradient centrifugation. The uricase activity was associated with the bacteroids, density 1.25.

The uricase activity peak was coincident with the peak of fonnic dehydrogenase activity (bacteria type), and not with peaks of catalase activity, cytochrome oxidase activity and absorbance at 280 nm. This evidence together with the observation by electron microscopy suggested that at uricase is associated with bacteroids.  相似文献   

14.
间作对气雾培生菜生长和硝酸盐积累的影响   总被引:2,自引:0,他引:2  
该文对生菜与樱桃萝卜间作和生菜单作模式下气雾培生菜相关指标进行了对比研究,并结合营养液中矿质元素含量的变化规律进一步分析了生菜与樱桃萝卜间作模式下生菜地上部分硝酸盐积累的主因素。结果表明:生菜与樱桃萝卜间作有利于提高生菜地上部分鲜质量,促进生菜叶片的展开以及生菜植株根总长度、根系表面积和根系体积等植株根系形态学参数的增大;生菜与樱桃萝卜间作增加了生菜SPAD值、净光合速率、气孔导度和蒸腾速率等光合指标,而对胞间CO2浓度无明显规律性影响;生菜与樱桃萝卜间作不同程度地降低了生菜硝酸盐含量,随着气雾培时间的推进,总体呈先降低后增加的趋势,而硝酸还原酶活性的变化趋势与硝酸盐含量的变化趋势相反;进行相关性分析得出,生菜与樱桃萝卜间作模式下生菜硝酸盐含量降低主要是由于硝酸还原酶活性的增加导致的,并且营养液中硝态氮消耗量、铵硝比和锰消耗量对硝酸还原酶活性影响较大,相关系数分别为0.882、0.762和0.851。研究结果揭示了生菜与樱桃萝卜间作模式对气雾培生菜生长和硝酸盐积累的影响,并探究了该模式下生菜硝酸盐积累的主因素,为生菜与樱桃萝卜间作模式的作用机理研究提供一定的理论基础。  相似文献   

15.
A hydroponic system was designed in which the replenishment of nutrients is proportional to the consumption of nitrate or ammonium by higher plants. Further characteristics of this ‘rhizostat’ are on‐line measurement of nitrate or ammonium, bubble‐free aeration of the culture solution with pure oxygen, and auxostatic pH control at 6.00±0.1. Young sunflowers were grown in the rhizostat for up to 16 days. Leaf area, total fresh weight, root fresh weight, and nutrient demand per day increased exponentially. The rate of nitrate consumption per plant followed a characteristic diurnal pattern with maximal values at the end of the 12‐h photoperiod. After two weeks of growth, about 95% of the inorganic bound nitrogen removed from the nutrient solution was recovered in the biomass of the plants. Growth of sunflower seedlings over two weeks led only to slight but tolerable deviations of macronutrient and trace element concentrations from the formula of the nutrient solution. As expected, nitrate‐grown plants lowered potassium concentration, whereas growth with ammonium resulted in an accumulation of this ion. Other plants successfully grown in the rhizostat have been corn, soybean, sugarcane, tobacco, and spinach.  相似文献   

16.
The effect of nitrogen (N) source (nitrogen fixation or nitrate assimilation) and progressive water stress on pigment content, carbon assimilation and changes in the activity of certain photosynthetic (Rubisco and phosphoenol pyruvate carboxilase) and photorespiratory enzymes (glutamate synthetase and glycolate oxidase) during vegetative development of soybean plants was studied. Glycolate oxidase declined by 13% in nitrogen-fixing plants under water deficit, and increased in nitrate-fed ones. Nodulated plants were less sensitive to drought than nitrate-fed individuals; although as general growth was inhibited under drought stress in both experimental models. Results support the importance of nitrogen source in soybean responses to water stress. Difference in sensitivity of nitrate-fed and nitrogen-fixing plants towards water stress seems to be related not to nitrogen assimilation process itself, but to complex interactions with photorespiratory flux and stomatal conductance.  相似文献   

17.
Abstract

Soluble amino acids in roots and primary amino acids, which were involved in primary ammonium assimilation, in the metabolites of 14C-glucose fed to roots for 3 h in the dark were analyzed in the roots of non-nodulated soybean and pea plants grown in ammonium, nitrate or nitrogen-free media for 1 day. Compared with the effect of nitrate, ammonium supply strongly affected the content and synthesis of the amino acids in the roots. In both soybean and pea roots, the supply of ammonium increased considerably the concentrations of the primary amino acids, and asparagine was the most predominant amide, followed by glutamine. In nitrate-supplied soybean roots, the concentrations of asparagine, aspartate and alanine increased, but the concentration of glutamine was low. In the roots of pea plants grown in nitrate media, asparagine was the predominant amino acid, although the composition of the primary amino acids was little affected by nitrate supply. The proportion of amino acids synthesized from 14C-glucose increased and asparagine rather than glutamine was predominantly synthesized in ammonium-supplied soybean and pea roots, whereas in nitrate-supplied roots asparagine was more actively synthesized than glutamine, although asparagine was not predominant. The ratio of C4 (asparagine + aspartate) to C5 (glutamine + glutamate) amino acids was twofold higher in ammonium-supplied and nitrate-supplied soybean roots than in roots receiving no nitrogen. In contrast, in pea roots, the C4/C5 ratio was twofold higher only in ammonium nutrition. The results obtained suggest that the roots of leguminous plants might possess an indigenous ability to provide a carbon skeleton for preferential synthesis of asparagine rather than glutamine with a high intensity of ammonium supply.  相似文献   

18.
The average yield of upland rice under no-tillage system (NTS), a sustainable soil management, is lower than in conventional tillage (one plowing and two disking). One of the reasons given for this drop in crop grain yield would be the low-nitrate assimilation capacity of rice seedlings, due to the low activity of the nitrate reductase (NR) enzyme in the early development phase. A greenhouse experiment was conducted to evaluate the effects of the soil acidic and nitrogen source in the micronutrient concentrations, NR activity and grain yield of upland rice growing under NTS. The soil used in the experiment was an Oxisol. The experimental design was completely randomized in a factorial 3 × 4. Treatments consisted of three levels of soil acidity (high, medium, and low) combined with four nitrogen sources (nitrate, ammonium, ammonium + nitrification inhibitor, and control – without N fertilization). The reduction of soil acidity reduced the concentration of zinc and manganese in rice plants. Generally, the activity of the NR enzyme was higher in plants grown in soils with low acidity and fertilized with calcium nitrate. There was a greater response in growth and yield in rice plants grown in soils with high acidity. Under medium acidity, rice plants grown with ammonium sulfate were more productive (no differences were detected with the addition of the nitrification inhibitor).  相似文献   

19.
Effect of ammonium and nitrate nitrogen, iron chelates and CCC on the chlorophyll and carbohydrat content in leaves of chlorotic, periwinkle plants an alkaline soils in Isfahan In pot experiments with periwinkle plants on alkaline soils the effect of nitrogen fertilization, iron chelats and cycocel in treating iron chlorosis was studied. High amounts of calcium nitrate produced chlorosis, followed by a general decrease in plant growth, while the same amount of ammonium sulfat prevent chlorosis and increased chlorophyll content and production of dry matter. In chlorotic plants both the chlorophyll and sugar content was increased by spraying with iron chelate, and with cycocel as well.  相似文献   

20.
氮饥饿水稻利用不同形态氮素的差异及其生理机制   总被引:8,自引:0,他引:8  
通过水培试验,研究了氮饥饿7d后,恢复供应不同形态氮源对水稻氮吸收和积累及氮同化中关键酶活性和光合色素的影响。结果表明,缺氮促进根系生长,增加根冠比。恢复供氮4d显著增加地上部生物量。铵硝混合营养促进了水稻对氮的吸收和转运,叶片和根系中全氮及叶片中铵态氮的含量以硝酸铵处理最高。与单一铵或硝营养相比,铵硝混合营养增强了根系的谷氨酰胺合成酶和叶片中硝酸还原酶的活性,提高了水稻同化和利用氮的能力。另外,与纯硝营养相比,供应铵态氮显著增加了叶片中总叶绿素,尤其是叶绿素a的含量。因此,改善水肥管理、平衡对水稻供氮的铵硝配比将提高水稻氮素的吸收和利用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号